-
水体富营养化(Eutrophication)是由于水生系统的氮、磷等营养元素的含量过高、相对比例失调或化学形态变化,引起的水体功能失衡的现象[1],会导致水中浮游植物、浮游动物等群落结构变化,水质迅速恶化[2]。随着城市化和工业化的进行,大量的含氮物质随生活污水、工农业废水等进入水体并积累,对水生生态环境和人体健康构成威胁[3-6]。针对富营养水体,通常采用生物法进行治理:放养田螺、河蚬等滤食性动物可摄食水中藻类,提高水体透明度,有利于沉水植物与微生物增殖,从而降低氮浓度,但需要考虑水生动物对富营养水环境的适应性问题[7-8];种植水生植物可吸收、利用水体中氮源促进脱氮,但在植物成熟后效果较差[9-12];微生物脱氮可持续通过氨化、硝化-反硝化、厌氧氨氧化等作用使氮进行形态转化,并把氮转化为气态或固定在生物体内而脱离水体[13-15],相较于动物法和植物法,微生物对环境的适应性强且能持续发挥其作用。
碳氮比(C/N)是微生物脱氮的重要影响因素[16-18],在适宜范围内,随着C/N的升高,异化硝酸盐还原的功能基因和反硝化过程相关酶的相对丰度均增大[19],进而促进氮的去除。BONASSA等[20]认为传统的硝化/反硝化工艺需要高于3.5的CODb/N以实现完全的脱氮,其中CODb是由生物降解导致的COD去除量。CHIU等[21]认为支持常规生物反硝化的最佳COD/
$ {\text{NO}}_{\text{3}}^{{-}}\text{-N} $ 比率为6.0~8.0。但国内外污废水普遍存在C/N低的问题使生物脱氮受到抑制[22-25]。一些研究采用投加甲醇、乙醇、乙酸钠、葡萄糖等可溶有机碳源的方式对水体C/N进行调节以促进脱氮,但该方式成本高、易产生二次污染,且对投加技术要求高[26-27] 。中国种植业每年可产生数亿吨生物质固体废弃物,这些生物质固废的成分安全无害,在水中能持续释放有机碳源,且能增大水体中的固-液界面面积,有利于微生物附着生长[28-30]和水体氮的转化与去除[30-31]。以生物质代替可溶性碳源,可降低碳源材料的购买、运输和存储成本,减弱碳源投加的操作难度,降低碳源添加频率[32-34]。雷柯柯等[35]分别以甘蔗渣、稻壳粉为载体,使水体絮团总菌数量提高至105~107 cfu·L−1(cfu为活菌培养计数时的菌落形成单位),罗佳等[36]向富营养化水体中添加稻壳、木屑,水体中硝化细菌、反硝化细菌数量和细菌多样性也高于对照组。将15 g玉米芯、花生壳、稻壳在3 L超纯水中浸泡,10 d后COD释放量分别达到了225.88、178.78、384.16 mg·L−1,在静态反硝化实验中三者的
$ {\text{NO}}_{\text{3}}^{-} $ 去除率均在3 d内达到了85%以上[37]。将稻草、丝瓜络、玉米芯分别加入生态袋中进行实验,$ {\text{NH}}_{\text{4}}^{\text{+}}\text{-N} $ 平均去除率分别为78.4%、77.8%和73.6%,TN去除率达82.7%、79.6%、77.4%,明显高于对照组的68.1%和71.7%[38]。生物质粒径决定了生物质与水体的固-液接触面积的大小,这不仅会影响生物质与周围水体的物质交换通量[39],也可能导致脱氮效果的差异。目前工程和实验中选取特定粒径的生物质材料以包裹投加或直接投加的方式加入水体中,但少有探讨生物质的粒径和投加方式对生物质供碳降氮效果的影响。王新刚等[40]还发现植物在水中腐烂会使次年出水中磷质量浓度增加0.10~0.15 mg·L−1,因此,还需考虑生物质添加对水体磷含量的影响。
本研究将不同粒径的生物质颗粒以无纺布包裹投加和直接投加2种方式对总氮超标的水样进行了处理,考察了在21 d内水体碳、氮、磷含量的变化情况及对总氮的去除效果,以期为利用生物质进行污水与富营养水体的除氮提供参考。
生物质利用方式对富营养水体中碳氮磷含量及其比例的影响
Effects of biomass utilization on carbon, nitrogen and phosphorus contents and their proportion in eutrophic water
-
摘要: 生物质常被添加至富营养水体中以调节碳氮比(C/N),促进脱氮,但不清楚生物质的粒径和投加方式对富营养水体中营养物质浓度和比例的影响。通过机械粉碎制得20~40、40~80、80~160目稻壳颗粒,并选取直接投加和无纺布包裹投加2种投加形式,以不添加稻壳或无纺布包裹砖块作为对照组。以超纯水为水样研究不同粒径和投加方式下稻壳的3 d碳氮磷释放特性;以成都市府河下游河段水样为研究对象,考察了不同粒径和投加方式下稻壳的21 d静态脱氮特性。结果表明,在超纯水中,稻壳释放出CODMn(5.5~16.5 mg·L−1)、TP(0.18~0.45 mg·L−1)、TN(0.39~0.95 mg·L−1)、CODMn/TN(8.5~19.7)、CODMn/TP(27.9~37.5),前四者均呈现出80~160目>40~80目>20~40目的规律,仅CODMn和CODMn/TN呈现直接投加>无纺布包裹投加的规律。在静态脱氮实验中,21 d后,添加了稻壳的水样CODMn含量由28.1 mg上升至71.7~143.0 mg,TP含量由1.2 mg下降至0.2~0.5 mg,CODMn/TN由0.9上升至8.5~16.5,CODMn/TP由24.2上升至170以上,这4个参数的变化情况与稻壳的碳氮磷释放规律相同;TN含量由30.04 mg下降至7.64~8.68 mg,低于对照组(13.2~13.9 mg),但粒径和投加方式仅对实验初期水中氮的存在形态有影响。粒径决定稻壳的比表面积,投加方式决定稻壳的间隙,并影响微生物的附着效果,进而影响稻壳的碳氮磷释放效果。在实际应用时可根据情况,采用不同的生物质粒径和投加方式,以调节水中营养物质浓度和比例。Abstract: Biomass is often added to eutrophic water to adjust the ratio of carbon to nitrogen ratio (C/N) and promote denitrification. However, the effects of particle size and dosing mode on the nutrient concentrations and their proportion in the eutrophic water are not clear. In this study, rice husk with the particle size of 20~40, 40~80 and 80~160 mesh was prepared by mechanical grinding, and two modes such as directly and non-woven fabrics-wrapped dosing were used to conduct the experiments with control groups of adding nothing or bricks wrapped with non-woven fabric. The carbon, nitrogen and phosphorus release characteristics of rice husk under the conditions of different grain sizes and dosing modes in 3 days were studied by using ultra-pure water as water samples, while the static nitrogen removal characteristics of rice husk with different grain sizes and dosing modes in 21 days were studied by using water samples from the lower reaches of Fuhe River in Chengdu. The results showed that in the ultra-pure water, rice husk released CODMn of 5.5~16.5 mg·L−1, TP of 0.18~0.45 mg·L−1 and TN of 0.39~0.95 mg·L−1, CODMn/TN ratio of 8.5~19.7, CODMn/TP ratio of 27.9~37.5, and the first four indices showed the order: 80~160 mesh >40~80 mesh >20~40 mesh, while only CODMn and CODMn/TN showed the order: direct addition > non-woven fabric-wrapped addition. In the static nitrogen removal experiments with rice husks-dosed water samples after 21 days, CODMn increased from 28.1 mg to 71.7~143.0 mg, TP decreased from 1.2 mg to 0.2~0.5 mg, CODMn/TN increased from 0.9 to 8.5~16.5, CODMn/TP increased from 24.2 to more than 170, which showed the same trends as above rice husk release experiments in ultra-pure water; TN decreased from 30.04 mg to 7.64~8.68 mg, which was lower than that of the control group (13.2~13.9 mg), but the particle size and dosing modes of rice husks only affected N species at the beginning of the experiment. The particle size of rice husks determined its specific surface, the dosing modes determined the gap between rice husks, they affected the attachment effect of microorganisms, and then the release of carbon, nitrogen and phosphorus. In actual application, the various combination of the biomass particle size and non-woven fabric-wrapping can be used to adjust the concentration and proportion of nutrients in water.
-
Key words:
- eutrophic water /
- biomass /
- carbon /
- nitrogen /
- phosphorus
-
表 1 水样基础数据
Table 1. Basic data of water samples
mg·L−1 样品 TP TN NH4+-N NO2−-N NO3−-N CODMn GB 3838-2002 III类水标准 0.2 1.0 1.0 — — 4 原水水样 0.17 3.00 0.93 0.108 0.08 2.8 注:“—”表示标准中无该项指标。 表 2 实验处理
Table 2. Experimental treatment
水样 水样/L 稻壳/g 红砖/g 是否使用
无纺布包裹20~40目 40~80目 80~160目 CK-A0 10 — — — — 否 A1 10 10 — — — 否 A2 10 — 10 — — 否 A3 10 — — 10 — 否 CK-B0 10 — — — 10 是 B1 10 10 — — — 是 B2 10 — 10 — — 是 B3 10 — — 10 — 是 注:“—”表示水样中未添加该材料。 -
[1] MOAL M L, GASCUEL-ODOUX C, MéNESGUEN A, et al. Eutrophication: A new wine in an old bottle?[J]. Science of the Total Environment, 2019, 651(Pt 1): 1-11. [2] LE C, ZHA Y, LI Y, et al. Eutrophication of lake waters in China: Cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662-668. doi: 10.1007/s00267-010-9440-3 [3] 丁雄祺, 谢媚, 陈偿, 等. 一株高效氨氮及亚硝态氮去除功能菌株的分离鉴定及在生物絮团对虾养殖中的应用[J]. 中国水产科学, 2019, 26(5): 959-970. [4] 孔繁翔, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J]. 生态学报, 2005, 25(3): 589-595. doi: 10.3321/j.issn:1000-0933.2005.03.028 [5] NILOUFAR G, R. P K. Critical review of effluent dissolved organic nitrogen removal by soil/aquifer-based treatment systems[J]. Chemosphere, 2021, 269: 1-11. [6] WANG H, WANG T, YANG S, et al. Nitrogen removal in oligotrophic reservoir water by a mixed aerobic denitrifying consortium: Influencing factors and immobilization effects[J]. International Journal of Environmental Research and Public Health, 2019, 16(4): 583. doi: 10.3390/ijerph16040583 [7] 张文艺, 张采芹, 占明飞, 等. 滤食性底栖动物-菌藻复合生态系统对富营养水体净化的特性[J]. 湖北农业科学, 2013, 52(20): 4926-4931. [8] 朱小龙, 谷娇, 靳辉, 等. 太湖河蚬(Corbicula fluminea)对富营养水体水质的改善作用?[J]. 湖泊科学, 2015, 27(3): 486-492. doi: 10.18307/2015.0316 [9] 江君, 李欣, 徐飞, 等. 3个荷花品种对富营养水体和底泥中氮、磷去除能力比较研究[J]. 江苏农业科学, 2018, 46(8): 296-299. [10] 徐恒戬, 权召, 周永顺. 富营养水体修复植物种质筛选的研究[J]. 种子, 2018, 37(5): 67-69. [11] 张萌, 李雄清, 邹新, 等. 典型沉水植物修复富营养水体的最优种植密度[J]. 湖北农业科学, 2016, 55(20): 5218-5224. [12] 梁玉婷, 杨星宇, 杨兰芳, 等. 湿地植物生长对去除富营养化水体总氮和硝氮的影响[J]. 湖北大学学报(自然科学版), 2021, 43(6): 644-652. [13] LIN S S, SHEN S L, ZHOU A, et al. Assessment andmanagement of lake eutrophication: A case study in Lake Erhai, China[J]. Science of the Total Environment, 2021, 751: 2021, 751: 141618 [14] XINGHUI X, SIBO Z, SILING L, et al. The cycle of nitrogen in river systems: sources, transformation, and flux[J]. Environmental science Processes & impacts, 2018, 20(6): 863-891. [15] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9 [16] GAO F, YANG H-L, LI C, et al. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp[J]. Bioresource Technology, 2019, 282: 118-124. doi: 10.1016/j.biortech.2019.03.011 [17] SAEED T, GUANGZHI S. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448. doi: 10.1016/j.jenvman.2012.08.011 [18] 廖晓数, 贺锋, 徐栋, 等. 低C/N对湿地中硝化反硝化作用的影响[J]. 中国环境科学, 2008, 28(7): 603-607. doi: 10.3321/j.issn:1000-6923.2008.07.006 [19] 吴代顺, 杨昕怡, 于雪, 等. 碳氮比对硝化过程微生物代谢及功能基因的影响[J]. 中国给水排水, 2021, 37(7): 20-26. [20] BONASSA G, BOLSAN A C, HOLLAS C E, et al. Organic carbon bioavailability: Is it a good driver to choose the best biological nitrogen removal process?[J]. Science of the Total Environment, 2021, 786: 147390. doi: 10.1016/j.scitotenv.2021.147390 [21] CHIU Y C, CHUNG M S. Determination of optimal COD/nitrate ratio for biological denitrification[J]. International Biodeterioration & Biodegradation, 2003, 51(1): 43-49. [22] CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal, 2019, 362: 107-115. doi: 10.1016/j.cej.2018.12.160 [23] FU X R, HOU R R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. doi: 10.1016/j.scitotenv.2022.153061 [24] 王建华, 陈永志, 彭永臻. 低碳氮比实际生活污水A2O-BAF工艺低温脱氮除磷[J]. 中国环境科学, 2010, 30(9): 1195-1200. [25] 胡曼利. 外加植物碳源和稀碱加热预处理强化潜流人工湿地对低C/N污水的处理效果[D]. 重庆: 西南大学, 2022. [26] 彭永臻, 王鸣岐, 彭轶, 等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报, 2021, 47(10): 1158-1166. [27] CHIU Y C, LEE L L, CHANG C N, et al. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 1-7. [28] 凌宇, 闫国凯, 王海燕, 等. 6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学, 2021, 42(5): 2422-2431. [29] 任玉锐, 郭照冰. 植物作为反硝化碳源[J]. 环境工程学报, 2015, 9(5): 2247-2252. doi: 10.12030/j.cjee.20150536 [30] 余晖, 张学青, 张曦, 等. 黄河水体颗粒物对硝化过程的影响研究[J]. 环境科学学报, 2004, 24(4): 601-606. doi: 10.3321/j.issn:0253-2468.2004.04.007 [31] 张学青, 夏星辉, 杨志峰. 水体颗粒物对有机氮转化的影响[J]. 环境科学, 2007, 28(9): 1954-1959. doi: 10.3321/j.issn:0250-3301.2007.09.010 [32] LYNN T J, YEH D H, ERGAS S J. Performance of denitrifying stormwater biofilters under intermittent conditions[J]. Environmental Engineering Science, 2015, 32(9): 796-805. doi: 10.1089/ees.2015.0135 [33] BOLEY A, MULLER W R, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacultural Engineering:An International Journal, 2000(1/2): 22. [34] 陈志华, 周键, 王三反. 固相反硝化在水污染治理中的研究进展[J]. 化工进展, 2021, 40(z1): 366-374. [35] 雷柯柯, 马甡, 单洪伟, 等. 人工悬浮生物絮团在凡纳滨对虾养殖系统中的初步应用[J]. 水产科技情报, 2019, 46(1): 37-43. [36] 罗佳, 韩士群, 罗海荣, 等. 外加碳源对富营养化水体生物脱氮效果及细菌群落结构的影响[J]. 江苏农业学报, 2012, 28(6): 1312-1317. [37] 王玥, 秦帆, 唐燕华, 等. 农业废弃物作为反硝化脱氮外加碳源的研究[J]. 林业工程学报, 2019, 4(5): 146-151. [38] 王琦, 石雷, 杨小丽, 等. 废弃生物质强化生态袋脱氮除磷的效果[J]. 东南大学学报(自然科学版), 2021, 51(1): 138-144. doi: 10.3969/j.issn.1001-0505.2021.01.019 [39] 杨正健, 魏辰宇, 刘德富, 等. 开放水体脱氮过程及其影响因素研究进展[J]. 水利学报, 2021, 52(2): 194-202. [40] 王新刚, 吕锡武, 张圣菊. 水生植物分解过程中生物质及氮磷释放规律研究[J]. 安全与环境学报, 2011, 11(5): 82-85. doi: 10.3969/j.issn.1009-6094.2011.05.018 [41] 邵留, 徐祖信, 金伟, 等. 农业废物反硝化固体碳源的优选[J]. 中国环境科学, 2011, 31(5): 748-754. [42] 成都市地方志编纂委员会编纂. 成都市志 水利志[M]. 成都: 四川辞书出版社, 2001. [43] 林浩澎, 孙慧明, 罗娉婷, 等. 一株耐碱变形假单胞菌ZY-3的鉴定及其脱氮特性[J]. 微生物学通报, 2022, 49(10): 4066-4079. [44] 张怡, 刘本洪, 刘蕾, 等. 硬质河岸和水体富营养化河道的综合治理技术: 以柴桑河为例[J]. 环境工程学报, 2021, 15(12): 3875-3882. doi: 10.12030/j.cjee.202109012 [45] 丁润楠, 姚晓龙, 傅大放, 等. 中国东部湖泊有机氮浓度时空特征及影响因素[J]. 环境科学与技术, 2021, 44(6): 35-42. [46] 刘海弟, 孙鲁强, 李伟曼, 等. 红砖烧成对污泥原料中重金属离子固化的研究[J]. 砖瓦, 2021(8): 21-22. doi: 10.3969/j.issn.1001-6945.2021.08.007 [47] 岳建芝, 李刚, 张全国. 促进木质纤维素类生物质酶解的预处理技术综述[J]. 江苏农业科学, 2011, 39(3): 340-343. doi: 10.3969/j.issn.1002-1302.2011.03.134 [48] 邵留, 徐祖信, 王晟, 等. 新型反硝化固体碳源释碳性能研究[J]. 环境科学, 2011, 32(8): 2323-2327. [49] 张雯. 以农业废弃物为基料的地下水反硝化缓释碳源材料研究及应用[D]. 南京: 南京大学, 2017. [50] 狄军贞, 李拓达, 赵微. 甘蔗渣碳源释放规律及其硫酸盐还原菌利用性试验[J]. 农业环境科学学报, 2019, 38(5): 1151-1157. doi: 10.11654/jaes.2018-0994 [51] 阳春, 郑向勇, 严立, 等. 几种土壤改良材料磷氨氮吸附和硝化作用特性的研究[J]. 农业环境科学学报, 2008(5): 2013-2017. doi: 10.3321/j.issn:1672-2043.2008.05.058 [52] SALILING W J B, WESTERMAN P W, LOSORDO T M. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations[J]. Aquacultural Engineering, 2007, 37(3): 222-233. doi: 10.1016/j.aquaeng.2007.06.003 [53] 田冬, 高明, 王侃. 不同粒径生物质灰渣填料净化生活污水的试验研究[J]. 水土保持学报, 2015, 29(4): 218-222. [54] 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3): 987-994. [55] 杨平, 刘青松, 石广辉, 等. 稻壳作为缓释碳源及载体的改性研究[J]. 生态科学, 2019, 38(2): 112-118. [56] 李斌. 固体生物质碳源复合滤料深度反硝化性能研究[D]. 北京: 北京工业大学, 2013. [57] PAN X, GU Z, CHEN W, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review[J]. Science of the Total Environment, 2021, 754: 142104. doi: 10.1016/j.scitotenv.2020.142104 [58] 王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学, 2018, 39(10): 4505-4511. [59] 刘杰, 韩士群, 齐建华, 等. 生物碳含量对底泥活化原位脱氮及微生物活性的影响[J]. 江苏农业学报, 2016, 32(1): 106-110. doi: 10.3969/j.issn.1000-4440.2016.01.016 [60] 杨磊, 郭军, 王岩, 等. 农林废弃物制备环境友好型缓释碳源生物膜载体材料[J]. 湖北农业科学, 2021, 60(18): 68-71. [61] 陈佳伟, 许晓毅, 时和敏, 等. 基于D-最优混料设计的复合缓释碳源填料制备及其性能分析[J]. 环境污染与防治, 2021, 43(6): 718-724. [62] FALLAHI A, REZVANI F, ASGHARNEJAD H, et al. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review[J]. Chemosphere, 2021, 272: 129878. doi: 10.1016/j.chemosphere.2021.129878 [63] 丁绍兰, 谢林花, 马蕊婷. 壳类生物质释碳性能研究[J]. 环境污染与防治, 2016, 38(10): 1-5,11. [64] 朱辉翔, 张树楠, 彭英湘, 等. 不同固体碳源释碳特征及其对反硝化脱氮效果研究[J]. 农业现代化研究, 2021, 42(2): 206-214. [65] MULLER W R, HEINEMANN A, SCHAFER C, et al. Aspects of PHA(poly-B-hydroxy-butyric-acid) as an H-donator for denitrification in water-treatment processes// Int water supply assoc[J]. International workshop on inorganic nitrogen compounds and water supply in 1991. Hamburg, 1992: 27-29. [66] BOERSMA M, ABERLE N, HANTZSCHE F M, et al. Nutritional limitation travels up the food chain[J]. International Review of Hydrobiology, 2008, 93(4/5): 479-488. [67] STUTTER M I, GRAEBER D, EVANS C D, et al. Balancing macronutrient stoichiometry to alleviate eutrophication[J]. Science of the Total Environment, 2018, 634: 439-447. doi: 10.1016/j.scitotenv.2018.03.298 [68] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel, 2012, 94(1): 1-33. [69] GILBERT P M. Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes[J]. Marine Pollution Bulletin, 2017, 124(2): 591-606. doi: 10.1016/j.marpolbul.2017.04.027 [70] REDFIELD A C. The biological control of chemical factors in the environment[J]. Science progress, 1960, 11: 150-170. [71] HILLEBRAND H, STEINERT G, BOERSMA M, et al. Goldman revisited: Faster-growing phytoplankton has lower N: P and lower stoichiometric flexibility[J]. Limnology and Oceanography, 2013, 58(6): 2076-2088. doi: 10.4319/lo.2013.58.6.2076 [72] 于潘, 张黎烜, 尤庆敏, 等. 综合硅藻指数的建立及其在淡水生态评价中的应用[J]. 环境科学研究, 2022, 35(9): 2165-2174. doi: 10.13198/j.issn.1001-6929.2022.06.03 [73] ISHIDA C K, ARNON S, PETERSON C G, et al. Influence of algal community structure on denitrification rates in periphyton cultivated on artificial substrata[J]. Microbial Ecology, 2008, 56(1): 140-152. doi: 10.1007/s00248-007-9332-0