Processing math: 100%

选择性复合电极的制备及其对硝酸盐的去除性能

王媛妮, 韩爱钊, 常嘉琪, 夏思蒙, 杨灵芳, 施周, 邓林. 选择性复合电极的制备及其对硝酸盐的去除性能[J]. 环境工程学报, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108
引用本文: 王媛妮, 韩爱钊, 常嘉琪, 夏思蒙, 杨灵芳, 施周, 邓林. 选择性复合电极的制备及其对硝酸盐的去除性能[J]. 环境工程学报, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108
WANG Yuanni, HAN Aizhao, CHANG Jiaqi, XIA Simeng, YANG Lingfang, SHI Zhou, DENG Lin. Preparation of selective composite electrode and its performance on nitrate removal[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108
Citation: WANG Yuanni, HAN Aizhao, CHANG Jiaqi, XIA Simeng, YANG Lingfang, SHI Zhou, DENG Lin. Preparation of selective composite electrode and its performance on nitrate removal[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108

选择性复合电极的制备及其对硝酸盐的去除性能

    作者简介: 王媛妮 (1999—) ,女,硕士研究生,719939589@qq.com
    通讯作者: 杨灵芳(1982—),女,博士,高级实验师,yanglf@hnu.edu.cn
  • 基金项目:
    国家重点研发计划项目(2019YFD1100102);国家自然科学基金面上资助项目(51878256)
  • 中图分类号: X703

Preparation of selective composite electrode and its performance on nitrate removal

    Corresponding author: YANG Lingfang, yanglf@hnu.edu.cn
  • 摘要: 以IRA 402强碱性阴离子交换树脂为原料,通过静电纺丝技术制备对硝酸盐具有选择去除性能的薄膜(nitrate selective removal membrane,NSRM),采用扫描电镜、傅里叶红外、Zeta电位分析仪等仪器对其进行分析和表征,考察了纺丝时间、操作电压、循环流速、硝酸盐初始浓度和共存离子等因素对NO3去除性能的影响。表征结果表明,NSRM膜表面粗糙多孔且带正电,薄膜上C≡N、C(O)NH、N—H等基团的存在促进NO3的优先吸附。电吸附结果表明,纺丝时间3 h制得的NSRM膜对NO3去除率最优,在初始质量浓度为50 mg·L−1,操作电压为2.0 V,循环流速为100 mL·min−1时硝酸盐去除率达88.17%。多离子混合条件下,NSRM薄膜对F-、Cl-有较好的选择性,对SO42−有一定选择性,对PO43-选择性不佳,其中,当NO3与F、Cl物质量浓度比值为1:1时,NO3的选择性分别为4.23和2.09。
  • 赤泥是以铝土矿为原料,在氧化铝冶炼工业生产过程中排出的固体粉状废弃物, 具有强碱性,富含钙、铝和铁等氧化物,颗粒极细,按氧化铝的生产工艺可将赤泥分为烧结法赤泥、拜耳法赤泥及联合法赤泥3种[1-2]。中国是氧化铝生产大国,截至2016年,我国的赤泥累积堆存量超5.0×108 t,赤泥大量堆存,既占用土地,浪费资源,又会对自然环境和人身健康都产生重要影响[3-4]。因此,如何妥善处理和合理利用这些固体废弃物,已成为社会关注的热点。赤泥中富含铝、铁等氧化物且具有孔状的骨架结构,比表面积大,这些特点使赤泥具有较好的吸附性能,能有效吸附水溶液中的有机物和重金属物质[5-6]

    含铅废水主要来自电池、涂料、五金和印刷等行业[7],大量排放含铅废水会造成湖泊、河流、海洋、土壤等的污染[8]。化学沉淀法和吸附法是处理含铅废水最常见的技术方法。国内外已有学者对赤泥进行改性后,用于处理Pb(Ⅱ)废水,SAHU等[9] 使用盐酸酸化赤泥,经过中和、沉淀和煅烧后得到改性赤泥,对Pb(Ⅱ)的最大吸附容量为6.027 3 mg·g−1

    赤泥中的Na+、Ca2+和Mg2+等阳离子可与Pb(Ⅱ)发生交换,促进Pb(Ⅱ)的稳定化,此外,赤泥中含有的碱性物质(如OHCO23等)也可与Pb(Ⅱ)发生沉淀反应,生成Pb(OH)2和PbCO3沉淀物,促进Pb(Ⅱ)的去除。本研究利用XRF、XRD、粒度分析和SEM-EDS等手段对赤泥样品进行特性分析,保留和利用了赤泥的碱性,碱性和吸附性能共同作用,应用于水溶液中Pb(Ⅱ)的去除实验研究中,探究其去除效果,考察了Pb(Ⅱ)初始浓度和pH对去除效果的影响,分析其动力学过程与去除机理。

    实验用赤泥样品采用重庆某氧化铝生产企业排放的联合法赤泥。赤泥先被破碎至直径小于5 cm,在通风橱中自然风干后,使用粉碎机粉碎、研磨并过200目筛(过筛率>98%),于105 ℃烘箱中烘干过夜,即得到实验用赤泥粉末。

    实验用试剂包括硝酸铅(Pb(NO3)2)、氢氧化钠(NaOH)、硝酸(HNO3)、冰乙酸(CH3COOH)、MES等,药剂均为分析纯。实验用水为去离子水(电阻率ρ>18.2 MΩ·cm)。

    采用X射线荧光光谱仪(XRF-1800,日本岛津公司)对赤泥样品的化学元素组成进行分析;采用场发射扫描电镜(JSM-7800F,JEOL公司)对赤泥样品进行表观形态分析;采用X射线衍射仪(XRD-7000S/L,日本岛津公司),Cu Ka靶(40 kV,40 mA),在扫描速度为2 (°)·min−1,扫描角度5 °~80 °的条件下进行矿物组成定性分析;采用激光衍射粒度分析仪(Mastersizer 200,马尔文仪器有限公司)对赤泥样品的比表面积和平均粒度进行分析,分散剂为水,测定粒径为0.02 ~ 2 000.00 μm。采用pH计(FE20,梅特勒-托利多仪器有限公司),检测溶液的pH。

    为探讨赤泥的酸碱性,设计定pH酸滴定实验,使用500 mL锥形瓶,加入300 mL去离子水,并利用HNO3将pH调节为7.0,加入0.6 g赤泥粉末,使赤泥投加量达到2.0 g·L−1。采用磁力搅拌混合,转速为1 000 r·min−1,温度为25 ℃。不断加入HNO3,使得pH保持在为7.0±0.2,通过不同时刻赤泥对HNO3的累积消耗量,研究赤泥与酸溶液的反应能力,分析赤泥的耗酸特性。

    在500 mL锥形瓶中开展实验,向体积为300 mL、pH=4的Pb(Ⅱ)水溶液中加入0.6 g赤泥,使赤泥投加量达到2.0 g·L−1,采用磁力搅拌混合,转速为1 000 r·min−1,温度为25 ℃。Pb(Ⅱ)初始浓度分别为4.96、10.42和51.81 mg·L−1,反应过程中不对溶液的pH进行调节,只记录pH随着时间的变化。在一定时间内取样,用0.45 μm的滤膜过滤,并测定滤液中Pb(Ⅱ)浓度。每组实验开展3个重复实验。

    在化学动力学实验中,采用乙酸/乙酸钠缓冲体系,将pH控制为4.0±0.2,向初始浓度为5.37、10.69和52.08 mg·L−1的Pb(Ⅱ)水溶液中加入2 g·L−1赤泥,采用磁力搅拌混合,转速为1 000 r·min−1,温度为25 ℃。在一定时间内取样,用0.45 μm的滤膜过滤,并测定滤液中Pb(Ⅱ)浓度。每组实验开展3个重复实验。

    在250 mL锥形瓶中开展实验,分别配制100 mL初始浓度为0.86、4.96、10.42、51.81和101.09 mg·L−1的Pb(Ⅱ)水溶液,调节至pH=4,再加入0.2 g赤泥,使赤泥投加量达到2.0 g·L−1,研究初始浓度对Pb(Ⅱ)去除效果的影响。

    分别配置初始浓度为5.0 mg·L−1,pH为4、7和10的Pb(Ⅱ)水溶液,在反应过程中,利用乙酸/乙酸钠缓冲体系和硝酸、氢氧化钠分别将Pb(Ⅱ)溶液的pH维持在4.0±0.2、7.0±0.2和10.0±0.2,研究pH对Pb(Ⅱ)去除效果的影响。

    根据《水质 铜、锌、铅、镉的测定 原子吸收分光光度法》(GB 7475-1987)的标准方法,使用原子吸收分光光度计(AA-6300C,岛津企业管理有限公司)对Pb(((Ⅱ)))进行测试。

    表1所示,供试赤泥样品主要化学组分包括CaO(25.50%)、SiO2(24.44%)、Al2O3(21.68%)、Fe2O3(8.53%)和Na2O(6.93%),占总量的87%。与顾汉念等[10]对贵州某铝厂烧结法赤泥进行化学组成CaO(34.29%)、SiO2(20.41%)、Al2O3(10.84%)、Fe2O3(9.06%)类似,具有高钙低铁的特点,只是供试赤泥的铝含量更高。

    表 1  供试赤泥的化学组成
    Table 1.  Main chemical constituents of red mud
    氧化物形态含量/%氧化物形态含量/%
    CaO25.50TiO23.74
    SiO224.44K2O2.75
    Al2O321.68MgO1.19
    Fe2O38.53SO21.18
    Na2O6.93PbO<0.01
     | Show Table
    DownLoad: CSV

    图1所示,赤泥样品的物相组成主要包括方解石(CaCO3)、水钙铝榴石 (Ca3Al2(SiO4)(OH)8)、钙霞石(Na6(Al6Si6O24)(CaCO3)(OH)2)、铝酸钙(Ca3Al2O6)、赤铁矿(α-Fe2O3)。与拜耳法赤泥的物相中,赤铁矿(α-Fe2O3)、水化石榴石(Ca3Al2(SiO4)(OH)8·H2O)、方解石(CaCO3)成分相似[11-12]。薛生国等[13]对赤泥中可能存在的碱性物质进行了分析,结果表明,赤泥中的主要碱性矿物质包括钙霞石、水化石榴石、方解石、氢氧化钠、铝酸钠和碳酸盐等矿物。其中方解石、钙霞石、石榴石和铝酸盐这一结果与本研究相符合。但是,由于氧化铝工艺和堆存时间的差别,不同堆场赤泥矿物相组分存在显著差异,山西河津联合法赤泥中的矿物相与本研究就较为不同,其物相组成主要包括包括钙铝黄长石、石英、钠长石、钙铁榴石和钙钛榴石等[14]

    图 1  供试赤泥的XRD图谱
    Figure 1.  XRD patterns of red mud

    图2所示,赤泥颗粒的粒径主要集中分布在0.1 μm和0.8 μm左右,平均比表面积为43.8 m2·g−1,表面积平均粒径D[3,2]为0.137 μm,体积平均粒径D[4,3]为0.365 μm。10%的赤泥颗粒粒径小于0.073 μm,50%小于0.151 μm,90%小于0.863 μm。与顾汉念等[10]的研究中赤泥的比表面积(0.26 m2·g−1)和表面积平均粒径(16.486 μm)相比,供试赤泥的比表面积更大,平均粒径更小。通常赤泥的比表面积越大,孔隙结构越丰富,则具有更好的吸附性能,可使其作为吸附剂去除水环境和土壤中的污染物[13-15]

    图 2  赤泥的粒度分布图
    Figure 2.  Particle size distribution of red mud

    供试赤泥样品颗粒细小,颜色偏黄棕色。由图3可见,赤泥颗粒形状不规则,表面凹凸不平,存在空隙,有部分赤泥颗粒相互黏结,形成了较大的聚集体。通过EDS扫描观测到赤泥样品表面含O、Ca、Al、Fe、Cr、Pb 6种元素的分布,其中O、Ca、Al、Fe 4种元素含量较高,且分布均匀,还存在少量Cr、Pb等元素,含量较低。

    图 3  赤泥粉末的SEM/EDS图像
    Figure 3.  SEM/EDS images of red mud

    氧化铝企业采用的生产工艺,通常会导致赤泥呈现明显的碱性特征。联合法是将拜耳法工艺产生的赤泥与低品质铝土矿配合碳酸钠一起,混合进行高温煅烧、溶出、分离结晶,在此过程中分离的废渣即为联合法赤泥,烧结后赤泥会产生大量碳酸盐矿物。在拜耳法工艺过程中,会添加石灰进行预脱硅处理,此时,铝土矿将会与氢氧化钙反应生成钙霞石和水化石榴石进入赤泥中,再向脱硅后的铝土矿中加入苛性碱,溶出铝土矿中的氧化铝,经过矿浆稀释和沉降分离后的杂质包括碳酸钠、铝酸钠、方解石、铝酸钙、磷灰石等固体废物,这些固体废物与钙霞石和石榴石一起,组成了拜耳法赤泥的碱性物质[13]。由于联合法赤泥的原料是拜耳法赤泥,这使联合法赤泥的碱性组成中不仅包括碳酸盐矿物,还包括拜耳法赤泥在经过烧结之后残留下来的碱性物质,正是这些物质,造就了赤泥的高碱度特性。

    图4所示,在T=25 ℃,转速为1 000 min−1的条件下,向pH=7.0的水中,投加2.0 g·L−1的赤泥。在240 h内,供试赤泥消耗硝酸的能力为 1.875 mol·kg−1;在反应初始8 h内,赤泥表面的可溶盐和碱性氧化物(如苛性碱、碳酸钠、铝酸钠等)快速溶解,并与水溶液中的H+发生中和反应,使得硝酸的消耗速率较快;随着反应的进行,碱性物质浓度降低,耗酸速率开始下降。因而,赤泥不仅具有较高的酸中和能力,还具有较强的碱性缓慢释放性。

    图 4  赤泥的酸滴定曲线
    Figure 4.  Acid titration curve of red mud

    赤泥中含有一定量的碱性物质,在向Pb(Ⅱ)水溶液中投加赤泥后,水溶液的pH产生明显影响。如图5所示,当T=25 ℃,磁力搅拌转速为1 000 r·min−1时,向初始pH为4.0,初始浓度为4.96、10.42和51.81 mg·L−1的Pb(Ⅱ)水溶液中加入赤泥粉末后,监测水溶液中pH随时间的变动情况,发现pH有了明显上升,溶液的pH由4.0上升至9.8 ~ 10.10。如图6所示,赤泥对Pb(Ⅱ)的去除反应迅速发生,在10 min内,去除率分别达到了100.0%、98.8%和100.0%;对Pb(Ⅱ)的去除能力分别达到2.48、5.20和25.90 mg·g−1。反应后,水溶液中Pb(Ⅱ)浓度分别为0、0.12和0 mg·L−1,均能较好达到污水综合排放标准中第一类污染物最高允许排放浓度1.0 mg·L−1

    图 5  水溶液中pH的变化
    Figure 5.  Change of pH in aqueous solution
    图 6  赤泥对水溶液中Pb(Ⅱ)的去除效果随反应时间的变化
    Figure 6.  Change in Pb(Ⅱ) removal effect by red mud in aqueous solution with reaction time

    SASH等[9]使用盐酸加热制备的改性赤泥,在pH=4时的最大吸附容量为6.027 3 mg·g−1。李明等[16]使用木质素制备改性活性炭,在pH=5且初始浓度为100 mg·L−1的条件下,去除能力可达到36 mg·g−1。对比而言,联合法赤泥粉末具有制备方式简单且成本低廉的优势,同时对Pb(Ⅱ)的也有较好的去除效果。

    为了观测Pb(Ⅱ)的初始浓度对Pb(Ⅱ)去除效果的影响,保持pH为4.0±0.2,在1 ~ 100 mg·L−1内调整Pb(Ⅱ)的初始浓度,并开展去除实验。如图7所示,赤泥对Pb(Ⅱ)的去除能力随着溶液中初始浓度的提高而增大;去除率随着Pb(Ⅱ)初始浓度的增加而降低。在低浓度Pb(Ⅱ)溶液中,Pb(Ⅱ)去除效果明显,当Pb(Ⅱ)初始浓度为0.86 mg·L−1和4.96 mg·L−1时去除率分别为45.2%和40.5%,去除能力为0.19 mg·g−1和1.10 mg·g−1。初始浓度较高时,去除率不理想,但是去除能力较高,当初始浓度为100 mg·L−1时,去除率为8.8%,去除能力可达4.45 mg·g−1

    图 7  初始浓度对水溶液中Pb(Ⅱ)去除的影响
    Figure 7.  Effect of initial concentration on Pb(Ⅱ) removal in aqueous solution

    pH是赤泥去除水溶液中Pb(Ⅱ)的重要影响因素。由图8可知,在典型的pH水平下,赤泥对水溶液中Pb(Ⅱ)都具有较好的去除效果,其中在中性和碱性的条件下,对Pb(Ⅱ)的去除率可以达到90%以上。研究表明,使用碱性氢氧化物对水溶液中Pb(Ⅱ)进行化学沉淀时,最佳pH为7.5 ~ 11.5[17]。理论上,由于铅离子的水解反应,Pb(Ⅱ)的形态在酸性环境中以Pb2+为主,而随着溶液中OH的增加,逐渐生成Pb(OH)2沉淀。FRANCIS等[18]在进行理论模拟后得出,当pH为10.5左右时,Pb(OH)2的比例最大,即铅的去除率最大。

    图 8  pH对赤泥去除水溶液中Pb(Ⅱ)的影响
    Figure 8.  Effect of pH on Pb(Ⅱ) removal in aqueous solution

    为进一步探讨赤泥对Pb(Ⅱ)的去除机理,展开了赤泥去除Pb(Ⅱ)的动力学实验。如图9所示,当pH=4.0±0.15,去除反应快速进行,随后在90 ~ 120 min趋于平衡。平衡时刻3个初始浓度水溶液中Pb(Ⅱ)的残余浓度分别3.25、8.17和45.77 mg·L−1,去除率为41.5%、24.5%和12.6%,赤泥对水溶液中Pb(Ⅱ)去除能力分别为1.09、1.26和3.16 mg·g −1

    图 9  赤泥去除水溶液中Pb(Ⅱ)的动力学过程
    Figure 9.  Kinetic process of Pb(Ⅱ) removal in aqueous solution by red mud

    为定量描述赤泥对Pb(Ⅱ)的去除动力学,采用3种动力学模型来对初始浓度为10 mg·L−1的Pb(Ⅱ)的去除过程进行拟合[19-21],这3种模型分别是Lagergren伪一级动力学模型,见式(1);Lagergren伪二级动力学模型,见式(2);Elovich 动力学模型,见式(3)。模型拟合如图10所示。

    图 10  赤泥吸附水溶液中Pb(Ⅱ) 的动力学模型拟合
    Figure 10.  Kinetic model fitting of Pb(Ⅱ) absorption onto red mud
    lg(QeQt)=lgQe(k1t)/2.303 (1)
    Qt=k2Qe2t/(1+k2Qet) (2)
    Qt=aln(t)+C (3)

    式中:QeQt分别代表平衡时刻吸附量和t时刻的吸附量,mg·g−1k1k2a为各自模型的反应速率常数;C为常数。

    表2所示,对比3种动力学模型的拟合效果,伪二级动力学模型的拟合效果优于 Elovich 动力学以及伪一级动力学,具有更高的拟合系数。伪二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制[22-23]。由此说明赤泥去除Pb(Ⅱ)的机理包括化学吸附。

    1)联合法赤泥的主要化学成分有CaO、SiO2、Al2O3和Fe2O3;矿物组成主要有方解石、水钙铝榴石、钙霞石、铝酸钙和赤铁矿;平均比表面积为43.8 m2·g−1,表面积平均粒径为0.137 μm;赤泥粉末的颗粒形状不规则,表面凹凸不平,存在孔隙结构,且部分赤泥颗粒相互黏结形成较大聚集体。赤泥中含有大量碱性物质,有很强的酸中和能力,赤泥酸消耗能力约为1.875 mol·kg−1

    2)赤泥对水溶液中的Pb(Ⅱ)具有较强的去除能力。当赤泥投加量为2.0 g·L−1时,在pH=4.0,初始浓度为5 ~ 50 mg·L−1时,反应在90 ~ 120 min时达到平衡,去除率为10% ~ 45%,去除能力为1.06~5.73 mg·g−1。初始pH=4,且不控制pH的条件下,赤泥粉末与Pb(Ⅱ)迅速反应,反应10 min时,Pb(Ⅱ)去除率超过98%,平衡时水溶液中Pb(Ⅱ)浓度小于0.2 mg·L−1 远低于污水综合排放标准中第一类污染物最高允许排放浓度1.0 mg·L−1的要求。

    3)水溶液pH和初始浓度都会对Pb(Ⅱ)的去除效果产生较大影响。在中性和碱性的条件下,赤泥对Pb(Ⅱ)的去除效果较好,去除率可以达到90%以上。当初始浓度为1~100 mg·L−1时,初始浓度越高,去除率越低,赤泥的去除能力越强。

    4)赤泥对Pb(Ⅱ)的吸附符合拟二级动力学模型,去除过程受化学吸附机理的控制。

  • 图 1  静电纺丝制备工艺

    Figure 1.  Electrospinning preparation process

    图 2  MCDI电极对单元

    Figure 2.  Electrode pair unit of MCDI

    图 3  MCDI性能测试系统

    Figure 3.  Performance test system of MCDI

    图 4  薄膜的SEM 图

    Figure 4.  SEM image of the membrane

    图 5  NSRM的Zeta电位和FTIR图

    Figure 5.  Zeta potential and FTIR spectra of NSRM

    图 6  不同纺丝时间的NSRM膜截面厚度、单位面积质量和硝酸盐电吸附曲线

    Figure 6.  Cross-sectional thickness, mass per unit area and nitrate electrosorption curves of NSRM membranes at different spinning times

    图 7  不同工艺条件下硝酸盐去除率及单位面积吸附量的变化

    Figure 7.  Changes of nitrate removal efficiency and adsorption capacity per unit area under different conditions

    图 8  不同混合条件下离子的去除率

    Figure 8.  Ion removal efficiency under different mixing conditions

    图 9  多离子混合时硝酸根的去除率及单位面积吸附量

    Figure 9.  Removal efficiency of nitrate and adsorption capacity per unit area under multi-ion mixing conditions

    图 10  硝酸盐选择去除原理图

    Figure 10.  Schematic diagram of selective nitrate removal

    表 1  伪一级、伪二级吸附动力学参数模型

    Table 1.  Parameters of pseudo first-order and pseudo second-order model

    纺丝时间/h伪一级动力学方程伪二级动力学方程
    K1/min−1R2K2/(g·(m−2·min−1))R2
    未添加NSRM0.0200.998 67.5×10-30.997 9
    1.50.0220.999 29.0×10-30.999 6
    30.0300.999 40.015 30.999 9
    50.0270.999 10.012 40.999 4
    纺丝时间/h伪一级动力学方程伪二级动力学方程
    K1/min−1R2K2/(g·(m−2·min−1))R2
    未添加NSRM0.0200.998 67.5×10-30.997 9
    1.50.0220.999 29.0×10-30.999 6
    30.0300.999 40.015 30.999 9
    50.0270.999 10.012 40.999 4
    下载: 导出CSV

    表 2  不同混合条件下离子单位面积吸附量

    Table 2.  Adsorption capacity per unit area of ions under different mixing conditions g·m−2

    NO3: M与F混合与Cl混合与SO42−混合
    NO3FNO3Cl-NO3SO42−
    0.52.731.292.522.812.604.19
    15.741.354.702.254.923.70
    210.831.229.142.059.483.51
    NO3: M与F混合与Cl混合与SO42−混合
    NO3FNO3Cl-NO3SO42−
    0.52.731.292.522.812.604.19
    15.741.354.702.254.923.70
    210.831.229.142.059.483.51
    下载: 导出CSV

    表 3  添加NSRM膜前后多离子混合去除率

    Table 3.  Removal efficiency of multi-ion mixing before and after adding NSRM membrane %

    F:Cl:NO3空白3 h NSRM
    FClNO3FClNO3
    1:1:130.3940.9149.0255.5770.7081.19
    1:2:127.1139.7143.6646.6266.0670.94
    1:1:236.4451.3657.6660.0474.5481.11
    F:Cl:NO3空白3 h NSRM
    FClNO3FClNO3
    1:1:130.3940.9149.0255.5770.7081.19
    1:2:127.1139.7143.6646.6266.0670.94
    1:1:236.4451.3657.6660.0474.5481.11
    下载: 导出CSV
  • [1] 刘恒源, 杨彦韬, 鲍文达, 等. 电化学法去除地下水中硝酸盐的机理研究[J]. 赤峰学院学报(自然科学版), 2021, 37(7): 46-49. doi: 10.13398/j.cnki.issn1673-260x.2021.07.011
    [2] 陈骞. 浅析地下水中的硝酸盐污染[J]. 2022, 3(2): 90-92.
    [3] 王诗绘, 马玉坤, 沈珍瑶. 氮氧稳定同位素技术用于水体中硝酸盐污染来源解析方面的研究进展[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 36-42.
    [4] 厉彦梅. 地下水中硝酸盐的各种去除方法概述[J]. 城市地理, 2014(22): 90. doi: 10.3969/j.issn.1674-2508.2014.22.074
    [5] 张懿文, 罗建中, 陈宇阳. 我国水体中硝酸盐的污染现状及危害[J]. 广东化工, 2015, 42(14): 99-100. doi: 10.3969/j.issn.1007-1865.2015.14.049
    [6] 干方群, 吴珂, 马菲, 等. 水体硝酸盐检测方法的研究进展[J]. 中国无机分析化学, 2022, 12(1): 69-81. doi: 10.3969/j.issn.2095-1035.2022.01.012
    [7] KUMAR P S, YAASHIKAA P R, RAMALINGAM S: Efficient removal of nitrate and phosphate using graphene nanocomposites[J]. Applications in Water Technology, 2019: 287-307.
    [8] QASIM M, BADRELZAMAN M, et al. Reverse osmosis desalination: A state-of-the-art review[J]. Desalination, 2019, 459: 59-104. doi: 10.1016/j.desal.2019.02.008
    [9] HEKMATZADEH A A, KARIMI J A, et al. Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments[J]. Desalination, 2012, 284: 22-31. doi: 10.1016/j.desal.2011.08.033
    [10] ALIASKARI M, SCHAFER A I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater[J]. Water Research, 2021, 190: 116683. doi: 10.1016/j.watres.2020.116683
    [11] PARK J Y, YOO Y J. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 415-29. doi: 10.1007/s00253-008-1799-1
    [12] NIARAGH E K, MOGHADDAM M R A, et al. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM[J]. Journal of Environmental Management, 2019, 230: 245-254.
    [13] LEE J B, PARK K K, EUN H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196(1/2/3): 125-134.
    [14] BIESHEUVEL P M. Membrane capacitive deionization[J]. Journal of Membrane Science, 2010, 346(2): 256-262. doi: 10.1016/j.memsci.2009.09.043
    [15] LIU Y H, HSI H C, LI K C, et al. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4762-4770.
    [16] CHEN L, HE F, LI F. Denitrification enhancement by electro-adsorption/reduction in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) with copper electrode[J]. Chemosphere, 2022, 291: 132732. doi: 10.1016/j.chemosphere.2021.132732
    [17] BAO S, CHEN Q, ZHANG Y, et al. Optimization of preparation conditions of composite electrodes for selective adsorption of vanadium in CDI by response surface methodology[J]. Chemical Engineering Research and Design, 2021, 168: 37-45. doi: 10.1016/j.cherd.2021.01.032
    [18] LI D, NING X A, YUN Y, et al. Ion-exchange polymers modified bacterial cellulose electrodes for the selective removal of nitrite ions from tail water of dyeing wastewater[J]. Journal of Environmental Sciences, 2020, 91: 62-72. doi: 10.1016/j.jes.2020.01.002
    [19] KIM D I, GONZALES R R, DORJI P, et al. Efficient recovery of nitrate from municipal wastewater via MCDI using anion-exchange polymer coated electrode embedded with nitrate selective resin[J]. Desalination, 2020: 484.
    [20] GAN L, WU Y, SONG H, et al. Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization[J]. Separation and Purification Technology, 2019, 212: 728-736. doi: 10.1016/j.seppur.2018.11.081
    [21] BULUT U, SAYIN V O. A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing[J]. Microchemical Journal, 2023, 184: 108148. doi: 10.1016/j.microc.2022.108148
    [22] ALTIN Y, BEDELOGLU A C. Polyacrylonitrile nanofiber optimization as precursor of carbon nanofibers for supercapacitors[J]. Journal of Innovative Science and Engineering (JISE), 2020, 4: 69-83. doi: 10.38088/jise.726792
    [23] ABEYKOON N, BONSO J, FERRARIS J. Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/ PMMA polymer blends[J]. RSC Advances, 2015, 5: 19865-19873. doi: 10.1039/C4RA16594B
    [24] GUO L Y, LU H Q, RACKEMANN D, et al. Quaternary ammonium-functionalized magnetic chitosan microspheres as an effective green adsorbent to remove high-molecular-weight invert sugar alkaline degradation products (HISADPs)[J]. Chemical Engineering Journal, 2021, 416: 129084. doi: 10.1016/j.cej.2021.129084
    [25] NORHAUATI A, MUHAMMAD R, KASSIM A A. Pre-evaluation of strong base anion exchange, Amberlite IRA 958-Cl resin for nitrate removal[J]. Materials Today:Proceedings, 2019, 17: 679-685. doi: 10.1016/j.matpr.2019.06.350
    [26] SABANTINA L, BOTTJER R, WEHLAGE D, et al. Morphological study of stabilization and carbonization of polyacrylonitrile/TiO2 nanofiber mats[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1558925019862242.
    [27] CIPRIANI E, ZANERRI M, BRACCO P, et al. Crosslinking and carbonization processes in PAN films and nanofibers[J]. Polymer Degradation and Stability, 2016, 123: 178-188. doi: 10.1016/j.polymdegradstab.2015.11.008
    [28] BOHINC K, IGLIC A. Thickness of electrical double layer. Effect of ion size[J]. Electrochimica Acta, 2001, 46(19): 3033-3040. doi: 10.1016/S0013-4686(01)00525-4
    [29] SEO S J, JEON H, LEE J K, et al. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications[J]. Water Research, 2010, 44(7): 2267-75. doi: 10.1016/j.watres.2009.10.020
    [30] CEN B, YANG R, LI K, et al. Covalently-bonded quaternized activated carbon for selective removal of NO3 in capacitive deionization[J]. Chemical Engineering Journal, 2021: 425.
  • 期刊类型引用(6)

    1. 邱俊,杨威,阎正卿,柳晓,吴蓬,化冰冰. 赤泥基吸附剂的应用研究进展. 金属矿山. 2024(02): 39-47 . 百度学术
    2. 付佳慧,王威,邓华,赵栋,张舒云,叶顺云,胡乐宁. 赤泥-聚丙烯酸-羧甲基纤维素水凝胶对水中Pb~(2+)吸附研究. 广西师范大学学报(自然科学版). 2024(05): 150-162 . 百度学术
    3. 罗婷婷,方宏萍,李桂贤,霍英源,谭蓉,周浩宇. 赤泥在污水处理技术中的应用研究进展. 环保科技. 2022(04): 59-64 . 百度学术
    4. 邢磊,杜培培,龙跃. SiO_2/Al_2O_3对无机纤维微观结构及热稳定性的影响. 钢铁研究学报. 2021(01): 9-14 . 百度学术
    5. 雷小丽,吴幼娥,曾伟,杨迪,钱文敏,李彬. 改性赤泥吸附废水中典型重金属研究进展. 环境科学导刊. 2021(04): 1-8 . 百度学术
    6. 雷小丽,吴幼娥,曾伟,王枝平,李彬. 无机添加剂改性对赤泥脱硫的影响. 环境科学与技术. 2021(05): 124-131 . 百度学术

    其他类型引用(5)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.2 %DOWNLOAD: 1.2 %HTML全文: 93.2 %HTML全文: 93.2 %摘要: 5.7 %摘要: 5.7 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 89.8 %其他: 89.8 %Ashburn: 0.0 %Ashburn: 0.0 %Beijing: 2.4 %Beijing: 2.4 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 0.0 %Changsha: 0.0 %Chaoyang Shi: 0.2 %Chaoyang Shi: 0.2 %Chengdu: 0.0 %Chengdu: 0.0 %Chongqing: 0.0 %Chongqing: 0.0 %Dongguan: 0.0 %Dongguan: 0.0 %Gaocheng: 0.0 %Gaocheng: 0.0 %Guangzhou Shi: 0.1 %Guangzhou Shi: 0.1 %Guiyang: 0.0 %Guiyang: 0.0 %Hangzhou: 0.4 %Hangzhou: 0.4 %Jinan: 0.1 %Jinan: 0.1 %Jinrongjie: 2.2 %Jinrongjie: 2.2 %Kunshan: 0.0 %Kunshan: 0.0 %Nanning: 0.0 %Nanning: 0.0 %Newark: 0.0 %Newark: 0.0 %Pune: 0.1 %Pune: 0.1 %Quanzhou: 0.0 %Quanzhou: 0.0 %Shanghai: 0.2 %Shanghai: 0.2 %Shenyang: 0.0 %Shenyang: 0.0 %Shijiazhuang: 0.0 %Shijiazhuang: 0.0 %Taiyuan: 0.2 %Taiyuan: 0.2 %XX: 2.2 %XX: 2.2 %Yuncheng: 0.0 %Yuncheng: 0.0 %Zhengzhou: 0.0 %Zhengzhou: 0.0 %上海: 0.0 %上海: 0.0 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.7 %北京: 0.7 %哈尔滨: 0.0 %哈尔滨: 0.0 %商洛: 0.0 %商洛: 0.0 %济南: 0.1 %济南: 0.1 %滨州: 0.0 %滨州: 0.0 %盐城: 0.0 %盐城: 0.0 %苏州: 0.0 %苏州: 0.0 %莆田: 0.0 %莆田: 0.0 %西安: 0.1 %西安: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.0 %运城: 0.0 %遵义: 0.0 %遵义: 0.0 %郑州: 0.3 %郑州: 0.3 %银川: 0.0 %银川: 0.0 %阳泉: 0.1 %阳泉: 0.1 %其他AshburnBeijingChang'anChangshaChaoyang ShiChengduChongqingDongguanGaochengGuangzhou ShiGuiyangHangzhouJinanJinrongjieKunshanNanningNewarkPuneQuanzhouShanghaiShenyangShijiazhuangTaiyuanXXYunchengZhengzhou上海内网IP北京哈尔滨商洛济南滨州盐城苏州莆田西安赣州运城遵义郑州银川阳泉Highcharts.com
图( 10) 表( 3)
计量
  • 文章访问数:  4582
  • HTML全文浏览数:  4582
  • PDF下载数:  155
  • 施引文献:  11
出版历程
  • 收稿日期:  2022-10-22
  • 录用日期:  2022-12-26
  • 刊出日期:  2023-02-26
王媛妮, 韩爱钊, 常嘉琪, 夏思蒙, 杨灵芳, 施周, 邓林. 选择性复合电极的制备及其对硝酸盐的去除性能[J]. 环境工程学报, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108
引用本文: 王媛妮, 韩爱钊, 常嘉琪, 夏思蒙, 杨灵芳, 施周, 邓林. 选择性复合电极的制备及其对硝酸盐的去除性能[J]. 环境工程学报, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108
WANG Yuanni, HAN Aizhao, CHANG Jiaqi, XIA Simeng, YANG Lingfang, SHI Zhou, DENG Lin. Preparation of selective composite electrode and its performance on nitrate removal[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108
Citation: WANG Yuanni, HAN Aizhao, CHANG Jiaqi, XIA Simeng, YANG Lingfang, SHI Zhou, DENG Lin. Preparation of selective composite electrode and its performance on nitrate removal[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 442-452. doi: 10.12030/j.cjee.202210108

选择性复合电极的制备及其对硝酸盐的去除性能

    通讯作者: 杨灵芳(1982—),女,博士,高级实验师,yanglf@hnu.edu.cn
    作者简介: 王媛妮 (1999—) ,女,硕士研究生,719939589@qq.com
  • 1. 湖南大学土木工程学院,长沙 410082
  • 2. 水安全保障技术及应用湖南省工程研究中心,长沙 410082
  • 3. 中国电建集团中南勘测设计研究院有限公司,长沙 410014
基金项目:
国家重点研发计划项目(2019YFD1100102);国家自然科学基金面上资助项目(51878256)

摘要: 以IRA 402强碱性阴离子交换树脂为原料,通过静电纺丝技术制备对硝酸盐具有选择去除性能的薄膜(nitrate selective removal membrane,NSRM),采用扫描电镜、傅里叶红外、Zeta电位分析仪等仪器对其进行分析和表征,考察了纺丝时间、操作电压、循环流速、硝酸盐初始浓度和共存离子等因素对NO3去除性能的影响。表征结果表明,NSRM膜表面粗糙多孔且带正电,薄膜上C≡N、C(O)NH、N—H等基团的存在促进NO3的优先吸附。电吸附结果表明,纺丝时间3 h制得的NSRM膜对NO3去除率最优,在初始质量浓度为50 mg·L−1,操作电压为2.0 V,循环流速为100 mL·min−1时硝酸盐去除率达88.17%。多离子混合条件下,NSRM薄膜对F-、Cl-有较好的选择性,对SO42−有一定选择性,对PO43-选择性不佳,其中,当NO3与F、Cl物质量浓度比值为1:1时,NO3的选择性分别为4.23和2.09。

English Abstract

  • 随着化石燃料的燃烧、工农业生产的加速发展,越来越多的氮进入水环境中。含氮化肥使用、废水排放、畜禽养殖、垃圾渗滤等[1], 使得农村地下水环境硝酸盐超标现象较多,但由于硝酸盐的总体超标浓度不高[2],去除难度大。然而长期饮用硝酸超标水源,会增加患消化道癌症的风险,干扰人体红细胞的输氧功能,造成身体缺氧,同时诱导脑、神经系统等方面的疾病[3-6]。因此,在2022年国家最新发布的《生活饮用水卫生标准》(GB57 49-2022)中对地下水源硝酸盐指标限值做了调整,由20 mg·L−1降低到10 mg·L−1。目前水体中硝酸盐的去除技术主要有吸附[7]、反渗透[8]、离子交换[9]、电渗析[10]、生物处理[11]、电凝聚[12]等,这些技术各有优劣,实际推广应用存在一定困难。

    电容去离子(capacitive deionization, CDI)由于其节能、高效、再生成本低、不产生污染物等优点,成为一种新兴的脱盐技术。CDI的吸附即通过向两极板施加电压,使无机离子停留在电极表面,以达到去除目的;当吸附达饱和后,采用施加反向电位、短接等方式使离子离开电极孔实现再生[13]。为促进CDI技术的发展,研究人员在CDI结构设计和电极材料研制方面开展了大量研究工作。膜电容去离子技术(membrane capacitive deionization, MCDI)是CDI的升级,因离子交换膜的加入降低了共离子驱逐效应[14],大大提高了离子存储能力和再生效率,延长了电极使用寿命。LIU等[15-17]开展了CDI电极复合电极材料研制工作,进一步提高了电极的吸附容量。

    近年来,有研究表明,CDI技术对离子的去除不具备选择性,对硝酸盐去除能力较差,特别是对低浓度硝酸盐、与其他离子共存时,去除后硝酸盐再生脱附困难。为解决这些问题,LI等[18]利用戊二酸(GA)和磺基琥珀酸(SSA)制备了一种新型离子交换聚合物,修饰电容去离子电极,考察其对于亚硝酸盐的选择去除能力。KIM等[19]将阴离子选择性聚合物与聚苯乙烯大孔硝酸盐选择性树脂涂覆在碳电极上,用于城市污水脱盐和膜电容去离子过程中NO3回收,实验表明其对NO3去除有较好的选择性。GAN等[20]将阴离子交换树脂(A520E)和羧基功能化多壁碳纳米管涂覆在活性炭电极上,组装CDI反应器,测试其对硝酸盐的选择性去除能力,实验表明涂覆两种电极后选择性有显著提高。目前开展的研究大多将离子交换树脂采用黏附方式直接附于电极上,该方法存在材料易脱落、两极板间电阻增大等缺点。

    本研究通过静电纺丝法直接一体成型制备出对硝酸盐具有选择去除性能的薄膜,并将NSRM膜和碳纤维、离子交换膜组装成复合电极开展了硝酸盐去除性能研究,通过分析测试阐明了NO3在复合电极表面的选择性电吸附过程。

    • Fumasep FAS-50阴离子交换膜,Fumasep FKS-50阳离子交换膜,德国FuMa Tech公司;N,N-二甲基甲酰胺(DMF,99.5%),上海麦克林生化科技有限公司;聚丙烯腈(PAN, Mw=150 000) 购自Sigma-Aldrich (St. Louis, MO, USA)公司;IRA402强碱型阴离子交换树脂,上海阿拉丁生化科技股份有限公司;硝酸钠(NaNO3,分析纯),国药集团化学试剂有限公司;其他试剂均购自国药集团化学试剂有限公司;实验中所使用的水均来自超纯水净化系统。

    • 纺丝工艺流程如图1所示。将1.62 g聚丙烯腈(PAN)和15.0 g DMF磁力搅拌12 h,加入0.514 g IRA402搅拌3 h后超声分散2 h,配置得NSRM纺丝液。制备条件为:电压18 kV,间距15 cm,速率1 mL·h−1,相对湿度≤40%,纺丝时间分别为1.5、3、5 h。干燥后按集电极尺寸10 cm×10 cm剪裁组装即可。

      碳纤维布根据集电极尺寸10 cm×10 cm剪裁后,采用沸煮的方式进行清洗,每隔30 min换水,清洗2~3次后在60 ℃烘箱中烘干后组装。离子交换膜直接剪裁组装。MCDI电极对装配如图2所示,从左到右依次叠加钛板、碳布、NSRM膜、离子交换膜、硅胶垫片、有机玻璃框、隔网。

    • MCDI去除硝酸盐性能测试系统如图3所示。直流稳压电源(UTP3315TFL,优利德科技股份有限公司)给MCDI电极供电,水样通过蠕动泵(YZ1515x,兰格恒流泵有限公司)实现循环流动。采用电导率仪实时监测离子去除情况,定时取样通过离子色谱测试硝酸根浓度变化。

      各工艺条件对硝酸盐选择去除性能的影响实验。设置不同操作电压(1.6、1.8、2.0、2.2 V)、循环流速(40、60、80、100 mL·min−1)、硝酸盐初始质量浓度(50、100、150、200 mg·L−1),取200 mL水样循环吸附,采用电导率仪定时记录溶液电导率,并通过公式(1)计算硝酸盐去除率,正向施加电压60 min后,反接10 min实现电极再生完成1次循环,重复2次以验证其可重复性。

      装置对硝酸盐选择去除性能的影响实验。取水中常见阴离子(F、NO3、Cl、SO42−、PO43−)不同种类、不同比例混合,在2.0V的外加电压下,取200mL水样进行循环吸附实验。定点取1mL水样进行稀释,后通过0.25µm过滤头注入离子色谱,测定主要阴离子含量,通过反接实现电极再生。

    • 分别采用扫描电子显微镜(SEM)、傅里叶红外光谱仪(FTIR)表征NSRM膜的表面形貌、化学成分及官能团组成;采用Zeta电位测试NSRM膜电荷性能。用离子的去除率、单位面积吸附量、选择性、电荷效率对去除效果进行评估。阴离子的电吸附去除率根据式(1)进行计算,单位面积吸附量根据式(2)进行计算,离子在某段时间的电吸附选择性根据式(3)进行计算,电荷效率根据式(4)进行计算。

      式中:η表示电吸附去除率,%,c0表示水样的初始浓度,mmolL1ct表示时间t时水样的浓度,mmolL1

      式中:Ai表示离子i的单位面积吸附量,g·m−2ΔMi,t表示时间t内离子含量变化,g;S为NSRM膜面积,m2

      式中:表示S离子的选择性,Ai表示离子在时间t的单位面积吸附量,g·m−2

      式中:Λ 表示电荷效率,%;n是电吸附离子电荷值;F是法拉第常数,96 485.3 C·mol−2I表示电流密度,A·m−2A表示电极有效面积,m2

    • 图4(a)和图4 (b)分别为空白和NSRM的SEM表征结果。由图4(a)可见,未掺杂树脂的空白薄膜的纤维丝管径尺寸分布均匀,表面光滑无明显缺陷,而NSRM薄膜(图4(b))树脂颗粒与纤维丝相互交缠形成一体,与树脂相连纤维的管径尺寸显著变小,球状树脂颗粒表面呈现多孔的形貌,有利于吸附水体中的离子。

      图5(a)为空白膜和NSRM膜在不同pH下的Zeta电位。可见,空白膜在pH小于6.44时带正电,大于6.44时带负电,而NSRM膜在pH为4~10内均带正电。这表明IRA402树脂颗粒的添加使得NSRM膜在较宽的范围内表面带正电荷,更有利于吸附水溶液中的阴离子。图5(b)为空白和NSRM膜的FTIR光谱。由图5(b)中空白图谱可见,PAN的特征峰有2 240 cm−1和1 040 cm−1的伸缩振动峰[21],2 932、1 235、1 452 cm−1处的C—H振动峰[22]和1 737 cm−1处的C=O伸缩振动峰[23]。将离子交换树脂加入PAN后,出现了较多新的吸收峰,其中3 433 cm−1 为树脂O—H和N—H振动吸收峰[24-25],3 020 cm−1为弱乙烯基=CH2不对称伸缩峰[24],1 662 cm−1处峰在空白基础上有加强,表明PAN与树脂发生了环化或其他共价作用。1 631 cm−1 左右为C=C或C=N伸缩振动峰[26],1 440~1 500cm−1为C=C及—CH2的伸缩振动[27],该处峰值产生分叉峰可能是由于树脂加入后C(O)NH键的生成。此外谱图中1 000 cm−1左右的指纹区为C—N的伸缩振动,由于该键的生成,使得N原子的电子发生转移,缺失电子从而表现出正电性,提升了阴离子的吸附效率。

    • 图6反映了NSRM膜制备工艺中纺丝时间对硝酸盐去除性能影响。图6(a)和图6(b)分别为纺丝时间为1.5 h和5 h时 NSRM膜的截面SEM表征结果。经测量其厚度均分别为235 μm和130 μm,随着纺丝时间的延长,膜的厚度反而变薄。实验同时采用称重法测量不同纺丝工艺NSRM膜单位面积质量,结果如图6(c)所示。可见,随着纺丝时间延长,其单位面积的膜质量有所增加。结合截面SEM结果,发现随着纺丝时间的延长,膜逐渐变得密实。图6(d)为添加不同纺丝时间制得的NSRM膜后MCDI装置对硝酸根离子的去除情况。由图6(d)可知,添加NSRM膜后MCDI装置对硝酸盐去除性能均有明显改善,其中添加3 h NSRM膜的MCDI装置对硝酸根离子的去除效果最佳,其去除率达88.17%,比未添加NSRM膜的装置提高了18%。由表1的计算结果可见,采用伪二级动力学方程进行描述,速率为0.015 3 g·(m2·min)−1

      由以上结果推测,3 h的膜去除率和去除速率比1.5 h和5 h更高的原因是随着时间延长,单位面积上有效官能团和IRA402树脂成分增加,但随着时间延长,单位面积膜质量增加,膜更密实,从而引起电荷传质效率降低。后续实验均采用纺丝时间为3 h的NSRM膜。

    • 图7分别考察了装置操作电压、循环流速和硝酸盐初始质量浓度对MCDI去除硝酸盐性能的影响。由图7(a)可见,硝酸根离子的去除率随电压的增大而升高。这是因为随着电压的升高,极板间的电位差增大,对带电离子的吸附驱动力增强,但过高的电压会造成水的电解,进而降低电极寿命。电压为2.0 V时未产生明显气泡,溶液pH由6.94升至7.21,实验过程中未探测到亚硝酸盐等其他产物。同时,采用式(4)对MCDI电荷效率进行计算,在硝酸根初始质量浓度为50 mg·L−1、电压为2.0 V时电荷效率为69.98%;当电压为2.2 V时,电荷效率为60.10%。相比之下,2.0 V条件电荷效率更高,因此,后续实验中采用2.0 V操作电压。

      图7(b)可见,当硝酸根初始质量浓度为50 mg·L−1、电压为2.0 V、循环流速分别为40、60、80、100 mL·min−1时,60 min后硝酸根离子的去除率为61.76%、72.69%、75.58%和83.86%。即随着循环流速增加,单位时间内硝酸根离子的去除率有所升高。这是因为当流速较低时,水的循环率也较低,水体中离子与电极接触概率低;随着流速增加,大大提高了水体中离子与电极表面的接触概率,因此,硝酸根离子去除效率得到提高。

      图7(c)是装置对硝酸盐初始质量浓度分别为50、100、150、200 mg·L−1 、电压为2.0 V、循环流速为100 mL·min−1时的电吸附变化曲线。可见,60 min后硝酸根离子的去除率分别为83.86%、78.66%、63.10%和55.05%。图7(d)是电压为2.0 V、循环流速为100 mL·min−1时,硝酸根离子的单位面积吸附量变化。可见,随着硝酸盐溶液初始质量浓度的增加,虽然硝酸根离子的单位面积吸附容量增加,但去除效率呈下降趋势。因为随着硝酸盐初始质量浓度增加,水体电导率增加,即电极表面和溶液间可形成更高的浓度梯度,从而降低离子的扩散阻力,进而提升电极的单位面积吸附容量。而去除率随着质量浓度增加降低是因为电极与溶液界面形成的双电层厚度与溶液的质量浓度呈反比[28],低浓度时双电层更厚,有更多吸附点,有利于有效地保持电荷,从而提高离子去除率。

      综合考虑以上因素认为,当操作电压为2.0 V,溶液循环流速为100 mL·min−1时,MCDI系统对硝酸根离子有最优的吸附效果,故后续实验均在此条件下进行。

    • 图8(a)~(c)为1 mmol·L−1 F、1 mmol·L−1 Cl、0.5 mmol·L−1 SO42−分别与不同浓度NO3(0.5、1、2 mmol·L−1)混合时降解曲线。当以上3种离子与硝酸根电荷比分别为0.5:1、1:1和2:1时,硝酸根降解率达88.16%、75.8%和76.46%,相比F、Cl和SO42−降解率分别提高了16.74%、12.31%和3.37%。结合表2可见,在同价态情况下,NSRM膜对硝酸根离子的去除具有较强选择性。而当其与二价阴离子SO42−混合时,对其选择性略有不足,可能与离子的水合半径和在水中迁移的速率有关。有研究表明,较小水合半径[19]及较高价态的离子[29]更能够被有效去除。在相同外加电压下,离子在溶液中电迁移率越低,迁移速度越慢,而在理想溶液中,F、NO3、Cl、SO42−的迁移率分别为5.74×10−8、7.40×10−8、7.92×10−8和8.27×10−8 m2·(s·V)−1[20],溶液中硫酸根离子快速迁移到电极附近,优先被吸附。由图8(d)可见,随硝酸根浓度增加,溶液中硝酸根离子数目增多,相对各离子的选择性也增加,在与硝酸根离子电荷数为1:1的情况下,F选择性达4.23,Cl可达2.09。

      图9(a)、图9(b)、图9(c)分别为F、Cl、NO3 3种离子按不同浓度比例混合时的降解曲线。可见,当F:Cl:NO3分别为1:1:1、1:1:2和1:2:1时,硝酸根离子的去除率均为最高,达81.2%、81.1%和70.9%。根据图9(e)~(g)单位面积吸附量,硝酸根离子单位面积吸附量较其他离子高。结合表3中添加NSRM膜前后多离子混合去除率的变化可知,加入NSRM薄膜后,各离子的去除率均有所提高,但NO3的去除率提升最为显著。表明NSRM膜添加后对硝酸盐具有较强选择性。图9(d)为水中不同价态阴离子等电荷共存时的动态降解曲线。可见,NO3、SO42−、PO43−在同一混合液中的降解率分别为55%、59.7%和51.2%,无明显差异。该膜对于不同价态离子的选择去除效果有待进一步探究。

    • 图10为硝酸盐吸附原理图。在两极电压驱动下,溶液中的阴阳离子分别聚集在阳极和阴极周围形成双电层。由图5(a)中Zeta电位可知,NSRM膜表面带正电,减少了阴离子吸附的排斥,同时提高了吸附驱动力,使两极间双电层更加稳定;结合FTIR图推测NSRM膜所带正电基团为胺基基团,根据共价键的量子理论,共价键的强弱取决于形成共价键的2个电子轨道相互交叠的程度,交叠越多,键能越大,系统能量越低,键越牢固,NO3中心氮原子采用sp2杂化形式,杂化轨道为平面三角形。与胺基基团相似,故相对于F和Cl,两者结合更为稳定;另一方面通过查阅N—N、N—F和N—Cl原子之间结合能,发现N—N结合能更高,因而吸附稳定性更强,且在吸附过程中N—Cl结合能较低,因此,具有较高吸附稳定性的N—N会取代稳定性较差的N—Cl[30]

    • 1)采用静电纺丝法直接一体成型制备出对硝酸盐具有选择去除性能的NSRM薄膜,薄膜中树脂颗粒与纤维丝相互交缠形成多孔结构,膜表面含CN、C(O)NH、N—H基团,且表面电荷在较宽的pH范围内均带正电。

      2) NSRM薄膜电容去除硝酸盐性能的测试结果表明,纺丝时间为3 h制备得到的膜对硝酸根离子的去除效果最佳,去除率可达88.17%,通过拟合计算,采用伪二级动力学方程进行描述,速率为0.015 3 g·(m2·min)−1。当操作电压为2.0 V,溶液循环流速为100 mL·min−1时,MCDI系统对硝酸根离子有最优的吸附效果。

      3) NSRM薄膜对F、Cl有较好的选择性,对硫酸根有一定选择性,对磷酸根选择性不佳,其中,当NO3与F、Cl比值均为1:1时,硝酸的选择性分别为4.23和2.09。

    参考文献 (30)

返回顶部

目录

/

返回文章
返回