-
雨水是优质天然水资源,但其利用率低。“城中村”雨水径流冲刷地表产生的受污染雨水直接进入合流制管道和河道,会导致水体水质恶化。因此,有必要明确城中村屋面与路面雨水径流污染特征并研究雨水径流污染处理技术,对城中村屋面和路面雨水径流进行回收利用。北京市是我国最早开展雨水利用技术研究及实践的城市之一[1]。去除雨水径流污染物的方法有物理吸附、离子交换[2-3]、混凝沉淀[4-5]、渗滤、膜分离技术等;采取措施包括植被控制[6-7]、滞留池[8]、人工湿地[9]和渗滤系统等。沸石具有多孔性、高比表面积和阳离子交换特性,沸石过滤法[10-13]吸附雨水污染物效果明显,以Kruger公司、Infilco Degremont为代表的公司已成功商业化应用混凝沉淀工艺于溢流雨水处理领域[14]。混凝沉淀法用于处理雨水径流,具有无相变、操作简单、成本低和处理效果好等优点[4-5]。
本研究分析北京市区和城中村屋面与路面雨水径流的污染特征,针对雨季集中、间歇性降雨和短期降雨强度大的特点,开展受污染的雨水径流处理利用技术研究,设计改性沸石过滤法和混凝沉淀法处理屋面和路面雨水径流的装置,并提出应用于“城中村”的雨水径流处理应用方案,考察其实际应用效果,以期为建设可因地制宜快速高效削减雨水径流污染负荷、提高雨水利用效率与河道治理的独立小排水单元面源污染控制系统工程提供参考。
基于过滤沉淀法的屋面与路面雨水径流污染控制技术及其在北京某城中村的应用
Pilot-scale research and application of modified zeolite filtration and coagulation sedimentation for the treatment of roof and pavement rain-runoff in urban village of Beijing city
-
摘要: 通过对比北京市西大望路和郊区城中村B村3类屋面雨水径流和8类路面雨水径流样品检测结果,分析北京市区和城中村屋面与路面雨水径流的污染特征。针对不同污染特征,分别采用改性沸石过滤法和混凝沉淀法处理城中村屋面和路面雨水径流。开展改性沸石过滤法固定床吸附实验发现:雨水流速越小、滤柱越高和沸石粒径越小,对氨氮吸附效果越好。开展混凝沉淀法批次实验发现:当初始pH为6~7、PAC投加量为80~100 mg·L−1时,混凝沉淀效果最佳,且初始pH和混凝剂投加量对混凝沉淀效果影响程度大。设计改性沸石过滤法处理城中村屋面雨水径流工艺与装置,通过实际运行验证处理效果,设计蓄水池-混凝反应罐处理城中村路面雨水径流。混凝反应罐在内的雨水处理单元与城中村污水处理厂 (站) 联合运行,经过处理后的雨水可用于河道补给,可用于郊区B村处理实际雨水径流。本研究结果可为城市城中村的路面径流污染处理提供参考。Abstract: In this paper, the pollution characteristics of roof runoff and pavement runoff in urban area and village of Beijing were analyzed by comparing the detection results of three types of roof runoff and eight types of pavement runoff samples from west side of Dawang road and B village in suburban area of Beijing. According to different pollution characteristics, modified zeolite filtration method and coagulation sedimentation method were used to treat roof and pavement runoff of villages in the city. The results show that the smaller the rainwater flow rate, the higher the filter column and the smaller the zeolite particle size are, the better the ammonia nitrogen adsorption effect is. The batch experiment of coagulation sedimentation method was carried out. The results showed that the best coagulation sedimentation effect was obtained when the initial pH value was 6~7 and PAC dosage was 80~100 mg·L−1, and the initial pH value and coagulant dosage had more influence on the coagulation sedimentation effect. The process and device of modified zeolite filtration method to treat the roof rain-runoff of village in the city are designed. The treatment effect is verified through actual operation. The reservoir coagulation tank is designed to treat the road rain-runoff of village in the city. The rainwater treatment unit including coagulation tank and village sewage treatment station are operated jointly. The treated rainwater can be used for river replenishment, which has great significance for rural village B to deal with the actual rain-runoff.
-
Key words:
- rainwater resource utilization /
- filtration method /
- coagulation method /
- treatment unit
-
表 1 雨水径流水质
Table 1. Experimental rain-runoff quality
屋面雨水径流 路面雨水径流 COD/(mg·L-1) 氨氮/(mg·L-1) 浊度/NTU COD/(mg·L-1) 浊度/NTU TP/(mg·L-1) SS/(mg·L-1) 87.3 18.6 124 202 1 073 2.8 788 表 2 雨水径流水质指标
Table 2. Numerical range of rainwater runoff quality
pH 浊度/NTU DO/(mg·L−1) COD/(mg·L−1) TSS/(mg·L−1) 氨氮/(mg·L−1) 硝态氮/(mg·L−1) TP/(mg·L−1) 6.95~8.69 127.9~4692 9.3~9.59 37.8~878.3 289~3 278 1.7~37.3 0.3~6.6 0.7~3.1 表 3 改性沸石吸附屋面雨水实验参数表
Table 3. Test parameters of roof rainwater absorption by modified zeolite
反应条件 达到穿透点时间/min 达到饱和点时间/min 吸附饱和时间/min 流速为50 mL·min−1 165 495 330 流速为150 mL·min−1 125 395 270 流速为250 mL·min−1 55 305 250 柱高为1 m 85 255 170 柱高为2 m 125 315 190 柱高为3 m 205 485 280 沸石粒径为1~2 mm 305 655 350 沸石粒径为2~4 mm 255 595 340 沸石粒径为4~8 mm 185 415 230 注:Ct为固定床出水氨氮质量浓度,C0进水氨氮质量浓度。本试验选Ct/C0=0.1时达到吸附穿透点,Ct/C0=0.9时达到吸附饱和点。 表 4 正交实验因素水平表
Table 4. Factor level table of orthogonal test
水平 pH 混凝剂投加量/ (mg·L−1) (中速) 搅拌时间/min (慢速) 搅拌时间/min 1 4 50 1 5 2 7 100 2 10 3 9 150 3 15 表 5 PAC混凝正交实验设计
Table 5. Results of orthogonal test
实验序号 因素A 因素B 因素C 因素D COD去除率 1 1 1 1 1 38.11% 2 1 2 2 2 41.43% 3 1 3 3 3 42.32% 4 2 1 2 3 43.32% 5 2 2 3 1 67.03% 6 2 3 1 2 65.30 7 3 1 3 2 50.34 8 3 2 1 3 61.32 9 3 3 2 1 60.41 表 6 PAC混凝正交实验结果
Table 6. Results of orthogonal test
结果 因素A 因素B 因素C 因素D T1 121.86 131.77 164.73 167.55 T2 177.65 171.78 145.16 157.07 T3 172.07 168.03 161.69 146.96 t1 40.62 43.92 54.91 55.85 t2 59.22 57.26 48.39 52.36 t3 57.36 56.01 53.90 48.99 R 16.74 13.34 6.52 6.86 -
[1] 于磊, 潘兴瑶, 马盼盼, 等. 北京雨水管控体系下年径流总量控制率实现效果分析[J]. 中国给水排水, 2019, 35(19): 121-125. [2] 耿雪, 刘桦聪, 赵娴, 等. 沸石无烟煤组合填料处理雨水径流的小试试验[J]. 科技经济市场, 2017, 6(3): 6-7. doi: 10.3969/j.issn.1009-3788.2017.07.005 [3] 仇付国, 王珂, 于栋, 等. 沸石改良雨水生物滞留系统去除污染物研究[J]. 环境科学与技术, 2018, 41(3): 124-129. doi: 10.19672/j.cnki.1003-6504.2018.03.018 [4] 王丽娟, 刘鑫, 靖一丹, 等. PAC/PAM 强化混凝沉淀法处理校园屋面雨水径流的研究[J]. 河北工业大学学报, 2018, 47(4): 98-102. [5] 郭冀峰, 黄宇华, 关卫省, 等. 混凝/平板膜光催化联合反应器工艺处理高速公路桥面雨水径流研究[J]. 安全与环境学报, 2017, 17(4): 1465-1469. doi: 10.13637/j.issn.1009-6094.2017.04.050 [6] GONG Y W, ZHANG X W, LI J Q, et al. Factors affecting the ability of extensive green roofs to reduce nutrient pollutants in rainfall runoff[J]. Science of The Total Environment, 2020, 732(C): 139248. [7] CHANDRASENA G I, SHIRDASHTZADEH M, LI Y L, et al. Retention and survival of E. Coli in stormwater biofilters: Role of vegetation, rhizosphere microorganisms and antimicrobial filter media[J]. Ecological Engineering, 2017, 102: 166-177. doi: 10.1016/j.ecoleng.2017.02.009 [8] LIU Y, HOU L G, BIAN W, et al. Turbidity in combined sewer sewage: An identification of stormwater detention tanks[J]. International Journal of Environmental Research and Public Health, 2020, 17(9): 3053. doi: 10.3390/ijerph17093053 [9] WALASZEK M, BOIS P, LAURENT J, et al. Micropollutants removal and storage efficiencies in urban stormwater constructed wetland[J]. Science of The Total Environment, 2018, 645: 854-864. doi: 10.1016/j.scitotenv.2018.07.156 [10] 方媛瑗, 刘玲花, 吴雷祥, 等. 5种填料对污水中氮磷的吸附特性研究[J]. 应用化工, 2016, 45(9): 1619-1623. [11] 李璐铫, 程海翔, 季竹霞. NaCl改性沸石去除废水中氨氮的条件优化研究[J]. 杭州师范大学学报(自然科学版), 2018, 17(1): 78-82. [12] 古励, 潘龙辉, 何强, 廖欣蕾. 沸石对降雨径流中氨氮的吸附特性[J]. 环境工程学报, 2015, 9(1): 107-112. doi: 10.12030/j.cjee.20150118 [13] 耿雪, 刘桦聪, 秦红烨. 4种不同填料对氮磷吸附效果的实验研究[J]. 工程技术研究, 2016(6): 3-4. doi: 10.3969/j.issn.1671-3818.2016.06.003 [14] 马捷汀, 王丽花, 汪喜生, 等. 高效溢流雨水净化装置在海绵城市建设中的应用[J]. 净水技术, 2021, 40(S2): 116-121. [15] 李文静, 李军, 张彦灼, 等. NaCl改性沸石对水中氨氮的吸附机制[J]. 中国环境科学, 2016, 36(12): 3567-3575. doi: 10.3969/j.issn.1000-6923.2016.12.006 [16] MENDEZ C B, KLENZENDORF J B, AFSHAR B R, et al. The effect of roofing material on the quality of harvested rainwater[J]. Water Research, 2010, 45(5): 2049-2059. [17] GIKAS G D, TSIHRINTZIS V A. Effect of first-flush device, roofing material, and antecedent dry days on water quality of harvested rainwater[J]. Environmental Science and Pollution Research International, 2017, 24(27): 21997-22006. doi: 10.1007/s11356-017-9868-6 [18] 和晓艳. 屋顶绿化的相关技术研究[D]. 南京: 南京林业大学, 2013. [19] CHAPLOT V, SELALA M S, THENGA H, et al. Comparison of the chemical quality of rainwater harvested from roof and surface run-off systems[J]. Water S. A., 2018, 44(2): 223-231. [20] 马春麟, 张晶, 李军, 等. 改性沸石滤料处理屋面雨水的中试试验研究[J]. 给水排水, 2019, 55(6): 108-113. doi: 10.13789/j.cnki.wwe1964.2019.06.021