-
在我国21世纪初,城市生活垃圾普遍采用填埋的方式进行处置[1],据2021年中华人民共和国统计局报告显示,截至2020年,我国卫生填埋场共644座。填埋场中的生活垃圾随着时间的推移,趋于稳定并产生大量的老龄垃圾渗滤液。与新鲜垃圾渗滤液相比,老龄垃圾渗滤液具有高氨氮、低C/N、可生化性差和污染物成分更加复杂且毒性强等特点[2-3]。
传统脱氮工艺由于存在能耗和运行成本高的缺点。因此,对于低C/N比和高氨氮的老龄垃圾渗滤液而言,目前亟需探究一种经济且高效的脱氮方法。厌氧氨氧化(anaerobic ammonium oxidation, Anammox)是一种新型高效的生物脱氮技术,与传统脱氮技术相比,该技术具备无需曝气、无需外加碳源、污泥产量少、温室气体排放少和运行成本低等优点。该技术是利用厌氧氨氧化菌(anaerobic ammonium oxidation bacteria, AnAOB)在缺氧或者厌氧环境条件下,利用NO2−-N为电子受体,以NH4+-N为电子供体,最后将两者转化成N2的过程[4-5]。目前由于AnAOB生长速度缓慢,且倍增周期较长,导致Anammox工艺在工程运用中存在启动时间长,AnAOB富集丰度低等难题。目前报道文献中,王朝朝等[6]利用Anammox絮状污泥和厌氧颗粒污泥在UASB反应器中经过140 d成功培养出Anammox颗粒污泥,TN去除负荷为0.26 kg·(m3·d)−1;季军远等[7]以絮状厌氧消化污泥为接种污泥,经过250 d成功启动有效体积为1.4 L的Anammox-UASBA反应器;Wang等[8]将Anammox颗粒污泥接种于UASB反应器,经过178 d启动及稳定运行,NLR高达8.25 kg·(m3·d)−1;李亦舒等[9]探究低DO条件下对Anammox工艺脱氮影响,富集的AnAOB丰度仅为14.3%。
基于此,本研究针对短程硝化处理后的老龄垃圾渗滤液,采用UASB反应器快速启动Anammox用于进一步深度脱氮,分析启动过程中接种污泥形貌变化、微生物群落结构变化和脱氮性能。为此,探究Anammox最佳启动条件,并采用厌氧硝化污泥为接种污泥,在30 L的UASB反应器中,仅用60 d成功启动Anammox。启动成功后以短程硝化处理后的老龄垃圾渗滤液为进水,探究该系统脱氮性能。实现Anammox反应器稳定运行和较强的脱氮性能,为其在老龄垃圾渗滤液工程运用中提供科学的技术参考。
快速启动厌氧氨氧化用于老龄垃圾渗滤液脱氮及其机理分析
Nitrogen removal from mature landfill leachate and its mechanism by using fast start-up of anaerobic ammonia oxidation
-
摘要: 基于短程硝化处理后的老龄垃圾渗滤液,含有大量难降解有机污染物,且氨氮和化学需氧量浓度高,C/N比低等特点。本研究以厌氧硝化污泥作为接种污泥,采用升流式厌氧污泥床反应器(UASB),快速启动厌氧氨氧化反应,对其进行深度脱氮。探究启动厌氧氨氧化反应的最佳条件和脱氮性能,根据污泥形貌特征和微生物群落结构的变化,阐明厌氧氨氧化的作用机理。结果表明,厌氧氨氧化快速启动最佳条件:温度为(30±1) ℃、初始pH为7.5、NO2−/NH4+为1.25~1.50、无外加碳源和MLSS为4 200 mg·L−1。历经60 d后,厌氧氨氧化成功启动,进水TN容积负荷最高为0.45 kg·(m3·d)−1,TN容积负荷去除速率最高为0.36 kg·(m3·d)-1,NH4+-N、NO2−-N和TN去除率超过80%。同时,UASB运行至第60天时,接种污泥形貌呈现花椰菜结构,微生物群落多样性减少,Planctomycetes门为优势菌群,其丰度为44.4%。Candidatus Brocdia属为第一优势菌属,其丰度为42.8%,证实厌氧氨氧化快速启动成功,AnAOB利用NO2−-N为电子受体,以NH4+-N为电子供体实现深度脱氮。综上所述,厌氧氨氧化的快速启动可为短程硝化处理后的老龄垃圾渗滤液深度脱氮提供参考。Abstract: In this study, anaerobic nitrification sludge was used as the inoculated sludge, and the upflow anaerobic sludge bed reactor (UASB) was used to perform the fast start-up of anaerobic ammonia oxidation (Anammox) to further remove nitrogen. Based on the characteristics of mature landfill leachate after short-cut nitrification treatment which contains a large number of refractory organic pollutants, high ammonia nitrogen concentration and chemical oxygen demand, and low C/N ratio. The optimal conditions and denitrification performance for Anammox reaction were explored, and the mechanism of Anammox was also elucidated according to the changes of sludge morphology and microbial community structure. The results showed that the optimal condition for fast start-up of the Anammox process was (30±1) ℃, initial pH=7.5, NO2−/NH4+=1.25~1.50, without external carbon source and MLSS=4 200 mg·L−1, respectively. After 60 days, the successful fast start-up of Anammox occurred, the removal rates of NH4+-N, NO2−-N and TN exceeded 80% when the inlet TN volume load was 0.45 kg·(m3·d)−1 and the TN volume load removal rate was 0.36 kg·(m3·d)-1. The result of scanning electron microscopy (SEM) revealed that the morphology of inoculated sludge exhibited cauliflower structure after 60 days operation of UASB process. Simultaneously, the result of 16S rRNA high-throughput sequencing indicated that the diversity of microbial community decreased after start-up. Planctomycetes phylum was the dominant bacterial community, with an abundance of 44.4%, and Candidatus Brocdia was the dominant genus, with an abundance of 42.8%. Both results of SEM and 16S rRNA confirmed that the fast start-up of Anammox was successful. AnAOB uses NO2−-N as the electron acceptor and NH4+-N as the electron donor for deep denitrification. In conclusion, the fast start-up of process of Anammox provides a reference for the deep nitrogen removal of mature landfill leachate after short-cut nitrification.
-
表 1 Anammox接种污泥Alpha多样性指数
Table 1. Alpha diversity index of anaerobic ammonia oxidation inoculation sludge
污泥样品 OTUs Shannon Simpson Ace Chao 1 Shannoneven 覆盖率/% 第0天 370 4.401 0.030 370.00 370.00 0.744 100 第30天 322 3.954 0.045 325.88 324.44 0.685 99.9 第60天 312 3.302 0.093 320.63 324.16 0.575 99.9 -
[1] 陈炜鸣, 辜哲培, 何晨, 等. 老龄垃圾渗滤液中溶解性有机物在SAARB和MBR处理过程的转化特征[J]. 环境科学学报, 2021, 41(11): 4637-4647. [2] CHEN W, ZHANG A, JIANG G, et al. Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation[J]. Waste Management, 2019, 85: 283-293. doi: 10.1016/j.wasman.2018.12.038 [3] CHEN W, HE C, ZHOU X, et al. Comprehensive evaluation of dissolved organic matter molecular transformation in municipal solid waste incineration leachate[J]. Chemical Engineering Journal, 2020, 400: 126003. doi: 10.1016/j.cej.2020.126003 [4] KARTAL B, MAALCKE W, ALMEIDA N, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479: 127-130. doi: 10.1038/nature10453 [5] MULDER A, VAN DE GRAAF A A, ROBERTSON L, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. doi: 10.1111/j.1574-6941.1995.tb00281.x [6] 王朝朝, 冀颖, 闫立娜, 等. 厌氧氨氧化颗粒污泥UASB反应器的快速启动[J]. 中国给水排水, 2019, 35(11): 15-20. [7] 季军远, 林久淑, 朱晓桐, 等. Anammox-UASB反应器启动过程中的生物特性[J]. 环境工程学报, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067 [8] WANG Y, HU X, JIANG B, et al. Symbiotic relationship analysis of predominant bacteria in a lab-scale Anammox UASB bioreactor[J]. Environmental Science and Pollution Research6, 2016, 23(8): 7615-7626. doi: 10.1007/s11356-015-6016-z [9] 李亦舒, 刘亚雷, 赵一淳, 等. 低溶解氧胁迫下生物膜-颗粒污泥Anammox工艺生物富集特性及脱氮功能菌群和基因的演变研究[J]. 环境科学学报, 2022, 42(5): 1-9. doi: 10.13671/j.hjkxxb.2021.0461 [10] VAN DE GRAAF AA, BRUIJIN P, ROBERTSON L, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142: 2187-2196. doi: 10.1099/13500872-142-8-2187 [11] 国家环境保护总局. 水和废水监测分析方法[J]. 第四版. 北京:中国环境科学出版社, 2002: 88-284. [12] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037 [13] YU G, HE P, SHAO L, et al. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949. [14] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding[J]. Academic Press, 1976, 72(1/2): 248-254. [15] GAUDY A F. Colorimetric Determination of Protein and Carbohydrate[J]. Industrial Water & Wastes, 1962, 7: 17-22. [16] YANG X R, WENG B S, LI H, et al. An overlooked nitrogen loss linked to anaerobic ammonium oxidation in estuarine sediments in China[J]. Journal of Soils and Sediments, 2017, 17(10): 2537-2546. doi: 10.1007/s11368-017-1728-y [17] 吴珊, 王淑雅, 王芬, 等. 温度对Anammox生物膜工艺的脱氮影响与菌群结构分析[J]. 环境科学, 2022, 43(1): 416-423. doi: 10.13227/j.hjkx.202105280 [18] DOSTA J, FERNANDEZ I, VANQUEZ-PADIN, J R, et al. Short-and long-term effects of temperature on the Anammox process[J]. Journal of Hazardous Materials, 2008, 154(1-3): 688-693. doi: 10.1016/j.jhazmat.2007.10.082 [19] ISANTA E, BEZERRA T, FERNANDEZ I, et al. Microbial community shifts on an Anammox reactor after a temperature shock using 454-pyrosequencing analysis[J]. Bioresource Technology, 2015, 181: 207-213. doi: 10.1016/j.biortech.2015.01.064 [20] SOBOTKA D, CZERWIONKA K, MAKINIA J, et al. Influence of temperature on the activity of Anammox granular biomass[J]. Water Science & Technology, 2016, 73(10): 2518-2525. [21] 宋成康, 王亚宜, 韩海成, 等. 温度降低对厌氧氨氧化脱氮效能及污泥胞外聚合物的影响[J]. 中国环境科学, 2016, 36(7): 2006-2013. doi: 10.3969/j.issn.1000-6923.2016.07.015 [22] 周蒙蒙, 杨婉, 谭锡诚, 等. 温度对UASB厌氧氨氧化反应器运行性能的影响及其过程动力学特性[J]. 太原理工大学学报, 2020, 51(4): 580-586. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.04.015 [23] STROUS M, FUERST J A, KRAMER E H, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400: 446-449. doi: 10.1038/22749 [24] JAROSZYNSKI L W, CICEK N, SPARLING R, et al. Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (Anammox) activity in moving bed biofilm reactors[J]. Bioresource Technology, 2011, 102(14): 7051-7056. doi: 10.1016/j.biortech.2011.04.069 [25] PUYOL D, CARVAJAL-ARROYO J M, SIERRA-ALVAREZ R, et al. Nitrite (not free nitrous acid) is the main inhibitor of the Anammox process at common pH conditions[J]. Biotechnology Letters, 2014, 36: 547-551. doi: 10.1007/s10529-013-1397-x [26] CARVAJAL-ARROYO J M, PUYOL D, LI G B, et al. The role of pH on the resistance of resting-and active Anammox bacteria to NO2- inhibition[J]. Biotechnolog and Bioengineering, 2014, 111: 1949-1956. doi: 10.1002/bit.25269 [27] ANJALI G, SABUMON P C. Unprecedented development of Anammox in presence oforganic carbon using seed biomass from a tannery common effluent treatment plant (CETP)[J]. Bioresource Technology, 2014, 153: 30-38. doi: 10.1016/j.biortech.2013.11.061 [28] TOMAR S, GUPTA S K, MISHRA B K, et al. A novel strategy for simultaneous removal of nitrogen and organic matter using anaerobic granular sludge in Anammox hybrid reactor[J]. Bioresource Technology, 2015, 197: 171-177. doi: 10.1016/j.biortech.2015.08.057 [29] LI Y, HUANG Z X, RUAN W Q, et al. Anammox performance, granulation, and microbial response under COD disturbance[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(1): 139-148. [30] NI S Q, NI J Y, HU D L, et al. Effect of organic matter on the performance of granular Anammox process[J]. Bioresource Technology, 2012, 110: 701-705. doi: 10.1016/j.biortech.2012.01.066 [31] MIAO L, WANG S Y, CAO T H, et al. Optimization of three-stage Anammox system removing nitrogen from landfill leachate[J]. Bioresource Technology, 2015, 185: 450-455. doi: 10.1016/j.biortech.2015.03.032 [32] 严子春, 唐瑞祥, 吴大冰, 等. 有机物对厌氧氨氧化生物膜反应器脱氮效能及微生物群落的影响[J]. 环境科学学报, 2021, 41(4): 1303-1308. doi: 10.13671/j.hjkxxb.2020.0571 [33] LOTTI T, VAN DER STAR W R L, KLEEREBEZEM R, et al. The effect of nitrite inhibition on the Anammox process[J]. Water Research, 2012, 46(8): 2559-2569. doi: 10.1016/j.watres.2012.02.011 [34] KUENEN G. Anammox bacteria: from discovery to application[J]. Nature. Reviews Microbiology, 2008, 6: 320-326. doi: 10.1038/nrmicro1857 [35] 王思琦, 李贇, 陈福明, 等. 低接种量条件下实现厌氧氨氧化快速启动的策略[J]. 环境工程学报, 2022, 16(3): 999-1007. doi: 10.12030/j.cjee.202110116 [36] SPETH D R, GUERRERO C. Genome-based microbial ecology of Anammox granules in a full-scale wastewater treatment system[J]. Nature Communication, 2016, 7: 11172. doi: 10.1038/ncomms11172 [37] TRIGO C, CAMPOS J L, GARRIDO J M, et al. Start-up of the Anammox process in a membrane bioreactor[J]. Journal of Biotechnology, 2006, 126(4): 475-487. doi: 10.1016/j.jbiotec.2006.05.008 [38] 杨敏, 胡学伟, 宁平, 等. 废水生物处理中胞外聚合物(EPS)的研究进展[J]. 工业水处理, 2011, 31(7): 7-12. doi: 10.3969/j.issn.1005-829X.2011.07.002 [39] 范丹, 李冬, 梁瑜海, 等. 生活污水SNAD颗粒污泥快速启动及脱氮性能研究[J]. 中国环境科学, 2016, 36(11): 3321-3328. doi: 10.3969/j.issn.1000-6923.2016.11.015 [40] SEVIOUR T, YUAN Z, LOOSDRECHT M, et al. Aerobic sludge granulation: A tale of two polysaccharides[J]. Water Research, 2012, 46(15): 4803-4813. doi: 10.1016/j.watres.2012.06.018 [41] 杨帆, 王帅, 龙曼, 等. 胞外多糖酶解对Anammox颗粒污泥稳定性的影响[J]. 土木与环境工程学报, 2022, 44(1): 188-196. [42] 王衫允, 贾方旭, 靳鹏飞, 等. 高效厌氧氨氧化颗粒污泥脱氮特征及EPS分层特性[J]. 中国给水排水, 2016, 32(11): 35-39. doi: 10.19853/j.zgjsps.1000-4602.2016.11.008 [43] 冯瑛, 李建启, 赵云鹏, 等. Ca. Brocadia型厌氧氨氧化污泥胞外聚合物的荧光特性及来源探究[J]. 中国科技论文, 2017, 12(15): 1689-1693,1710. doi: 10.3969/j.issn.2095-2783.2017.15.002 [44] LIU S, LIN C, DIAO X, et al. Interactions between tetracycline and extracellular polymeric substances in Anammox granular sludge[J]. Bioresource Technology, 2019, 293: 122069. doi: 10.1016/j.biortech.2019.122069 [45] HOU X L, LIU S T, ZHANG Z T, et al. Role of extracellular polymeric substance in determining the high aggregation ability of Anammox sludge[J]. Water Research, 2015, 75: 51-62. doi: 10.1016/j.watres.2015.02.031 [46] MARDANOV A, BELETSKY A, RAVIN N, et al. Genome of a novel bacterium “Candidatus Jetteniacosi” reconstructed from the meta genome of an Anammox bioreactor[J]. Frontiers in Microbiology, 2019, 10: 0242. doi: 10.3389/fmicb.2019.00242 [47] OSHIKI M, SATOH H, OKABE S, et al. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Enviornmental Microbiology, 2016, 18: 2784-2796. doi: 10.1111/1462-2920.13134 [48] REN T, CHI Y L, WANG Y, et al. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment[J]. Water Research, 2021, 206: 0043-1354. [49] CHENG F, ZHANG H, SUN S Y, et al. Cooperative denitrification in biocathodes under low carbon to nitrogen ratio conditions coupled with simultaneous degradation of ibuprofen in photoanodes[J]. Bioresource Technology, 2022, 351: 0960-8524. [50] TABASSUM S L, LI Y, CHI L N, et al. Efficient nitrification treatment of comprehensive industrial wastewater by using Novel Mass Bio System[J]. Journal of Cleaner Production, 2018, 172: 368-384. doi: 10.1016/j.jclepro.2017.10.022