-
城市生活垃圾是影响生态环境的严重污染源,其无害化处理已经成为环境治理的重要问题之一[1]。根据国家统计局发布的《2021中国统计年鉴》[2],我国2020年生活垃圾清运量达到963 460 t·d−1,其中焚烧日处理量已达567 804 t·d−1,占总垃圾无害化处理量的58.9%。生活垃圾进入焚烧炉前通常需要采用堆酵5~7 d的方式进行熟化,降低含水率,从而提高垃圾热值[3-4]。垃圾焚烧厂渗滤液是一种水质复杂且有毒有害的高浓度有机废水,具有一定的处理难度。如果收集和处理处置不当,将会对周边自然环境和人体健康造成严重影响。已有研究[5-6]表明,采用厌氧膜生物反应器 (anaerobic membrane bioreactor,AnMBR) 和负压原位碱度脱氨工艺处理垃圾焚烧厂渗滤液可分别实现COD和氨氮的高效脱除。然而出水水质依然无法满足相应的排放标准,因此还需要对脱氨出水进一步深度处理。当前采用的主流深度处理工艺为NF、RO等,存在运行能耗较大,膜污染严重以及残留大量难处理浓缩液等问题[7]。
与以压力作为驱动力的NF、RO等工艺相比,正渗透 (forward osmosis,FO) 工艺是一种以膜两侧的渗透压差作为驱动力的膜处理工艺,具有能耗低、膜污染小、出水水质好、浓缩液少等优势[8]。目前,针对正渗透深度处理垃圾焚烧厂渗滤液的研究较少,主要集中于垃圾填埋场渗滤液处理。AFTAB等[9]采用CTA膜组件的正渗透工艺直接对垃圾填埋场渗滤液原水进行处理,并研究生物炭 (BC) 和粉末活性炭 (PAC) 在线吸附减轻膜污染对正渗透性能的影响,结果表明,加入在线吸附后,过滤体积分数为57%以上,污染物截留率>80%。IBRAR等[10]研究了不同清洗方式对正渗透处理垃圾填埋场渗滤液生化出水膜性能的影响,结果表明物理清洗方法中35 ℃热水物理清洗和1.5 mol NaCl渗透反冲洗具有较好效果;化学清洗方法中,碱洗比酸洗更有效,可以达到100%通量回收。ISKANDER等[11]对正渗透回收垃圾填埋场渗滤液进行能耗分析,结果表明,污染物浓度升高,循环次数降低,汲取液浓度提高,可以使能耗从 (0.276±0.033) kWh·m−3下降到 (0.005±0.000) kWh·m−3。以上研究表明,正渗透作为垃圾焚烧厂渗滤液深度处理具有一定的研究价值和应用潜力。在应用FO处理垃圾渗滤液方面的报道主要集中于处理垃圾填埋场渗滤液,在处理垃圾焚烧渗滤液方面的研究却鲜有报道,在FO处理垃圾焚烧渗滤液的运行效能、工艺条件以及膜污染特性方面的研究较少,因此,采用FO工艺深度处理垃圾焚烧厂渗滤液负压原位碱度脱氨出水具有重要的理论和现实意义。
本研究采用FO工艺深度处理垃圾焚烧厂渗滤液负压原位碱度脱氨出水,考察FO在不同膜朝向、不同汲取液浓度和不同错流速率下的浓缩效果和污染物截留率,在满足相关排放标准的情况下确定最佳运行参数,进行连续实验并分析FO处理负压原位碱度脱氨出水的可行性,利用三维荧光 (EEM) 结合平行因子分析方法 (PARAFAC) 对膜污染成分和膜污染特征进行分析,旨在为后续FO处理垃圾焚烧渗滤液方面的研究与应用提供参考。
FO深度处理垃圾焚烧厂渗滤液的运行效能及膜污染特性
Operational performance and membrane fouling characteristics of FO for deep treatment of the leachate from the waste incineration plant
-
摘要: 针对垃圾焚烧厂渗滤液负压原位碱度脱氨出水中COD和氨氮浓度无法满足现行排放标准的问题,采用正渗透 (FO) 对出水进行进一步处理;探究膜朝向、汲取液浓度和错流速率对正渗透运行性能的影响,确定最佳运行参数;通过FO连续运行实验,确定正渗透连续运行下的膜清洗方案;采用三维荧光 (EEM) 结合平行因子分析方法 (PARAFAC) 对膜污染物质和特性进行分析。结果表明:活性层朝向汲取液 (AL-DS) 与活性层朝向原料液 (AL-FS) 模式相比,可以取得更高的初始通量,但膜通量下降速率更快,且具有更强的膜污染,物理清洗恢复率更低;而AL-FS的膜通量更稳定,且具有较低的膜污染趋势;汲取液浓度为2 mol·L−1时,初始通量为14.81 L·(m2·h)−1,运行10.5 h后,脱氨出水的浓缩倍数为10倍,出水水质可以达到排放标准;物理清洗后,通量恢复率为90%,膜污染程度较轻;提高错流速率至8 cm·s−1可以减缓膜污染,而进一步提高错流速率对膜通量并没有明显的促进作用;连续运行实验结果证明将物理清洗与化学清洗相结合以实现高效的正渗透操作是可行的;膜污染主要成分为色氨酸类物质、腐殖质类物质和富里酸类物质,膜污染贡献大小为色氨酸类物质>富里酸类物质>腐殖质类物质。由此可知,采用FO深度处理垃圾焚烧厂渗滤液负压原位碱度脱氨出水,可以使出水达到排放标准,并且在FO运行过程中,通过选取合适的运行措施可以适当减缓膜污染,确保FO稳定运行。该研究结果可为FO处理垃圾焚烧厂渗滤液工业化规模提供理论基础和应用参考。Abstract: In view of the problem that the concentrations of COD and ammonia nitrogen in the effluent of ammonia removal from incineration leachate after in-situ alkalinity vacuum stripping process cannot meet the current discharge standards, forward osmosis (FO) was used to deeply treat the effluent in this study. The effects of membrane orientation, different draw solution concentrations and cross-flow rates on the performance of FO operation were investigated and the optimal operating parameters were determined. Then the membrane cleaning scheme was proposed under the continuous operation of FO. Moreover, the membrane fouling characteristic was analyzed by three-dimensional fluorescence (EEM) combined with parallel factor analysis (PARAFAC). The results showed that AL-DS (Active layer oriented towards draw solution) mode could achieve a higher initial flux compared with AL-FS (Active layer oriented towards feed solution) mode. However, a faster decrease rate of membrane flux and a more serious fouling with lower flux recovery rate after physical cleaning occurred for AL-DS mode. On the contrary, the AL-FS mode presented a more stable flux and lower membrane fouling tendency. When the concentration of the aspirate was 2 mol·L−1, the initial flux of the FO was 14.81 L·(m2·h)−1, the concentration multiple was up to 10 times and the effluent quality of ammonia removal could meet the discharge standards after 10.5 h running. Furthermore, the fouling was relatively light and the flux recovery rate was 90% after physical cleaning. Additionally, the increase of cross flow rate up to 8 cm·s−1 could slow down the membrane fouling, but the membrane flux had no significant improvement as the cross-flow rate further increased. Continuous operational tests showed that it was feasible to combine physical cleaning with chemical cleaning protocols for highly efficient FO operation. EEM-PARAFAC experimental results showed that the main components of membrane fouling were tryptophan-like substances, humic-like substances and fulvic-like substances. Their order of pollution degree was tryptophan-like substances > fulvic-like substances > humic-like substances. It can be seen that the effluent of ammonia removal by in-situ alkalinity vacuum stripping process can meet the discharge standard after FO deep treatment. And in the FO operation process, appropriate operation strategies could effectively alleviated membrane fouling and ensured the stable FO operation. The results of this study can provide a theoretical basis and application reference for the industrial scale of FO treating the incineration leachate.
-
Key words:
- incineration leachate /
- forward osmosis /
- concentrate /
- membrane fouling /
- parallel factor analysis
-
表 1 出水污染物指标
Table 1. Index of pollutants in effluent
项目 COD/(mg·L−1) 氨氮/(mg·L−1) TP/(mg·L−1) Ca2+/(mg·L−1) Mg2+/(mg·L−1) 实测值 89.43±2.65 22.7±0.65 0 0.65±0.12 1.64±0.32 排放标准(GB 16889-2008) 100 25 3 — — -
[1] 张亚楠, 沈海滨. 论城市生活垃圾现状、管理及对策[J]. 世界环境, 2014(2): 28-29. [2] 中华人民共和国国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021. [3] CHEN Y M, XIAO Y T, WANG G P, et al. A pilot-scale test on the treatment of biological pretreated leachate by the synergy of ozonation-biological treatment-catalytic ozonation[J]. Environmental Engineering Research, 2021, 26(4): 200349. [4] SHI J Y, DANG Y, QU D, et al. Effective treatment of reverse osmosis concentrate from incineration leachate using direct contact membrane distillation coupled with a NaOH/PAM pre-treatment process[J]. Chemosphere, 2019, 220: 195-203. doi: 10.1016/j.chemosphere.2018.12.110 [5] BURMAN I, SINHA A. Anaerobic hybrid membrane bioreactor for treatment of synthetic leachate: Impact of organic loading rate and sludge fractions on membrane fouling[J]. Waste Management, 2020, 108: 41-50. doi: 10.1016/j.wasman.2020.04.031 [6] 赵贤广, 杨世慧, 邱明建, 等. 负压蒸发-吹脱组合新技术处理垃圾沥滤液高浓度氨氮实验研究[J]. 现代化工, 2020, 40(2): 187-190. [7] 孙燕. 正渗透处理城市污水的膜污染特性及控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [8] 祁伟健, 张胜寒, 王若彤, 等. 正渗透膜研究进展及其在电厂水处理中的应用[J]. 现代化工, 2022, 42(1): 85-89. [9] AFTAB B, OK Y S, CHO J, et al. Targeted removal of organic foulants in landfill leachate in forward osmosis system integrated with biochar/activated carbon treatment[J]. Water Research, 2019, 160: 217-227. doi: 10.1016/j.watres.2019.05.076 [10] IBRAR I, YADAV S, ALTAEE A, et al. Treatment of biologically treated landfill leachate with forward osmosis: Investigating membrane performance and cleaning protocols[J]. Science of the Total Environment, 2020, 744: 140901. doi: 10.1016/j.scitotenv.2020.140901 [11] ISKANDER S M, ZOU S Q, TING T, et al. Energy consumption by forward osmosis treatment of landfill leachate for water recovery[J]. Waste Management, 2017, 63: 284-291. doi: 10.1016/j.wasman.2017.03.026 [12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [13] VU M T, ANSARI A J, HAI F I, et al. Performance of a seawater-driven forward osmosis process for pre-concentrating digested sludge centrate: Organic enrichment and membrane fouling[J]. Environmental Science Water Research & Technology, 2018, 4(7): 1047-1056. [14] HONDA R, RUKAPAN W, KOMURA H, et al. Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture[J]. Bioresource Technology, 2015, 197: 429-433. doi: 10.1016/j.biortech.2015.08.096 [15] ZHAO B, GAO B Y, YUE Q Y, et al. The performance of forward osmosis in treating high-salinity wastewater containing heavy metal Ni2+[J]. Chemical Engineering Journal, 2016, 288: 569-576. doi: 10.1016/j.cej.2015.12.038 [16] 方舟. 厌氧正渗透膜生物反应器污水资源化及膜运行特性研究[D]. 北京: 清华大学, 2015. [17] BOWEN W R, DONEVA T A. Atomi force microscopy studies of membranes: Effect of surface roughness on double-layer interactions and particle adhesion[J]. Journal of Colloid & Interface Science, 2000, 229(2): 544-549. [18] TANSEL B, SAGER J, RECTOR T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation & Purification Technology, 2006, 51(1): 40-47. [19] 胡涛战. 厌氧正渗透膜生物反应器的膜污染机理及其控制措施的研究[D]. 无锡: 江南大学, 2017. [20] HE X, SAITO T, HICKNER M A. Zeta potential of ion-conductive membranes by streaming current measurements.[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2011, 27(8): 4721-4727. doi: 10.1021/la105120f [21] BIAN L X, FANG Y Y, WANG X L. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions[J]. Membranes, 2014, 4(2): 275-286. doi: 10.3390/membranes4020275 [22] LIU R X, LEAD J R, ZHANG H. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters[J]. Geochimica et Cosmochimica Acta, 2013, 109(1): 14-26. [23] OLOIBIRI V, CONINCK S D, CHYS M, et al. Characterisation of landfill leachate by EEM-PARAFAC-SOM during physical-chemical treatment by coagulation-flocculation, activated carbon adsorption and ion exchange[J]. Chemosphere, 2017, 186: 873-883. doi: 10.1016/j.chemosphere.2017.08.035 [24] BALLESTEROS S G, COSTANTE M, VICENTE R, et al. Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study[J]. Photochemical and Photobiological Sciences, 2017, 16(1): 38-45. doi: 10.1039/C6PP00236F [25] LEE B M, SEO Y S, HUR J. Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC[J]. Water Research, 2015, 73: 242-251. doi: 10.1016/j.watres.2015.01.020