-
进入二十一世纪以来全球疫情不断暴发,如2002年的重症急性呼吸综合征 (SARS) 、2009年的甲型H1N1流感、2012年的中东呼吸综合征 (MERS) 以及2019年暴发后蔓延全球的新冠 (COVID-19) 疫情,严重威胁着人类健康和社会发展。抗疫过程中传统化学消毒剂 (如氯) 的大量使用,导致了残余消毒剂及消毒副产物引发的次生风险。紫外线 (UV) 作为一种气、水和物体表面的高效、绿色消毒技术,受到广泛关注。国际照明委员会 (Commission Internationale de l’Eclairage,CIE) 按波长将UV分为UV-A (波长315~400 nm) 、UV-B (波长280~315 nm) 和UV-C (波长100~280 nm) ,其中UV-C中又包含真空UV (波长100~200 nm) 、远UV-C (波长200~230 nm) 和灭活UV-C (波长250~280 nm) 。
灭活UV-C (如波长254 nm) 可破坏绝大多数病原微生物的复制过程,使其失去感染性,从而达到高效、低耗的消毒效果,是目前UV消毒领域应用最为广泛的波段。远UV-C可有效杀灭各类病原微生物,但却被长期忽视,尚未广泛应用于消毒领域。主要原因在于其较高的光子能量,较其它波段UV-C更易被介质吸收,从而影响消毒效果。其次,远UV-C光源的电光转化效率 (低于5%) 远低于传统低压汞灯 (约36%) ,故在应用中能耗较高,亦会限制其应用。然而,远UV-C对眼睛和皮肤的伤害较传统灭活UV-C更低,且未发现有效消毒剂量下的远UV-C辐照会对人体造成伤害。因此,基于远UV-C的特性,可开发人机共存条件下的原位UV消毒,以阻断病毒传播,保护人类健康。本文通过对比远UV-C的辐射光源的特点,分析典型病原微生物的灭活机理与效果,以及人体的远UV-C暴露风险,分析其在消毒应用中应解决的关键问题,以期为其应用研究提供参考。
-
1) 准分子灯。准分子灯是常用的远UV-C光源,其通过填充稀有气体和卤素的混合物,经电激发后可发射准单色光。通过填充物改变可调节准分子灯的输出波长,并通过灯设计 (气体压力或成分) 的优化在一定程度上调控激发态分子的电子跃迁,从而提高电光转化效率。辐射远UV-C的光源填充物为KrCl,其主峰位和半峰宽通常为222 nm和4 nm (图1) 。需要指出的是,由于设计、质量的差异,不同生产商的产品辐射出的远UV-C主峰位和半峰宽会有所差异。目前,对于空气和物体表面消毒,准分子灯是最为适合且技术成熟的远UV-C光源。准分子灯的主要优点在于其可在有效消毒的同时,保持较低的人体暴露风险。然而,KrCl准分子灯还存在少量其它发射波长[1],需安装光学滤光片对其进行滤除 (特别是灭活UV-C 250~280 nm) ,使UV输出集中于远UV-C。此外,KrCl准分子灯UV-C输出的电光转化效率远低于传统低压汞灯 (主要输出波长254 nm) ,导致其消毒能耗较高,需在应用中予以考虑。
2) 中压汞灯。中压汞灯可发射连续波段200~400 nm的UV,包含远UV-C。由于H2O2在远UV-C波段的吸光度远高于230~280 nm UV-C波段,因此中压汞灯常与H2O2结合,产生羟基自由基 (·OH) 高效去除水中难降解有机污染物,其工艺效能高于传统低压汞灯。然而,中压汞灯其余波段的UV输出量过大,很难采用滤光片技术将其滤除,即无法输出单一的远UV-C,造成眼睛和皮肤较大的暴露风险,不适宜作为远UV-C消毒的光源。
3) 固态UV光源。固态UV光源 (如UV发光二极管,UV-LED) 是光源领域的重要发展方向。目前可见光固态光源已被广泛应用,波长在265~285 nm的传统UV-LED发展迅猛,其功率、寿命和成本等指标快速突破,已被初步应用于空气、小规模供水、物体表面等的消毒。基于AlGaN薄层结构的远UV-C UV-LED已被研发[2],但其输出功率、寿命和成本等指标尚未达到实际应用级别。基于对可见光LED和传统UV-LED的研发积累,UV-LED将在未来成为重要的远UV-C消毒光源。
-
不同波长UV辐照下,病原微生物的吸光度不同,故相应的灭活原理亦不同,同时其消毒效果也有差异。病原微生物的核酸可吸收UV-C,吸收峰值在260 nm附近 (图1) 。被吸收的UV-C光子会干扰核酸复制,从而导致病原微生物丧失传染性,以达到消毒效果[3]。基于此原理,传统低压汞灯已被广泛应用于空气、水和物体表面的消毒。
蛋白质在远UV-C波段的吸光度很高 (图1) ,吸收光子后导致变性失活,达到病原微生物的灭活。然而,由于细胞内光程较短 (< 1 μm) ,病原微生物对远UV-C的吸光度低于0.02 cm−1 [4],使得病原微生物的外层蛋白质 (如细菌细胞膜上的蛋白质、病毒的外层蛋白) 无法大比例阻隔远UV-C辐照到内部核酸。因此,远UV-C消毒同时存在干扰核酸复制和蛋白质失活2种灭活机制[5-7]。目前,对远UV-C的研究主要集中于光源、消毒效果及安全性,其灭活的影响因素 (介质吸收和颗粒的影响) 、多波长协同灭活机制等尚需进一步研究。
-
远UV-C (222 nm) 和灭活UV-C (254 nm) 对不同病原微生物的灭活效果对比见表1。2种UV-C对SARS-CoV-2病毒的灭活都非常有效。其中MA等[8]采用无滤光片和含滤光片下KrCl准分子灯,测定SARS-CoV-2病毒灭活速率常数分别是1.52和1.42 cm2·mJ−1,高于ROBINSON等[9]的KrCl准分子灯 (含滤光片) 的实验结果 (0.64 cm2·mJ−1) ,其原因可能是ROBINSON等实验中测试溶液吸光度 (> 30 cm−1) 高于MA等的研究 (0.05 cm−1) 。MA等和STORM等测定出低压汞灯 (254 nm) 对SARS-CoV-2病毒的灭活速率常数分别为0.79[8]和0.59[10] cm2·mJ−1,低于远UV-C灭活速率常数。远UV-C能够高效灭活病原微生物的原因是蛋白质对于222 nm附近的UV波长有更高的吸收率,且蛋白质失活机制的消毒效能更高,同时也说明远UV-C较灭活UV-C拥有相似甚至更强的灭活能力。因此,在远UV-C消毒数据相对缺乏的情况下,可借助低压汞灯 (254 nm) 的数据保守预测远UV-C的灭活效果。
表1结果表明,相对于低压汞灯 (254 nm) ,远UV-C对包膜病毒 (HCoV 229E和MHV) 、包膜噬菌体 (Phi6) 、无包膜噬菌体 (MS2和T1UV) 具有更好的灭活效果,说明远UV-C消毒的高效性在不同类型病毒中普遍存在。包膜RNA病毒HCoV 229E和MHV,无包膜双链DNA病毒T1UV噬菌体,都具有较低的生物安全性要求,且与SARS-CoV-2病毒灭活速率常数相似,因此可被选为SARS-CoV-2病毒的替代受试微生物。而HCoV 229E和MHV病毒与SARS-CoV-2同为包膜RNA病毒,其结构相似性更有利于SARS-CoV-2病毒灭活机理的研究。Phi6噬菌体与SARS-CoV-2病毒相比更难灭活,可作为保守的替代受试微生物。此外,MS2噬菌体较SARS-CoV-2病毒对UV辐照敏感性差异较大。
-
传统灭活UV-C对不同介质 (如空气、水和物理表面) 的病原微生物均有较强的消毒能力,特别是多项研究已证明UV-C对空气及飘落物体表面的气溶胶飞沫 (高传染性病毒的重要传播途径) 具有明显的消毒效果[13-14]。远UV-C较灭活UV-C具有更短的波长和更高的光子能量,而空气中气溶胶飞沫本身通常含有较高浓度的蛋白质,会吸收远UV-C并减低其在气溶胶内的穿透。由于气溶胶的直径和组成差异会对消毒产生不同程度影响,因此,远UV-C对气溶胶飞沫病原微生物的灭活是一个复杂的过程。现有各介质灭活结果初步表明,介质对远UV-C灭活SARS-CoV-2病毒的影响并不显著[8,10-12,15]。目前,通过病原微生物悬浮液测定UV灭活曲线的方法已较为成熟,该方法测得的数据可用来代表不同介质中远UV-C的灭活效果。美国政府工业卫生师协会 (ACGIH) 和国际非电离辐射防护委员会 (ICNIRP) 规定远UV-C暴露安全阈值分别为23 mJ·cm−2[16] 与25 mJ·cm−2[17],远UV-C阈值剂量足以灭活大部分空气、水、物体表面的病原微生物 (包括SARS-CoV-2[8-10]) ,阻断高传染性疾病的传播途径。
-
UV-C辐照皮肤会诱导皮肤癌的发生[18-19]。目前针对UV辐照致癌的机理研究多集中于254 nm及UV-B和UV-A波段上[20]。此外,多数流行病学研究结果证明了环境太阳辐射中皮肤癌的主要诱因为UV-B[21]。而远UV-C机理研究和暴露案例较少,尚没有远UV-C致癌的研究结论。
当UV穿透皮肤表层 (角质层、颗粒层和棘层) 辐射到基底层时,可能会损伤DNA并引发皮肤癌。皮肤表层的角质层能够吸收UV辐射,在一定程度上保护皮肤。远UV-C光子能量更高,会被有机质分子 (如蛋白质) 强烈吸收。然而,其穿透能力远低于灭活UV-C,则意味着可被UV-B或灭活UV-C穿透的角质层,会强烈吸收远UV-C,再结合颗粒层和棘层的吸收,可基本阻隔远UV-C到达基底层。
远UV-C辐射人体和无毛小鼠皮肤的研究结果表明[22-33],即使使用远超现有安全阈值的剂量辐照[16],也尚未观察到其对皮肤可量化的辐照损伤。WOODS等[22]使用远UV-C辐照人体背部,发现40 mJ·cm−2的辐照就会使皮肤出现红斑。这可能是由于实验使用未经过滤的KrCl准分子灯,同时产生了波长大于230 nm的UV-C。FUKUI等[23]在2020年重复此实验,改用滤光片过滤掉大于230 nm UV的KrCl准分子灯,在剂量相近甚至更高的情况下 (50~500 mJ·cm−2) ,也未观察到皮肤出现红斑或其他安全风险。研究人员在检测了远UV-C辐照的动物皮肤中DNA主要光照产物环丁烷嘧啶二聚体 (CPDs) 的分布,发现CPDs数量有限且仅出现于皮肤表层[26,29,31-33]。HICKERSON等[32]使用人类体外腹部皮肤 (图2 (a) ) 进行了相似实验,使用远UV-C (6 100 mJ·cm−2) 辐照后仅在表皮最上部出现了较少的CPDs (图2 (c) ) ,而使用UV-B (515 mJ·cm−2) 辐照后在表层和基底层均检测到CPDs (图2 (b) ) 。
2名研究人员自愿使用前臂皮肤进行了条件相同的远UV-C辐照 (图2 (d) ) ,实验结果与体外腹部皮肤相同。由于高剂量的UV-B对人体伤害较大,并未进行基于UV-B的对照实验[32]。可以看出远UV-C辐照皮肤后CPDs只出现在无增殖能力的表层细胞上,没有到达拥有增殖能力的基底层,因此研究人员认为其没有致癌风险[32,34]。远UV-C辐照安全性实验中,辐照剂量远高于远UV-C的安全阈值 (23 mJ·cm−2,ACGIH[16]) ,而安全阈值又高于消毒所需剂量,间接证明合理使用远UV-C消毒不会导致皮肤损伤。
-
UV辐射会诱发光性角膜炎、翼状胬肉等眼部疾病[35],但目前实验表明远UV-C对眼睛的影响有限。其原理在于远UV-C会被角膜上皮强烈吸收,而角膜上皮细胞会不断地自我脱落,由底层细胞分化补充。KAIDZU等[36-37]通过动物实验评估,发现远UV-C在207 nm和222 nm引发角膜炎的安全阈值分别超过10 000 mJ·cm−2和3 500 mJ·cm−2,远高于目前ACGIH的远UV-C安全阈值。KAIDZU等[36-37]还进行了角膜组织学染色评估 (图3) ,使用CPDs作为DNA损伤的标记,在222 nm远UV-C辐照下,仅在大鼠角膜上皮最外层细胞中观察到CPDs。而这些细胞在几天内就会正常脱落,数据也表明12小时后角膜上皮最外层细胞检测不到CPDs。作为对照,在254 nm UV辐照下,CPDs在角膜各层 (包括角膜内皮) 均被发现,且12小时后角膜上皮中仍检测到CPDs。这表明222 nm波长的UV-C几乎不能穿透角膜上皮,而254 nm则能够穿透上皮细胞和基质层。此外,实验中同样使用222 nm远UV-C辐照小鼠、猪和兔子眼部,同样只有在角膜上皮最外层检测到CPDs,且角膜上皮会正常脱落[37]。与皮肤辐照实验类似,眼部辐照实验中远UV-C剂量远高于安全阈值,间接证明了远UV-C安全消毒剂量下不会对角膜产生危害。
-
1) 远UV-C的辐照安全性。尽管近年来已有很多研究表明远高于消毒所需剂量的远UV-C辐照对皮肤和眼睛不会造成伤害[23-33,36-37],满足人机共存原位消毒的安全性要求。但目前结论均源自各国科研人员分散的研究成果,而并非相关部门/组织给出的结论。国际紫外线协会 (IUVA) 发布远UV-C消毒的白皮书,其中提出远UV-C辐照安全性的结论仅为作者观点,并非IUVA的观点[38]。
辐照安全性关乎人类健康,需要在大量、长期的研究数据基础上,谨慎做出结论。因此,目前远UV-C消毒的应用 (特别是直接长期皮肤和眼睛暴露) 仍需谨慎,不应直接宣传其对人体辐照没有伤害,以防误导使用者。可在现有的实验证据基础上,逐步提高远UV-C安全使用的剂量阈值。目前已有最新研究呼吁将远UV-C (222 nm) 暴露安全阈值从23 mJ·cm−2提升至161 mJ·cm−2 (眼部) 和479 mJ·cm−2 (皮肤) [16,39],ACGIH也已多次讨论了远UV-C安全剂量阈值的提高。在实际消毒时,应基于安全剂量阈值,以及该阈值已远高于消毒所需剂量的研究结果,优化设计消毒装置,实现病原微生物原位有效灭活,同时避免皮肤和眼睛的高剂量辐照。
2) 应用过程中会生成少量臭氧及其控制。伴生臭氧导致的二次污染关系到远UV-C应用的安全性。臭氧会影响呼吸、心血管和中枢神经系统,很多负责公众健康的政府部门和非政府组织规定了气相臭氧的暴露限值,如世界卫生组织 (WHO) 规定8小时平均暴露臭氧浓度为0.1 mg·L−1[40],国标《室内空气中臭氧卫生标准》 (GB/T 18202-2000) 规定1h平均最高容许臭氧浓度为0.05 mg·L−1。与常见的真空UV低压汞灯 (即产臭氧低压汞灯) 类似,远UV-C光源辐照氧分子会生成臭氧,臭氧生成速率大于臭氧被UV分解的速率,使空气中臭氧浓度逐渐上升。但氧分子对远UV-C的吸收远低于真空UV (如氙气准分子灯和产臭氧低压汞灯) ,其臭氧生成量也较低;此外部分远UV-C光源会电晕放电产生臭氧,但只有远UV-装置功率较高 (2-10 kV) 时臭氧产生才会较为明显。因此,远UV-C在较小的封闭空间使用时,应注意与通风系统或臭氧淬灭系统 (如还原性物质及活性炭) 联合,将臭氧浓度维持在安全标准以下。此外,部分远UV-C光源采用滤光片,尽量滤除短波段 (低于222 nm) UV,降低臭氧生成。
目前市场上生产的远UV-C光源几何结构、输出功率不同,光源也存在使用时长和应用空间的差异,远UV-C光源的臭氧风险难以准确评估。因此,在设计合适的臭氧控制措施的同时,还需考虑远UV-C光源臭氧风险的监测与评估方法,为标准化应用提供依据。
3) 应用场景问题。远UV-C可在对人体皮肤和眼睛暴露相对安全的情况下,灭活空气中和物体表面的病原微生物,在不同介质 (特别是空气) 消毒中均具有宽广的应用领域和巨大的发展潜力。目前,国内外多个公司开发了可应用于不同领域的远UV-C消毒设施,如高风险人员密集空间和封闭空间内空气消毒的壁挂式和下射式灯具,物体表面、紧凑空间、贵重仪器等消毒的手持式灯具和消毒门等。此外,随着未来更多类型的远UV-C光源出现,其将对阻断高传染性疾病的传播起到重要作用。
远C波段紫外线消毒的原理及应用前景
Principles and application perspective of far UV-C disinfection
-
摘要: 紫外线 (UV) 是一种高效、绿色的消毒技术,广泛应用于气、水和物体表面的病原微生物灭活。远C波段UV (远UV-C,200~230 nm) 消毒所需剂量辐照对人体的伤害尚未被发现,表明远UV-C具备人机共存原位消毒的潜力,因此该技术近期受到关注。概述了远UV-C光源、灭活机制和辐照安全性方面的研究进展:输出主峰位和半峰宽分别为222 nm和4 nm的KrCl准分子灯是最为成熟的消毒用远UV-C光源;远UV-C通过蛋白质损伤和核酸干扰2种途径实现病原微生物灭活,灭活能力较传统UV-C (如254 nm) 更强;尚未发现消毒所需剂量的远UV-C辐照导致的健康危害,如红斑和角膜炎。而在实际应用中,应谨慎对待高剂量远UV-C辐照暴露,确保在现有实验证据基础上,逐步提高远UV-C安全使用的剂量阈值,并考虑与通风系统或臭氧淬灭系统协同使用以避免伴生臭氧造成的二次伤害。本文旨在为远UV-C在高效灭活病原微生物、阻断高传染性疾病传播领域的应用提供参考。Abstract: Ultraviolet (UV), as an efficient and green disinfection technology, has been widely applied to inactivate the pathogens in air, water, and surface. Recently, far UV-C radiation (200-230 nm) has drawn great attention, as it is harmless to human within the normal dose range for disinfection, which has great potential to conduct in situ disinfection with human presence.An overview on far UV-C light sources, inactivation mechanisms, and human health and safety to far UV-C exposure was provided in this article. It was found that krypton-chloride (KrCl) excimer lamps with a main peak at 222 nm and half-peak width at 4 nm were the most mature far UV-C light sources for disinfection, far UV-C inactivated pathogenic microorganisms through protein damage and nucleic acid interfere,and the inactivation ability of far UV-C was stronger than that of traditional UV-C (such as 254 nm). No adverse health effects such as erythema and photokeratitis had been reported for far UV-C irradiation within the dose range required by regular disinfection. However, high dose of far UV-C radiation should still be used with caution in practical applications, where the maximum safe dose should be determined based on experimental evidence and increased gradually. Meanwhile, the use of far-UV-C in collaboration with ventilation system or ozone quenching system should be considered to avoid secondary damage caused by associated ozone. Overall, this article will provide reference for efficient and secure application of far UV-C in disinfection and control of highly infectious epidemics.
-
Key words:
- far UV-C /
- krypton-chloride excimer lamps /
- disinfection /
- secutiry /
- human-machine coexistence
-
近年来,集中收集-卫生填埋已成为我国城市生活垃圾的主要处理处置方式[1]。然而,垃圾填埋会产生大量高氨氮、低C/N的垃圾渗滤液,由于其高浓度的氨氮和复杂的有机物组成将对水体环境和人体健康带来严重影响和危害,因此,对于这类废水的处理已成为研究焦点和难点[2]。
目前,短程硝化反硝化耦合厌氧氨氧化(anaerobic ammonia oxidation, ANAMMOX)工艺已成功应用于多种低碳氮比(C/N)的高氨氮废水处理,如垃圾渗滤液、养殖废水及味精加工废水脱氮[3-6]。与常规硝化-反硝化工艺相比,短程硝化反硝化-ANAMMOX工艺可节省60%的需氧量,且ANAMMOX工艺无须外加碳源,是一种高效低耗、运行成本低廉的废水生物脱氮技术[7-8]。但是,理论上,ANAMMOX细菌将1 mol
NH+4 -N和1.32 molNO−2 -N转化为N2的同时,会生成0.26 mol硝态氮,约占反应总氮的10%(如式(1)所示),造成出水中硝态氮浓度较高,总氮超标[9]。因此,使用短程硝化反硝化-ANAMMOX工艺处理垃圾渗滤液,无法达到我国2008年新修订并实施的《生活垃圾填埋场污染控制标准》[10]中规定的垃圾渗滤液处理厂出水排放标准(NH4+-N≤25 mg·L−1、TN≤40 mg·L−1)。NH+4+1.32NO−2+0.066HCO−3→1.02N2+0.26NO−3+0.66CH2O0.5N1.5+2.03H2O (1) 垃圾填埋场填埋气中含有大量硫化氢气体,垃圾渗滤液中硫化物含量也会随着垃圾填埋时间的增加而增加[11]。以深圳某垃圾填埋场为例,填埋场产气量为35 000 m3·h−1,其中,硫化氢气体浓度为150~300 mg·L−1。近年来,以硫化物(H2S/HS−/S2−)作为电子供体的硫自养反硝化(sulfur-driven autotrophic denitrification, SAD)脱氮技术受到广泛关注,SAD生物脱氮过程无需外加碳源,可以有效去除水中
NO−x -N污染物,同时硫化物被转化为氧化态硫酸盐,且对下游水厂或水环境不会造成不良影响[12-13]。SAD技术已逐步开始应用于低负荷的水体环境修复[14]、生活污水深度处理[15]、水产养殖废水处理[16]和海水冲厕水处理[17]等。目前,对硫自养反硝化的研究比较深入,已具备一定的理论基础[18-20]。因此,利用SAD技术应用于垃圾渗滤液处理,既能解决异养反硝化脱氮中有机碳源(电子供体)不足的问题,又能实现对垃圾填埋气中硫化氢气体无害化处理并回收电子,避免空气污染的同时又节省了填埋气脱硫成本。本研究在实现短程硝化反硝化-ANAMMOX工艺处理垃圾渗滤液稳定运行的基础上,进一步耦合SAD反应器,构建了两级自养脱氮深度处理工艺,并探究了其工艺效能。1. 材料与方法
1.1 实验装置
本研究实验装置和反应器照片见图1,反应器均由有机玻璃制成。短程硝化反硝化反应器(SBR)内径18 cm、有效高度33 cm、有效容积3 L。ANAMMOX反应器为向上流厌氧污泥床反应器(UASB),内径6 cm、有效高度40 cm、有效容积1 L。SAD反应器为向上流厌氧污泥床反应器(UASB),内径6 cm、有效高度80 cm、有效容积2 L。
1.2 进水水质
本研究所用垃圾渗滤液取自深圳市某垃圾填埋场,水质见表1。在SAD反应器启动阶段,进水为人工模拟废水,主要试剂为九水合硫化钠(Na2S·9H2O)、硝酸钾(KNO3)、磷酸二氢钾(KH2PO4)、碳酸氢钠(NaHCO3)、氯化镁(MgCl2),均为分析纯。在SAD反应器运行阶段,进水为ANAMMOX反应器处理垃圾渗滤液的出水。
表 1 垃圾渗滤液水质Table 1. Characteristic of landfill leachatepH COD/(mg·L−1) -N/(mg·L−1)
-N/(mg·L−1)
-N/(mg·L−1)
碱度/(mg·L−1) 8.3~8.8 4 000~5 000 2 300~2 700 <5 <50 10 000~13 000 1.3 反应器运行
短程硝化反硝化反应器接种污泥取自深圳市某垃圾渗滤液处理厂AO工艺曝气池;ANAMMOX反应器污泥为本实验室培养驯化好的污泥;SAD反应器接种污泥取自广州市某生活污水处理厂二次沉淀池。SAD反应器启动阶段,逐步提高反应器进水中硝态氮的负荷,启动过程中运行条件见表2。SAD反应器成功启动后串联至短程硝化反硝化-厌氧氨氧化工艺(见图1),实现对垃圾渗滤液的深度脱氮。3个反应均在室温下运行,短程硝化反硝化反应器以进水-搅拌-沉淀-出水-静置的方式运行,处理垃圾渗滤液的负荷为2 L·d−1;ANAMMOX与SAD反应器均以连续流进水方式运行(外回流比均为3),水力停留时间(hydraulic retention time, HRT)分别为3 h和6 h,垃圾渗滤液(调节后)处理负荷均为8 L·d−1。
表 2 SAD反应器启动过程中运行条件Table 2. Operation conditions during start-up of SAD reactor阶段 运行时间/d HRT/h 进水流量/(L·d−1) 氮负荷/(kg·(m3·d)−1) 硫负荷/(kg·(m3·d)−1) I 0~30 24 2 0.07 0.14 II 31~70 12 4 0.14~0.18 0.28~0.36 III 71~115 5 9.6 0.43~0.56 0.86~1.12 1.4 分析项目与方法
各项指标测定方法均按照已有的方法[21]。采集进出水水样经0.45 μm滤膜过滤后,分别采用纳氏试剂法、N-(1-萘基)乙二胺分光光度法和紫外分光光度法测定样品中的
NH+4 -N、NO−2 -N和NO−3 -N;水中SO2−4 、SO2−3 、S2O2−3 离子浓度采用离子色谱仪(IC-AS23阴离子检测器,DIONEX ICS-900)检测;溶解性硫化物H2S/HS−/S2−采用亚甲基兰分光光度法检测;COD采用哈希DRB200快速消解仪测定;碱度采用五点滴定法;实验过程中,定期取反应器中均匀混合的污泥,测定MLSS、MLVSS;pH、温度采用便携式pH计(FG2-FK,METTLER TOLEDO)进行测定。2. 结果与讨论
2.1 短程硝化反硝化-ANAMMOX工艺构建及其对垃圾渗滤液处理效果
本研究中使用了已经稳定运行的短程硝化反硝化-ANAMMOX反应器,并对其进行了参数优化[22];短程硝化反硝化反应器中参与硝化反应的菌属Nitrosomonas(AOB)得到富集,Nitrospira(NOB)的丰度下降至<0.01%,保证了反应器中高效的亚硝化率[22-23]。如图2(a)所示,通过控制曝气时间(22.7 h)和DO浓度(≤0.5 mg·L−1)实现垃圾渗滤液短程硝化,同时消耗垃圾渗滤液中可生物降解的有机碳,为后续厌氧氨氧化脱氮提供了保障。在进水垃圾渗滤液TN为2 560 mg·L−1时,50%~60%的
NH+4 -N被转化为NO−2 -N,短程硝化反硝化反应器出水NH+4 -N为1 013.6 mg·L−1,NO−2 -N为1 206.3 mg·L−1,NH+4 -N与NO−2 -N的平均浓度比例为1∶1.21,说明短程硝化反硝化反应器中AOB为优势菌属 [22-23]。短程硝化反硝化反应器出水NO−3 -N基本维持稳定,平均浓度为247.8 mg·L−1,反硝化脱氮92.2 mg·L−1。短程硝化反硝化反应器出水符合厌氧氨氧化反应对NH+4 -N与NO−2 -N比例的要求[24]。本研究通过人工配水培养驯化的ANAMMOX颗粒污泥呈橙红色,平均粒径为762 μm(如图1所示)。由图2(b)可知,厌氧氨氧化反应器进水中NH+4 -N与NO−2 -N平均浓度分别为259.2 mg·L−1和275.1 mg·L−1,进水总氮为500~600 mg·L−1;通过厌氧氨氧化反应,NH+4 -N与NO−2 -N的去除率为91.6%和94.9%,ANAMMOX反应器出水NH+4 -N和NO−2 -N平均浓度分别21.9 mg·L−1和14.0 mg·L−1。短程硝化反硝化-ANAMMOX系统TN的平均去除率为93.1%,出水TN=176.3 mg·L−1。但是,由于厌氧氨氧化反应本身会将约10%的进水TN生成NO−3 -N,使得ANAMMOX出水TN>170 mg·L−1。其中,NO−x -N=154.5 mg·L−1,造成短程硝化反硝化-ANAMMOX工艺处理垃圾渗滤液出水未能达到国家规定的排放标准(GB 16889-2008)(TN≤40 mg·L−1)。因此,本研究采用硫化物作为电子供体,通过SAD脱氮技术,对短程硝化反硝化-ANAMMOX工艺出水进行深度脱氮。2.2 硫自养反硝化反应器启动与脱氮效果
本研究采用人工配水启动SAD反应器,通过逐步提高SAD反应器进水中
NO−3 -N的负荷,使反应器内微生物能适应高负荷的含氮废水。为了探究SAD反应器的脱氮能力,启动期间,将进水pH控制在7.6~7.8之间,实验启动过程根据HRT的不同分为为3个阶段(表2)。阶段I(0~30 d)是污泥筛选的重要阶段,如图3所示,通过提高进水硫化物浓度,氮去除率达99%。该阶段使反应器中异养菌减少,硫自养菌进一步富集。在阶段II(31~70 d)中,将HRT缩短至12 h,当SAD反应器氮去除率稳定在90%以上时,将进水NO−3 -N浓度由70 mg·L−1逐步提升至90 mg·L−1,避免了高浓度NO−3 -N对反应器的冲击,反应器进水氮负荷由0.14 kg·(m3·d)−1提升至0.18 kg·(m3·d)−1。在第71天,将进水NO−3 -N浓度提升到100 mg·L−1,并且HRT由12 h缩短至5 h,氮负荷提升至0.43 kg·(m3·d)−1,出水中NO−3 -N和NO−2 -N平均浓度分别保持在1.5 mg·L−1和4.2 mg·L−1,TN去除率保持在94%左右。在100~115 d内,进水NO−3 -N浓度由100 mg·L−1提升至130 mg·L−1, 反硝化率略有降低。研究中发现,SAD反应器经过115 d的启动和运行,当HRT为5 h、进水NO−3 -N浓度为100 mg·L−1、S/N质量比率为2时,氮去除率为94%;同时,SAD反应器中出水中的硫代硫酸盐和硫化物浓度均在0.1 mg·L−1以下,出水硫酸盐浓度会随着不同阶段进水硫化物浓度的改变而变化,其中约64.2%的硫化物转化为硫酸盐(部分生成硫单质),硫化物去除率为100%。2.3 短程硝化反硝化-ANAMMOX-SAD耦合工艺实现垃圾渗滤液深度脱氮
将短程硝化反硝化-ANAMMOX与SAD反应器进行耦合,形成短程硝化反硝化-ANAMMOX-SAD两级自养深度脱氮反应系统(图1),其脱氮效果如图4所示。SAD反应器通过调节池调节ANAMMOX出水pH为7.6~7.8,利用ANAMMOX反应器出水提供的
NO−3 -N与NO−2 -N作为电子受体、投加的硫化物作为电子供体进行硫自养反硝化反应。根据启动期间SAD反应器的氮去除负荷,设置HRT为6 h,设置S/N质量比率为2。由图4(a)、图4(d)、图4(g)可知,通过控制短程硝化反硝化反应器的曝气时间和DO浓度,使进水中50%~60%的NH+4 -N被转化为NO−2 -N,NH+4 -N与NO−2 -N的浓度比例为(1∶1)~(1∶1.4)。由图4(c)、图4(f)、图4(i)可知,在进水NH+4 -N、NO−2 -N、NO−3 -N平均浓度分别为4.2、3.6、88.5 mg·L−1时,SAD反应器出水NO−3 -N平均浓度为9.7 mg·L−1,NO−3 -N平均去除率为89.3%,出水NO−2 -N平均浓度为0.6 mg·L−1。短程硝化反硝化-ANAMMOX耦合SAD反应器在连续64 d处理垃圾渗滤液的过程中,SAD反应器稳定运行,出水水质稳定。由图4(b)、图4(e)、图4(h)可知,ANAMMOX反应器运行过程中,进水NO−3 -N平均浓度为97.8 mg·L−1,出水NO−3 -N增加为140.5 mg·L−1。ANAMMOX进出水NH+4 -N、NO−2 -N浓度会有些许波动,主要是由于短程硝化反硝化反应器溶解氧浓度波动导致,溶解氧会促进亚硝化细菌(NOB)的生长,导致厌氧氨氧化反应底物的不足(NO−2 -N不足),从而影响脱氮效率[25]。本研究采用了短程硝化反硝化-厌氧氨氧化(ANAMMOX)-硫自养反硝化(SAD)工艺,通过两级自养反硝化实现了垃圾渗滤液深度脱氮。将启动成功的SAD反应器与短程硝化反硝化-ANAMMOX反应器串联,通过基于硫化物的自养反硝化去除了ANAMMOX产生的
NO−x -N,提高了整体工艺的总氮去除率,出水水质达到《生活垃圾填埋场污染控制标准》氮排放标准(TN≤40 mg·L−1)。在目前处理垃圾渗滤液脱氮的同类研究中,普遍难以实现垃圾渗滤液的深度脱氮[26-27],而本研究在无需投加高成本碳源的情况下,实现了垃圾渗滤液的高效、深度脱氮处理。3. 结论
1)短程硝化反硝化-ANAMMOX工艺处理垃圾渗滤液脱氮效果较好,总氮去除负荷可达1.19 kg·(m3·d)−1,总氮去除率可达93.1%。但工艺出水中
NO−3 -N浓度为140.5 mg·L−1(TN=176.3 mg·L−1),无法达到(GB 16889-2008)中规定的垃圾渗滤液处理厂出水排放标准。2)SAD反应器成功启动,反应器进水氮负荷为0.43 kg·(m3·d)−1,氮去除率为94%,硫化物去除率为100%,实现了反应器中硫自养反硝化菌的富集。
3)短程硝化反硝化-ANAMMOX-SAD工艺出水TN均值<12 mg·L−1、TN去除率达到99.5%、总氮去除负荷达到0.85 kg·(m3·d)−1,实现了处理垃圾渗滤液的深度脱氮。同时,垃圾填埋场中的硫化氢气体以回收与再循环的方式为本工艺提供硫源,这为硫化氢气体的去除提供了新思路。
-
表 1 远UV-C (222 nm) 和灭活UV-C (254 nm) 对致病微生物和受试微生物的剂量响应关系
Table 1. Dose-response data of pathogenic and challenge microorganisms radiated by far UV-C (222 nm) and UVGI (254 nm)
病毒种类 波长/nm 达到相应灭活率所需UV剂量/(mJ·cm−2) 灭活速率常数/ (cm2·mJ−1) 文献 1-lg 2-lg 3-lg 4-lg SARS-CoV-2 222a) (含滤光片) 1.6 3.1 4.7 6.3 0.64 [9] SARS-CoV-2 222 (含滤光片) 0.7 1.4 2.1 2.8 1.42 [8] SARS-CoV-2 222 0.7 1.3 2.0 2.6 1.52 [8] SARS-CoV-2 254b) 1.3 2.5 3.8 5.1 0.79 [8] SARS-CoV-2 254 1.7 4.2 5.1 6.8 0.59 [10] MHV 222 (含滤光片) 1.0 1.9 2.9 3.9 1.03 [11] MHV 222 0.8 1.6 2.5 3.3 1.22 [11] MHV 254 1.1 2.2 3.2 4.3 0.93 [11] HCoV 229E 222 (含滤光片) 1.2 2.4 3.6 4.8 0.84 [11] HCoV 229E 222 0.8 1.5 2.3 3.0 1.33 [11] HCoV 229E 254 1.7 3.4 5.1 6.8 0.59 [11] Phi 6 222 (含滤光片) 2.8 5.6 8.3 11.1 0.36 [11] Phi 6 222 3.7 7.4 11.1 14.8 0.27 [11] Phi 6 254 33.3 66.6 100.0 133.3 0.03 [11] T1UV 222c) 2.7 5.5 8.2 11.0 0.37 [12] T1UV 254c) 4.3 8.5 12.8 17.0 0.23 [12] MS2 222c) 8.9 17.7 26.6 35.5 0.11 [12] MS2 254c) 16.0 33.6 53.4 77.6 0.05 [12] 注:a) 222 nm如没有特殊标注均为KrCl准分子灯;b) 254 nm如没有特殊标注均为低压汞灯;c) NT242系列可调谐激光器 (NIST)。 -
[1] SOSNIN E A, OPPENLÄNDE R T, TARASENKO V F. Applications of capacitive and barrier discharge excilamps in photoscience[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2006, 7(4): 145-163. doi: 10.1016/j.jphotochemrev.2006.12.002 [2] KNEISSL M, RASS J. III-Nitride ultraviolet emitters [M]. Springer, 2016. [3] United States Environmental Protection Agency. Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule [S]. Washington, DC, 2006. [4] BOLTON J R, COTTON C A. The ultraviolet disinfection handbook [M]. American Water Works Association, 2011. [5] BECK S E, HULL N M, POEPPING C, et al. Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum[J]. Environmental Science & Technology, 2018, 52(1): 223-229. [6] BECK S E, RODRIGUEZ R A, LINDEN K G, et al. Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR[J]. Environmental Science & Technology, 2014, 48(1): 591-598. [7] LINDEN K G, THURSTON J, SCHAEFER R, et al. Enhanced UV inactivation of adenoviruses under polychromatic UV lamps[J]. Applied and Environmental Microbiology, 2007, 73(23): 7571-7574. doi: 10.1128/AEM.01587-07 [8] MA B, GUNDY P M, GERBA C P, et al. UV inactivation of SARS-CoV-2 across the UVC spectrum: KrCl* excimer, mercury-vapor, and light-emitting-diode (LED) sources[J]. Applied and Environmental Microbiology, 2021, 87(22): e01532-21. [9] ROBINSON R T, MAHFOOZ N, ROSAS-MEJIA O, et al. SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp [J]. MedRxiv, 2021. [10] STORM N, MCKAY L G, DOWNS S N, et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation[J]. Scientific Reports, 2020, 10(1): 1-5. doi: 10.1038/s41598-019-56847-4 [11] MA B, LINDEN Y S, GUNDY P M, et al. Inactivation of coronaviruses and phage Phi6 from irradiation across UVC wavelengths[J]. Environmental Science & Technology Letters, 2021, 8(5): 425-430. [12] BECK S E, WRIGHT H B, HARGY T M, et al. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems[J]. Water Research, 2015, 70: 27-37. doi: 10.1016/j.watres.2014.11.028 [13] TSENG C C, LI C S. Inactivation of viruses on surfaces by ultraviolet germicidal irradiation[J]. Journal of Occupational and Environmental Hygiene, 2007, 4(6): 400-405. doi: 10.1080/15459620701329012 [14] WALKER C M, KO G P. Effect of ultraviolet germicidal irradiation on viral aerosols[J]. Environmental Science & Technology, 2007, 41(15): 5460-5465. [15] KITAGAWA H, NOMURA T, NAZMUL T, et al. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination[J]. American Journal of Infection Control, 2021, 49(3): 299-301. doi: 10.1016/j.ajic.2020.08.022 [16] American Conference of Governmental Industrial Hygienists. 2021 threshold limit values (TLVs) and biological exposure indices (BEIs) [C]. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 2020. [17] International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation)[J]. Health Physics, 2004, 87(2): 171-186. doi: 10.1097/00004032-200408000-00006 [18] SLINEY D. Balancing the risk of eye irritation from UV-C with infection from bioaerosols[J]. Photochemistry and Photobiology, 2013, 89(4): 770-776. doi: 10.1111/php.12093 [19] CESARINI J P, COLE C A, GRUIJL F D. UV-C photocarcinogenesis risks from germicidal lamps[J]. Int Commission Illumination, 2010, 187: 1-14. [20] FORBES P D, COLE C A, DEGRUIJL F. Origins and evolution of photocarcinogenesis action spectra, including germicidal UVC[J]. Photochemistry and Photobiology, 2021, 97(3): 477-484. doi: 10.1111/php.13371 [21] MOAN J, GRIGALAVICIUS M, BATURAITE Z, et al. The relationship between UV exposure and incidence of skin cancer[J]. Photodermatology, Photoimmunology & Photomedicine, 2015, 31(1): 26-35. [22] WOODS J A, EVANS A, FORBES P D, et al. The effect of 222‐nm UVC phototesting on healthy volunteer skin: a pilot study[J]. Photodermatology, Photoimmunology & Photomedicine, 2015, 31(3): 159-166. [23] FUKUI T, NIIKURA T, ODA T, et al. Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans[J]. Plos One, 2020, 15(8): e0235948. doi: 10.1371/journal.pone.0235948 [24] PONNAIYA B, BUONANNO M, WELCH D, et al. Far-UVC light prevents MRSA infection of superficial wounds in vivo[J]. Plos One, 2018, 13(2): e0192053. doi: 10.1371/journal.pone.0192053 [25] GOH J C, FISHER D, HING E C H, et al. Disinfection capabilities of a 222 nm wavelength ultraviolet lighting device: a pilot study[J]. Journal of Wound Care, 2021, 30(2): 96-104. doi: 10.12968/jowc.2021.30.2.96 [26] BUONANNO M, PONNAIYA B, WELCH D, et al. Germicidal efficacy and mammalian skin safety of 222-nm UV light[J]. Radiation Research, 2017, 187(4): 493-501. doi: 10.1667/RR0010CC.1 [27] BUONANNO M, STANISLAUSKAS M, PONNAIYA B, et al. 207-nm UV light-A promising tool for safe low-cost reduction of surgical site infections. II: In-vivo safety studies[J]. Plos One, 2016, 11(6): e0138418. doi: 10.1371/journal.pone.0138418 [28] CADET J. Harmless effects of sterilizing 222‐nm far‐UV radiation on mouse skin and eye tissues[J]. Photochemistry and Photobiology, 2020, 96(4): 949-950. doi: 10.1111/php.13294 [29] BARNARD I R M, EADIE E, WOOD K. Further evidence that far-UVC for disinfection is unlikely to cause erythema or pre-mutagenic DNA lesions in skin[J]. Photodermatology, Photoimmunology & Photomedicine, 2020, 36(6): 476-477. [30] HANAMURA N, OHASHI H, MORIMOTO Y, et al. Viability evaluation of layered cell sheets after ultraviolet light irradiation of 222 nm[J]. Regenerative Therapy, 2020, 14: 344-351. doi: 10.1016/j.reth.2020.04.002 [31] YAMANO N, KUNISADA M, KAIDZU S, et al. Long‐term effects of 222‐nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation[J]. Photochemistry and Photobiology, 2020, 96(4): 853-862. doi: 10.1111/php.13269 [32] HICKERSON R P, CONNEELY M P, TSUTSUMI S K H, et al. Minimal, superficial DNA damage in human skin from filtered far-ultraviolet C[J]. British Journal of Dermatology, 2021, 184(6): 1197-1199. doi: 10.1111/bjd.19816 [33] BUONANNO M, WELCH D, BRENNER D J. Exposure of human skin models to KrCl excimer lamps: The impact of optical filtering[J]. Photochemistry and Photobiology, 2021, 97(3): 517-523. doi: 10.1111/php.13383 [34] YOUNG A R, HARRISON G I, CHADWICK C A, et al. The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema[J]. Journal of Investigative Dermatology, 1998, 111(6): 982-988. doi: 10.1046/j.1523-1747.1998.00436.x [35] DELIC N C, LYONS J G, GIROLAMO N D, et al. Damaging effects of ultraviolet radiation on the cornea[J]. Photochemistry and Photobiology, 2017, 93(4): 920-929. doi: 10.1111/php.12686 [36] KAIDZU S, SUGIHARA K, SASAKI M, et al. Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague–Dawley rats[J]. Free Radical Research, 2019, 53(6): 611-617. doi: 10.1080/10715762.2019.1603378 [37] KAIDZU S, SUGIHARA K, SASAKI M, et al. Re‐evaluation of rat corneal damage by short‐wavelength UV revealed extremely less hazardous property of Far‐UV‐C[J]. Photochemistry and Photobiology, 2021, 97(3): 505. doi: 10.1111/php.13419 [38] BLATCHLEY E R, BRENNER D, CLAUS H, et al. Far UV-C radiation: current state-of knowledge. IUVA White Paper. (2021-5-11). [39] SLINEY D H, STUCK B E. A need to revise human exposure limits for ultraviolet UV-C radiation[J]. Photochemistry and Photobiology, 2021, 97(3): 485-492. doi: 10.1111/php.13402 [40] World Health Organization. Ambient air pollution: A global assessment of exposure and burden of disease [R]. 2016. -