紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪的研制及其在污染场地异味分析中的应用

郭烨东, 于彰淇, 姜葵, 王海杰, 杨波, 束继年, 李震. 紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪的研制及其在污染场地异味分析中的应用[J]. 环境工程学报, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193
引用本文: 郭烨东, 于彰淇, 姜葵, 王海杰, 杨波, 束继年, 李震. 紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪的研制及其在污染场地异味分析中的应用[J]. 环境工程学报, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193
GUO Yedong, YU Zhangqi, JIANG Kui, WANG Haijie, YANG Bo, SHU Jinian, LI Zhen. Development of a compact and highly sensitive vacuum ultraviolet single-photon-ionization time-of-flight mass spectrometer and its application in odorous analysis of a contaminated site[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193
Citation: GUO Yedong, YU Zhangqi, JIANG Kui, WANG Haijie, YANG Bo, SHU Jinian, LI Zhen. Development of a compact and highly sensitive vacuum ultraviolet single-photon-ionization time-of-flight mass spectrometer and its application in odorous analysis of a contaminated site[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193

紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪的研制及其在污染场地异味分析中的应用

    作者简介: 郭烨东(1993—),男,硕士研究生,guoyedong18@mails.ucas.ac.cn
    通讯作者: 杨波(1983—),女,博士,副研究员,boyang@ucas.ac.cn
  • 基金项目:
    国家重点研发计划(2019YFC1806105);国家自然科学基金资助项目(22076184和21777170);中国科学院科研仪器装备研制项目(YJKYYQ20180072);中国科学院大学优秀教师科研能力提升项目(Y954021)
  • 中图分类号: X851

Development of a compact and highly sensitive vacuum ultraviolet single-photon-ionization time-of-flight mass spectrometer and its application in odorous analysis of a contaminated site

    Corresponding author: YANG Bo, boyang@ucas.ac.cn
  • 摘要: 真空紫外单光子电离质谱仪(SPI-MS)在挥发性有机物(VOCs)在线监测方面具有独特优势,然而目前常用的SPI-MS灵敏度普遍较低,限制了SPI-MS在环境监测领域的广泛应用。为了有效提高SPI-MS的检测灵敏度,达到实时在线监测环境中痕量VOCs的目的,采用自制的高通量真空紫外灯,结合低气压光电离技术和飞行时间质谱技术,研制了1台紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪(SPI-TOFMS),并使用SPI-TOFMS和吹扫捕集气相色谱质谱(P&T GC-MS)标准方法对农药污染场地释放的异味气体进行了检测分析。结果表明:在10 s的检测时间内,该仪器对气态苯具有极高的检测灵敏度,检测限(以体积分数计)低至0.09×10−12,检测准确度为95%~109%,精确度的标准偏差小于8%;在农药场地异味气体分析中,SPI-TOFMS不仅在极短的检测时间内(10 s)检测到甲硫醇、二甲基硫和二甲基二硫等典型异味物质,还检测到更多未被P&T GC-MS标准方法检测到的异味物质,如吡咯烷、吡啶、乙基丙胺、苯胺、邻苯二胺和硝基苯等;SPI-TOFMS与P&T GC-MS 2种方法对异味样品主要成分(二甲基二硫)的定量分析结果具有良好的一致性。本研究研制的紧凑型SPI-TOFMS与同类型仪器相比,检测灵敏度有了大幅提高,可为实验室模拟研究及外场环境中痕量VOCs的实时在线监测提供一种高效的技术方法。
  • 钴白合金是铜钴矿深加工过程中的副产物,由于钴的存在,使得该合金具有良好的硬度及耐热性[1]。钴白合金的成分基本为钴、铜、铁,其他元素的含量极低[2]。我国可利用的钴矿石资源较少,大部分钴矿石依赖进口[3]。世界上最主要的钴资源是刚果(金)和赞比亚的铜钴矿,一般含钴品位为0.1%~0.5%,高品味的可达到2%~3%。但是,其副产物钴白合金中钴的含量可达10%左右;此外,在钴白合金中,还含有大量的铜、铁等元素,使其具有较高的回收价值[1-5]

    目前,钴白合金的回收处理工艺主要有火法、湿法和微生物浸出等[6]。火法处理的常规工艺为造渣熔炼-浸出工艺[7]。该工艺先通过向钴白合金中掺入碳酸钙等配料,之后再在高温下焙烧,以实现钴、铜与其他杂质金属的分离,最终通过硫酸酸浸得到钴和铜的浸出液。但是,火法处理的能耗较高,操作也相对复杂,而且对有价金属的回收不彻底[8-9]。湿法处理主要有常压氧化酸浸法[10]、加压氧化酸浸法[11]、机械活化-酸浸法[12]、电化学溶解法[13]。相比于火法处理,湿法处理能耗低,但是对于处理设备的要求较高,同时也会产生一定的环境污染。有研究结果表明,使用微生物浸出钴白合金可实现钴、铜的高效回收[14]。胡国宏等[15]使用A.f菌(氧化亚铁硫杆菌)进行钴白合金的浸出,钴和铜的浸出率分别可以达到了99.5%和99.0%,而且浸出率高、成本低。

    本研究通过消解分析钴白合金中各种金属的含量,初步估计其资源化利用的价值;并通过梯度实验探究接触浸出和非接触浸出的最佳固液比,以选出最佳工艺的最佳处理条件;最终,通过接触浸出和非接触浸出实验结果的对比分析,探究这2种方法对钴白合金中钴和铜的浸出机理。

    供试钴白合金来源于河南某有色冶炼厂。盐酸(HCl)、硝酸(HNO3)、高氯酸 (HClO4)、氢氟酸(HF)、硫磺(S)、黄铁矿(FeS2)、硫酸铵((NH4)2SO4)、磷酸二氢钾 (KH2PO4)、无水氯化钙 (CaCl2)、七水合硫酸镁(MgSO4·7H2O)、醋酸(HOAc)、盐酸羟胺(NH2OH·HCl)、双氧水(H2O2)、醋酸铵(NH4OAc)均为分析纯。

    电感耦合等离子发射光谱仪(OPTIMA 8300,珀金埃尔默股份有限公司)用于测定溶液中金属元素的浓度;X射线衍射仪(VG MK II,英国VG公司)用于分析固体样品的晶体结构;扫描电子显微镜SEM(Quanta FEG 250,美国FEI公司)用于观察固体样品的微观形貌;电热恒温鼓风干燥箱(DHP-9032,上海一恒科学仪器有限公司);pH计(DELTA320,梅特勒-托利多仪器有限公司);恒温水浴振荡器(THZ-82,金坛市荣华仪器制造有限公司)用于培养混合菌液。

    将钴白合金置于电热恒温鼓风干燥箱中105 ℃烘干至恒重,粉碎研磨,过100目筛筛分后备用。钴白合金的金属含量测定采用三酸消解法[1, 16],目标金属的赋存形态采用BCR连续萃取法[17-19]

    取若干容积为250 mL的锥形瓶,先分别加入85 mL无机盐培养基[20-23](2.0 g·L−1 (NH4)2SO4、1.0 g·L−1 KH2PO4、0.25 g·L−1 CaCl2、0.5 g·L−1 MgSO4·7H2O)、0.8 g硫磺、0.8 g黄铁矿;之后,接入At、Af、Lf菌液[24-25]各5 mL;透气膜封口后,置于恒温水浴振荡器中,在35 ℃条件下,以135 r·min−1振荡,培养至体系pH下降至0.8,便可用于生物淋滤实验。

    将培养稳定的菌液高速离心后,使菌体和生物酸分离。向pH为0.8的生物酸中直接加入钴白合金样品,并置于恒温水浴振荡器中,在35 ℃、135 r·min−1的条件下反应24 h,此为非接触淋滤实验[26-28]。该浸出过程无细菌参与。设定淋滤的固液比(g∶mL)为1∶100、2∶100、3∶100、4∶100、5∶100、6∶100,每个梯度做3个平行实验。反应结束后,测定上清液中目标金属浓度。

    按照上述最优淋滤效果对应的固液比,做非接触循环富集实验。浸出完成后,通过抽滤实现固液分离;向上清液中加入之前分离出的菌体,密封;之后,于恒温水浴震荡器中,培养条为35 ℃、135 r·min−1,培养至体系pH下降至0.8;再进行非接触淋滤实验。如此循环淋滤10次,之后测定每次淋滤后上清液中的目标金属浓度。

    向pH已达到0.8的菌液中直接加入钴白合金,置于恒温水浴震荡器中,在35 ℃、135 r·min−1条件下培养,隔天取样测钴、铜的浸出浓度,此为接触淋滤[26-28]。在该过程中,生物酸和细菌同时参与浸出。设定淋滤的固液比(g∶mL)为1∶100、2∶100、3∶100、4∶100。每个梯度做3个平行实验。在反应的第1、3、5、7、9 d取上清液测定目标金属浓度。

    钴白合金样品中的金属种类及含量如表1中所示。其中,钴百合金中含铜量为10.81%、钴为13.66%、铁为20.53%,即有一定的回收价值。但该样品中铁含量过高,在浸出过程中会产生铁钒沉淀,会影响铜、钴的浸出效果。因此,为设计出更加合理的浸出工艺参数,使用BCR连续萃取技术处理钴白合金,以分析其中钴、铜、铁的金属赋存形态[18],所得结果如图1所示。如图1所示,钴白合金中的钴、铜、铁均不存在硫化物及有机结合态。其中,钴的存在形态为酸溶态(46.27%)和氧化物结合态(53.73%);铜的存在形态为酸溶态(7.86%)、氧化物结合态(78.84%)、残渣态(13.3%);铁的存在形态全部为酸溶态。通过BCR实验结果可知,在生物淋滤过程中,样品中的钴通过生物酸中氢离子的作用,基本上可以被完全浸出;铜的浸出除了生物酸的作用外,还需要一定的氧化反应,并可通过菌体的接触实现残渣态铜的浸出。

    表 1  钴白合金中的金属元素种类及含量
    Table 1.  Types and contents of metal elements in cobalt white alloy %
    CuCoFeNiMnZnAs
    10.8113.6020.530.370.370.080.01
     | Show Table
    DownLoad: CSV
    图 1  钴白合金中铜、钴、铁的赋存形态分析
    Figure 1.  Chemical morphology of Cu, Co and Fe of cobalt white alloy

    钴白合金样品的XRD谱图如图2所示。从图中可以看出,钴白合金在43°和45°有2个非常明显的峰值。通过与标准图谱卡片PDF#50-0795和PDF#85-1326[29]对比可知,钴白合金中所含的晶体成分主要为钴铁的合金态Co7Fe3和单质铜Cu。

    图 2  钴白合金的XRD图谱
    Figure 2.  XRD patterns of cobalt white alloy

    通过SEM能够直接观察钴白合金的形貌特征、颗粒尺寸,由图3可知,钴白合金的形状均为不规则的球体和长方体,粒度较小,分布均匀[30]

    图 3  钴白合金的SEM图
    Figure 3.  SEM micrographs of cobalt white alloy

    采用At、Af、Lf这3种菌株的混合培养体系,在35 ℃下连续培养,菌体数量在培养至11 d时增长至3.42×108 个·mL−1,菌液的pH从2.0降至0.8(图4)。这是因为,At菌将能源底物中的硫磺转化成了硫酸和供自身生长所需的能量[31]。直接向该菌液中加入钴白合金为接触浸出,该过程具有生物酸和菌体的共同作用;将菌液中的菌体通过高速离心去除,留下pH为0.8的生物酸浸出钴白合金为非接触浸出,该过程无菌体作用。

    图 4  细菌生长过程中体系的pH、菌数变化
    Figure 4.  Changes in pH and bacterial count of the system during bacterial growth

    图5中可以看出,随着培养时间的延长,菌液中的Fe3+质量浓度不断升高,Fe2+质量浓度极少。这是因为,Af、Lf氧化分解黄铁矿获取能量生长的过程中,伴随着氧化生成了Fe3+;同时,黄铁矿中分解出的硫被At菌转化成硫酸而进入体系中[32-34]

    图 5  细菌生长过程中体系的Fe3+、Fe2+浓度变化
    Figure 5.  Changes of Fe3+ and Fe2+ concentration in the system during bacterial growth

    经非接触浸出1 d后,测得不同固液比下目标金属铜和钴的浸出率如图6所示。随着固液比的升高,钴和铜的浸出率均逐渐下降。从非接触浸出钴白合金的实验中可以看出,最优固液比为1%,在pH为0.8的生物酸下,钴白合金中的酸溶态和氧化物结合态的钴能够100%浸出,其浸出液质量浓度为1 356.14 mg·L−1;而铜的浸出率为77.42%,浸出液质量浓度为837.19 mg·L−1

    图 6  不同固液比下非接触浸出钴白合金中钴铜的浸出率
    Figure 6.  Target metal leaching rate of non-contact bioleaching of cobalt white alloy at different solid-liquid ratios

    将1%固液比下的浸出渣多次水洗后,分析浸出渣中铜、钴、铁的赋存形态。由图7可以看出,浸出渣中未检测出钴;残留的铜中含有48.84%的氧化物结合态和51.15%的残渣态;铁被浸出后,又生成了铁钒沉淀进入了残渣态。因此,在浸出过程中,可先将样品中的钴优先浸出到溶液中;将铜留存在渣相中,富集后再次浸出,以实现钴白合金浸出过程中的铜、钴分离。

    图 7  固液比1%下钴白合金浸出渣中铜、钴、铁的赋存形态分析
    Figure 7.  Chemical morphology of Cu, Co and Fe of cobalt white alloy leaching slag under 1% solid-to-liquid ratio

    固液比1%下非接触循环第1次到第10次溶液中,铜和钴的质量浓度如图8所示。由图8可知,在循环的过程中,溶液中铜和钴的质量浓度基本呈倍数上升;而且,在实验过程中可以观察到,溶液的颜色有着明显的加深。循环到第10次时,溶液中钴的质量浓度可达12 877.25 mg·L−1,铜的质量浓度可达7 358.67 mg·L−1

    图 8  固液比1%下非接触不同循环次数下钴白合金中钴铜的浸出浓度
    Figure 8.  Concentration of cobalt white alloy target metal leaching with the number of cycles under 1% solid-to-liquid Ratio

    不同固液比下,接触浸出钴白合金中钴和铜的浸出率如图9所示。从不同固液比的接触浸出实验中可以看出,钴白合金中钴的浸出效果要明显优于铜的浸出效果。在接触浸出1 d,随着固液比的升高,铜和钴的浸出率逐渐下降。但浸出7 d,在固液比3%下的接触浸出过程中,钴白合金中的钴和铜依然能够完全浸出。

    图 9  不同固液比下接触浸出钴白合金中钴和铜的浸出率
    Figure 9.  Co and Cu leaching rate of contact bioleaching of cobalt white alloy at different solid-liquid ratios

    在非接触浸出实验中,在固液比1%下,仅生物酸作用,浸出反应1 d,钴100%浸出,铜浸出77.42%。这一结果与接触浸出实验中,在生物酸和细菌的双重作用下,浸出反应1 d的浸出效果基本一直。由于钴白合金的加入,抑制了菌体的生长,菌体数量降至2.41×108个·mL−1。但随着浸出时间的延长,菌体逐渐适应了周围的浸出环境,菌体逐渐生长,在浸出5 d时生长到了3.26×108个·mL−1,基本与接触浸出前的菌数一致(图10(b)),从而代谢出了新的生物酸(图10(a))。从图11接触浸出过程中Fe3+的浓度变化可以看出,随着浸出时间的延长,在固液比1%下,浸出3 d,Fe3+的质量浓度降到最低403.67 mg·L−1,铜达到100%浸出。3 d后,Fe3+的浓度逐渐上升。这是因为,铜的浸出需要Fe3+的参与;同时,在Af和Lf的作用下,将生成的Fe2+氧化生成Fe3+[35]。因此,提高接触浸出的固液比,并在足够的额浸出时间下,当铜的浸出所消耗Fe3+的速度与细菌氧化Fe2+成Fe3+的速度一致时,即浸出完全。

    图 10  接触浸出过程中pH和菌数的变化
    Figure 10.  Changes in pH and bacterial count during contact leaching process
    图 11  接触浸出过程中Fe3+浓度的变化
    Figure 11.  Change of Fe3+ concentration during contact leaching

    通过对比接触浸出和非接触浸出钴白合金的结果,并结合钴白合金中的金属赋存形态以及钴白合金淋滤前后的XRD图谱变化,可以推测出钴白合金中铜和钴的浸出机理。图12为钴白合金淋滤前后的XRD对比图,可见,淋滤前钴白合金XRD衍射图谱中有较为明显的吸收峰;淋滤后钴白合金XRD衍射图谱中几乎没有吸收峰,这表明钴铁合金和单质铜的结构被破坏[14]。此外,经生物淋滤处理后的钴白合金的硬度有着明显的下降,表面也更加疏松,均表明其结构发生了改变。

    图 12  钴白合金淋滤前后的XRD图谱
    Figure 12.  XRD patterns of cobalt white alloy before and after leaching

    在接触浸出1 d后,对不同固液比下的浸出渣中的钴、铜做金属赋存形态(图13)进行了对比分析。由图13(a)可知,随着固液比的升高,钴的浸出率逐渐降低,浸出渣中残余的钴也越来越多。经与原样中钴的对比可以看出,酸溶态的钴被优先浸出到溶液中,而浸出渣中残留的钴均为氧化物结合态。随着浸出时间的延长,体系内的细菌逐渐适应了周围的生存环境,持续代谢出新的生物酸,从而将浸出渣中的钴浸出到溶液中[36]

    图 13  不同固液比下接触浸出第1天残渣中金属赋存形态变化
    Figure 13.  Changes of metal forms in residues on the first day of contact leaching with different solid-to-liquid ratios

    同样,由图13(b)可知,随着固液比的升高,铜的浸出率也在逐渐降低。与原样对比,酸溶态的铜也被率先浸出到溶液中,浸出渣中剩余的铜为氧化物结合态和残渣态,该形态的浸出需要Fe3+的参与,最终生成Cu2+和Fe2+进入溶液中[37]。而随着浸出时间的延长,溶液中的Fe2+被细菌又逐渐氧化成Fe3+,Fe3+继续与固相中的铜发生反应,直至Fe3+的生成速率大于其反应的消耗速率时,整个铜的浸出反应达到完全。

    1)钴白合金中所含有价金属主要为铜、钴和铁,而且含量均很高(均在10%以上),资源化利用潜力巨大。铜和钴大部分以酸溶态和氧化物结合态存在,适宜于生物淋滤处理。

    2)非接触浸出钴白合金的最适固液比为1%,此时钴可100%浸出,铜浸出率为77.42%。非接触循环富集进行10次,最终浸出液中钴的质量浓度可达12 877.25 mg·L−1、铜的质量浓度可达7 358.67 mg·L−1

    3)钴白合金在接触浸出中,随着浸出时间的延长,铜和钴最终均能完全浸出。从浸出渣中钴和铜的赋存形态可以看出,钴浸出仅需生物酸的作用,铜的浸出除了需生物酸作用,还需Fe3+的参与。在菌体的直接作用下,浸出体系内部形成了Fe3+的生成和消耗的循环,以供给铜浸出。

  • 图 1  SPI-TOFMS结构示意图

    Figure 1.  Schematic diagram of SPI-TOFMS structure

    图 2  离子反射区和引出区的结构和工作电压

    Figure 2.  Structure and operating voltage of ion reflection and ion elicitation zones

    图 3  真空紫外单光子电离源结构示意图

    Figure 3.  Schematic diagram of vacuum ultraviolet single photon ionization source

    图 4  体积分数为10×10−9的苯在氮气中的SPI-TOFMS质谱图

    Figure 4.  SPI-TOFMS mass spectrum of benzene in nitrogen with a volume fraction of 10×10−9

    图 5  SPI-TOFMS测量的信号强度随苯气体体积分数变化的校准曲线

    Figure 5.  Calibration curve of signal intensity measured by SPI-TOFMS with gaseous volume fraction of benzene

    图 6  农药污染场地释放的异味物质的SPI质谱图

    Figure 6.  SPI mass spectrum of the odorous gas released from a pesticide site

    图 7  SPI-TOFMS与P&T GC-MS测定的二甲基二硫体积分数的关系

    Figure 7.  Relationship of the dimethyl disulfide volume fraction measured with SPI-TOFMS and P&T GC-MS

    图 8  SPI-TOFMS与P&T GC-MS测定的二甲基二硫体积分数的偏差

    Figure 8.  Deviation of the dimethyl disulfide volume fraction measured with SPI-TOFMS and P&T GC-MS

    表 1  SPI-TOFMS对苯在不同体积分数下的精准度和准确度

    Table 1.  Accuracy and precision of SPI-TOFMS against benzene at different volume fractions

    体积分数准确度/%精确度/%
    2×10-9955
    4×10-91098
    6×10-9954
    8×10-91043
    10×10-9982
    20×10-9964
    40×10-91022
    60×10-9973
    体积分数准确度/%精确度/%
    2×10-9955
    4×10-91098
    6×10-9954
    8×10-91043
    10×10-9982
    20×10-9964
    40×10-91022
    60×10-9973
    下载: 导出CSV

    表 2  P&T GC-MS检测的异味气体的化学组分

    Table 2.  List of the chemical composition of odorous gas identified by P&T GC-MS

    序号停留时间/min化合物相对分子质量定量结果(以体积分数计)
    117.721丙酮58.0813.2×10−9
    223.5382-丁酮72.113.65×10−9
    320.850二硫化碳76.142.57×10−9
    432.731甲苯92.141.54×10−9
    536.910乙苯106.171.50×10−9
    637.274对二甲苯106.177.71×10−9
    738.254邻二甲苯106.172.43×10−9
    818.274三氯氟甲烷137.370.863×10−9
    920.265二氯甲烷84.9319.2×10−9
    1029.464三氯乙烯131.392.47 × 10−9
    1134.862四氯乙烯165.8297.1×10−9
    1214.753丙烷44.13.87×10−9
    1324.885正己烷86.183.19×10−9
    1434.422正辛烷114.231.21 × 10−9
    1538.560壬烷128.262.51 × 10−9
    1642.473正癸烷142.291.21 × 10−9
    1725.004三氯甲烷119.3821.5×10−9
    1813.564乙烷30.071.70×10−9
    1922.470乙炔26.042.61×10−9
    2014.019乙烯28.061.75×10−9
    2119.815二甲基硫62.138.29×10−9
    2231.470二甲基二硫94.284.6×10−9
    序号停留时间/min化合物相对分子质量定量结果(以体积分数计)
    117.721丙酮58.0813.2×10−9
    223.5382-丁酮72.113.65×10−9
    320.850二硫化碳76.142.57×10−9
    432.731甲苯92.141.54×10−9
    536.910乙苯106.171.50×10−9
    637.274对二甲苯106.177.71×10−9
    738.254邻二甲苯106.172.43×10−9
    818.274三氯氟甲烷137.370.863×10−9
    920.265二氯甲烷84.9319.2×10−9
    1029.464三氯乙烯131.392.47 × 10−9
    1134.862四氯乙烯165.8297.1×10−9
    1214.753丙烷44.13.87×10−9
    1324.885正己烷86.183.19×10−9
    1434.422正辛烷114.231.21 × 10−9
    1538.560壬烷128.262.51 × 10−9
    1642.473正癸烷142.291.21 × 10−9
    1725.004三氯甲烷119.3821.5×10−9
    1813.564乙烷30.071.70×10−9
    1922.470乙炔26.042.61×10−9
    2014.019乙烯28.061.75×10−9
    2119.815二甲基硫62.138.29×10−9
    2231.470二甲基二硫94.284.6×10−9
    下载: 导出CSV
  • [1] GOUW J D, WARNEKE C. Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry[J]. Mass Spectrometry Reviews, 2007, 26(2): 223-257. doi: 10.1002/mas.20119
    [2] LINDINGER W, HANSEL A, JORDAN A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research[J]. International Journal of Mass Spectrometry and Ion Processes, 1998, 173(3): 191-241. doi: 10.1016/S0168-1176(97)00281-4
    [3] JANG M, CZOSCHKE N M, LEE S, et al. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions[J]. Science, 2002, 298(5594): 814-817. doi: 10.1126/science.1075798
    [4] JANG M, CZOSCHKE N M, NORTHCROSS A L. Atmospheric organic aerosol production by heterogeneous acid-catalyzed reactions[J]. Chemphyschem, 2004, 5(11): 1646-1661. doi: 10.1002/cphc.200301077
    [5] TANSEL B, INANLOO B. Odor impact zones around landfills: Delineation based on atmospheric conditions and land use characteristics[J]. Waste Management, 2019, 88: 39-47. doi: 10.1016/j.wasman.2019.03.028
    [6] JIN P, GU Y G, SHI X, et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnology for Biofuels, 2019, 12(1): 1-11. doi: 10.1186/s13068-018-1346-y
    [7] NIE E, ZHENG G, GAO D, et al. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant[J]. Science of the Total Environment, 2019, 659: 664-672. doi: 10.1016/j.scitotenv.2018.12.404
    [8] EWING R G, WALTMAN M J, ATKINSON D A, et al. The vapor pressures of explosives[J]. Trends in Analytical Chemistry, 2013, 42: 35-48. doi: 10.1016/j.trac.2012.09.010
    [9] QIN M R, CHEN Z M, SHEN H Q, et al. Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study[J]. Atmospheric Environment, 2018, 183: 144-153. doi: 10.1016/j.atmosenv.2018.04.005
    [10] ZIMMERMANN R. Photo ionisation in mass spectrometry: Light, selectivity and molecular ions[J]. Analytical and Bioanalytical Chemistry, 2013, 405(22): 6901-6905. doi: 10.1007/s00216-013-7187-4
    [11] SYAGE J A, CAI S S, LI J W, et al. Direct sampling of chemical weapons in water by photoionization mass spectrometry[J]. Analytical Chemistry, 2006, 78(9): 2967-2976. doi: 10.1021/ac0518506
    [12] TSURUGA S, SUZUKI T, TAKATSUDO Y, et al. On-line monitoring system of P5CDF homologues in waste incineration plants using VUV-SPI-IT-TOFMS[J]. Environmental Science and Technology, 2007, 41(10): 3684-3688. doi: 10.1021/es0614924
    [13] SARAJI-BOZORGZAD M, GEISSLER R, STREIBEL T, et al. Thermogravimetry coupled to single photon ionization quadrupole mass spectrometry: A tool to investigate the chemical signature of thermal decomposition of polymeric materials[J]. Analytical Chemistry, 2008, 80(9): 3393-3403. doi: 10.1021/ac702599y
    [14] FISCHER M, WOHLFAHRT S, VARGA J, et al. Evolved gas analysis by single photon ionization-mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(3): 1461-1469. doi: 10.1007/s10973-014-3830-3
    [15] YUAN B, KOSS A, WARNEKE C, et al. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere[J]. Atmospheric Measurement Techniques, 2016, 9(6): 2735-2752. doi: 10.5194/amt-9-2735-2016
    [16] BLAKE R S, PATEL M, MONKS P S, et al. Aldehyde and ketone discrimination and quantification using two-stage proton transfer reaction mass spectrometry[J]. International Journal of Mass Spectrometry, 2008, 278(1): 15-19. doi: 10.1016/j.ijms.2008.07.010
    [17] HANSEL A, JORDAN A, HOLZINGER R, et al. Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppb level[J]. International Journal of Mass Spectrometry and Ion Processes, 1995, 149-150: 609-619. doi: 10.1016/0168-1176(95)04294-U
    [18] LINDINGER W, HANSEL A, JORDAN A. Proton-transfer-reaction mass spectrometry (PTR-MS): On-line monitoring of volatile organic compounds at pptv levels[J]. Chemical Society Reviews, 1998, 27(5): 347-354. doi: 10.1039/a827347z
    [19] SULZER P, HARTUNGEN E, HANEL G, et al. A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): High speed due to extreme sensitivity[J]. International Journal of Mass Spectrometry, 2014, 368: 1-5. doi: 10.1016/j.ijms.2014.05.004
    [20] HANLEY L, ZIMMERMANN R. Light and molecular ions: The emergence of vacuum UV single-photon ionization in MS[J]. Analytical Chemistry, 2009, 81(11): 4174-4182. doi: 10.1021/ac8013675
    [21] HUA L, WU Q H, HOU K Y, et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(13): 5309-5316. doi: 10.1021/ac200742r
    [22] GIULIANI A, GIORGETTA J L, RICAUD J P, et al. Atmospheric pressure photoionization using tunable VUV synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research, Section B:Beam Interactions with Materials and Atoms, 2012, 279: 114-117.
    [23] YAKIMOV S A, KNYAZ'KOV D A, BOL'SHOVA T A, et al. Investigation of the effect of ethanol additives on the structure of low-pressure ethylene flames by photoionization mass spectrometry[J]. Combustion, Explosion and Shock Waves, 2012, 48(5): 609-619. doi: 10.1134/S0010508212050127
    [24] MILOSAVLJEVIC A R, NICOLAS C, GIL J F, et al. VUV synchrotron radiation: A new activation technique for tandem mass spectrometry[J]. Journal of Synchrotron Radiation, 2012, 19(2): 174-178. doi: 10.1107/S0909049512001057
    [25] ZHOU Z Y, GUO H J, QI F. Recent developments in synchrotron vacuum ultraviolet photoionization coupled to mass spectrometry[J]. Trends in Analytical Chemistry, 2011, 30(9): 1400-1409. doi: 10.1016/j.trac.2011.05.007
    [26] MULLEN C, IRWIN A, POND B V, et al. Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry[J]. Analytical Chemistry, 2006, 78(11): 3807-3814. doi: 10.1021/ac060190h
    [27] STREIBEL T, WEH J, MITSCHKE S, et al. Thermal desorption/pyrolysis coupled with photoionization time-of-flight mass spectrometry for the analysis of molecular organic compounds and oligomeric and polymeric fractions in urban particulate matter[J]. Analytical Chemistry, 2006, 78(15): 5354-5361. doi: 10.1021/ac060227y
    [28] VAIKKINEN A, HAAPALA M, KERSTEN H, et al. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization[J]. Analytical Chemistry, 2012, 84(3): 1408-1415. doi: 10.1021/ac2024574
    [29] WU Q H, HUA L, HOU K Y, et al. A combined single photon ionization and photoelectron ionization source for orthogonal acceleration time-of-flight mass spectrometer[J]. International Journal of Mass Spectrometry, 2010, 295(1/2): 60-64.
    [30] CHEN P, HOU K Y, HUA L, et al. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry[J]. Analytical Chemistry, 2014, 86(3): 1332-1336. doi: 10.1021/ac403132k
    [31] LI A, CHEN M Z, GUO W F, et al. Detection of polycyclic aromatic hydrocarbons in a soil sample with photon ionization technique[J]. Applied Mechanics and Materials, 2013, 271: 112-115.
    [32] MUHLBERGER F, WIESER J, MOROZOV A, et al. Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source[J]. Analytical Chemistry, 2005, 77(7): 2218-2226. doi: 10.1021/ac048319f
    [33] MUHLBERGER F, STREIBEL T, WIESER J, et al. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: Setup and first results on cigarette smoke and human breath[J]. Analytical Chemistry, 2005, 77(22): 7408-7414. doi: 10.1021/ac051194+
    [34] MUHLBERGER F, WIESER J, ULRICH A, et al. Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis[J]. Analytical Chemistry, 2002, 74(15): 3790-3801. doi: 10.1021/ac0200825
    [35] MUHLBERGER F, SARAJI-BOZORGZAD M, GONIN M, et al. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source[J]. Analytical Chemistry, 2007, 79(21): 8118-8124. doi: 10.1021/ac071217f
    [36] WANG Y, JIANG J C, HUA L, et al. High-pressure photon ionization source for TOFMS and its application for online breath analysis[J]. Analytical Chemistry, 2016, 88(18): 9047-9055. doi: 10.1021/acs.analchem.6b01707
    [37] WAN N B, JIANG J C, HU F, et al. Nonuniform electric field-enhanced in-source declustering in high-pressure photoionization/photoionization-induced chemical ionization mass spectrometry for operando catalytic reaction monitoring[J]. Analytical Chemistry, 2021, 93(4): 2207-2214. doi: 10.1021/acs.analchem.0c04081
    [38] LIU C Y, ZHU Y N, ZHOU Z Y, et al. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices[J]. Analytica Chimica Acta, 2015, 891: 203-210. doi: 10.1016/j.aca.2015.08.010
    [39] ZHU Z X, WANG J, QIU K Q, et al. Note: A novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry[J]. Review of Scientific Instruments, 2014, 85(4): 046110. doi: 10.1063/1.4871796
    [40] SUN W Q, SHU J N, ZHANG P, et al. Real-time monitoring of trace-level VOCs by an ultrasensitive lamp-based VUV photoionization mass spectrometer[J]. Atmospheric Measurement Techniques, 2015, 8(11): 4637-4643. doi: 10.5194/amt-8-4637-2015
    [41] LI Z, XU C, SHU J N. Detection of sub-pptv benzene, toluene, and ethylbenzene via low-pressure photoionization mass spectrometry[J]. Analytica Chimica Acta, 2017, 964: 134-141. doi: 10.1016/j.aca.2017.01.065
    [42] U. S. EPA. Method TO-15: Determination of volatile organic compounds in air collected in specially-prepared canisters ans analysed by gas chromatography mass spectrometry (GC/MS)[S]. U. S. EPA, 1999.
    [43] KRECHMER J, LOPEZ-HILFIKER F, KOSS A, et al. Evaluation of a new reagent-ion source and focusing ion-molecule reactor for use in proton-transfer-reaction mass spectrometry[J]. Analytical Chemistry, 2018, 90(20): 12011-12018. doi: 10.1021/acs.analchem.8b02641
    [44] COWLEY N J, LAITENBERGER P, LIU B, et al. Evaluation of a new analyser for rapid measurement of blood propofol concentration during cardiac surgery[J]. Anaesthesia, 2012, 67(8): 870-874. doi: 10.1111/j.1365-2044.2012.07151.x
    [45] XIAO Y, WANG X, LI E Y, et al. Rapid determination of intraoperative blood propofol concentration in operating theatre by dopant-enhanced neutral release and negative photoionization ion mobility spectrometry[J]. Analytica Chimica Acta, 2020, 1098: 47-55. doi: 10.1016/j.aca.2019.11.011
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 86.9 %HTML全文: 86.9 %摘要: 10.9 %摘要: 10.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 78.4 %其他: 78.4 %Anwo: 0.1 %Anwo: 0.1 %Ashburn: 0.3 %Ashburn: 0.3 %Baiyu: 0.1 %Baiyu: 0.1 %Beijing: 8.6 %Beijing: 8.6 %Binzhou: 0.3 %Binzhou: 0.3 %Boulder: 0.1 %Boulder: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Chang-hua: 0.1 %Chang-hua: 0.1 %Chaowai: 0.1 %Chaowai: 0.1 %Chengdu: 0.2 %Chengdu: 0.2 %Chongqing: 0.1 %Chongqing: 0.1 %Daqing: 0.1 %Daqing: 0.1 %Dongguan: 0.1 %Dongguan: 0.1 %Fenyang: 0.1 %Fenyang: 0.1 %Guangzhou: 0.3 %Guangzhou: 0.3 %Haidian: 0.1 %Haidian: 0.1 %Hangzhou: 0.5 %Hangzhou: 0.5 %Hefei: 0.1 %Hefei: 0.1 %Jinrongjie: 1.1 %Jinrongjie: 1.1 %Kunshan: 0.1 %Kunshan: 0.1 %Linfen: 0.1 %Linfen: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %Munich: 0.1 %Munich: 0.1 %Nanjing: 0.3 %Nanjing: 0.3 %Newark: 0.1 %Newark: 0.1 %Qingdao: 0.1 %Qingdao: 0.1 %Richmond: 0.7 %Richmond: 0.7 %Shanghai: 0.6 %Shanghai: 0.6 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.6 %Shenzhen: 0.6 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %St Petersburg: 0.1 %St Petersburg: 0.1 %Taiyuan: 0.2 %Taiyuan: 0.2 %Wulipu: 0.1 %Wulipu: 0.1 %Xi'an: 0.7 %Xi'an: 0.7 %XX: 4.5 %XX: 4.5 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %北京: 0.3 %北京: 0.3 %天津: 0.1 %天津: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %汉中: 0.1 %汉中: 0.1 %深圳: 0.1 %深圳: 0.1 %运城: 0.1 %运城: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他AnwoAshburnBaiyuBeijingBinzhouBoulderChang'anChang-huaChaowaiChengduChongqingDaqingDongguanFenyangGuangzhouHaidianHangzhouHefeiJinrongjieKunshanLinfenMountain ViewMunichNanjingNewarkQingdaoRichmondShanghaiShenyangShenzhenShijiazhuangSt PetersburgTaiyuanWulipuXi'anXXYunchengZhengzhou北京天津宝鸡汉中深圳运城阳泉Highcharts.com
图( 8) 表( 2)
计量
  • 文章访问数:  5706
  • HTML全文浏览数:  5706
  • PDF下载数:  60
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-30
  • 录用日期:  2022-04-25
  • 刊出日期:  2022-09-30
郭烨东, 于彰淇, 姜葵, 王海杰, 杨波, 束继年, 李震. 紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪的研制及其在污染场地异味分析中的应用[J]. 环境工程学报, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193
引用本文: 郭烨东, 于彰淇, 姜葵, 王海杰, 杨波, 束继年, 李震. 紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪的研制及其在污染场地异味分析中的应用[J]. 环境工程学报, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193
GUO Yedong, YU Zhangqi, JIANG Kui, WANG Haijie, YANG Bo, SHU Jinian, LI Zhen. Development of a compact and highly sensitive vacuum ultraviolet single-photon-ionization time-of-flight mass spectrometer and its application in odorous analysis of a contaminated site[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193
Citation: GUO Yedong, YU Zhangqi, JIANG Kui, WANG Haijie, YANG Bo, SHU Jinian, LI Zhen. Development of a compact and highly sensitive vacuum ultraviolet single-photon-ionization time-of-flight mass spectrometer and its application in odorous analysis of a contaminated site[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 3070-3080. doi: 10.12030/j.cjee.202203193

紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪的研制及其在污染场地异味分析中的应用

    通讯作者: 杨波(1983—),女,博士,副研究员,boyang@ucas.ac.cn
    作者简介: 郭烨东(1993—),男,硕士研究生,guoyedong18@mails.ucas.ac.cn
  • 中国科学院大学,挥发性有机物污染控制材料与技术国家工程实验室,北京 101408
基金项目:
国家重点研发计划(2019YFC1806105);国家自然科学基金资助项目(22076184和21777170);中国科学院科研仪器装备研制项目(YJKYYQ20180072);中国科学院大学优秀教师科研能力提升项目(Y954021)

摘要: 真空紫外单光子电离质谱仪(SPI-MS)在挥发性有机物(VOCs)在线监测方面具有独特优势,然而目前常用的SPI-MS灵敏度普遍较低,限制了SPI-MS在环境监测领域的广泛应用。为了有效提高SPI-MS的检测灵敏度,达到实时在线监测环境中痕量VOCs的目的,采用自制的高通量真空紫外灯,结合低气压光电离技术和飞行时间质谱技术,研制了1台紧凑型高灵敏真空紫外单光子电离飞行时间质谱仪(SPI-TOFMS),并使用SPI-TOFMS和吹扫捕集气相色谱质谱(P&T GC-MS)标准方法对农药污染场地释放的异味气体进行了检测分析。结果表明:在10 s的检测时间内,该仪器对气态苯具有极高的检测灵敏度,检测限(以体积分数计)低至0.09×10−12,检测准确度为95%~109%,精确度的标准偏差小于8%;在农药场地异味气体分析中,SPI-TOFMS不仅在极短的检测时间内(10 s)检测到甲硫醇、二甲基硫和二甲基二硫等典型异味物质,还检测到更多未被P&T GC-MS标准方法检测到的异味物质,如吡咯烷、吡啶、乙基丙胺、苯胺、邻苯二胺和硝基苯等;SPI-TOFMS与P&T GC-MS 2种方法对异味样品主要成分(二甲基二硫)的定量分析结果具有良好的一致性。本研究研制的紧凑型SPI-TOFMS与同类型仪器相比,检测灵敏度有了大幅提高,可为实验室模拟研究及外场环境中痕量VOCs的实时在线监测提供一种高效的技术方法。

English Abstract

  • 挥发性有机物(VOCs)的高灵敏在线监测在大气污染过程监测与溯源、化工园区VOCs溯源与突发事件应急监测以及痕量毒品和炸药的安检等多个领域均起到重要作用[1-2]。尤其在环境领域,VOCs不仅作为室内室外污染中的一次污染物,危害人体健康,还可在大气光氧化条件下产生灰霾和臭氧等二次污染[3-4]。另外,一些VOCs具有极低的嗅阈值,较低的空气浓度即可对人体嗅觉感官造成强烈刺激,引发臭味污染问题。在我国,恶臭投诉事件相当频繁,仅次于噪声的投诉事件,排在第二位,且呈逐年递增的趋势[5-7]。因此,发展VOCs高灵敏在线监测技术对大气污染防控、减少环境污染事件对社会的负面影响具有重要意义。

    近年来,质谱技术的飞速发展为VOCs的高灵敏在线监测提供了一种有效的技术手段。目前,用于VOCs直接、在线监测的VOC质谱仪主要包括基于电子电离(EI)、化学电离(CI)和单光子电离(SPI)技术的单质谱[8-14]。其中,发展较成熟的高灵敏VOC质谱为质子转移质谱(PTR-MS),属于化学电离质谱的一种。该仪器可以检测体积分数为10−12量级的VOCs[15-19],已被很多国际一流团队用于实验室及外场VOCs的直接在线测量。与CI相比,SPI属于一种特别的软电离技术[20],它最大的特点是电离方式简单:任何电离能(IE)低于光子能量的原子或分子都会在真空紫外(VUV)灯的辐照下直接电离,生成一个带正电荷的待测物阳离子。SPI具有分子离子产率高、碎片少、质谱简洁、线性动态范围较宽、对极性和非极性有机物都适用等独特优势,非常适合实际VOCs混合样品的直接、在线监测[21]

    在SPI-MS中,VUV光源的产生方式和光子通量对仪器的适用性和检测灵敏度至关重要[21]。大型VUV光源(如同步辐射光源[22-25]和基于激光器的光源[26-27])可以实现高光束密度,但是由于其成本高、体积大和操作复杂等原因,只能用于实验室研究。为了满足常规监测仪器的需要,SPI相关的监测仪器通常使用体积小、携带方便的VUV灯作为SPI光源。常用的VUV灯主要包括直流放电灯和射频放电灯,分别使用直流或射频放电激发低压Kr气产生10 eV的VUV光[28]。然而,目前使用较广泛的商用VUV灯的光子通量约为1011 s−1[29-30],导致SPI离子源的电离效率以及相应的SPI-MS的检测灵敏度较低,成为阻碍SPI-MS发展为高灵敏商用VOC质谱仪的主要因素之一。

    为了提高SPI-MS的检测性能,众多研究者在发展新型光电离源方面开展了大量工作。已有研究[31-34]表明,研制新型VUV灯,提高光子通量,是提升SPI-MS检测性能的一种途径。MUHIBERGER等[32-35]开发了一系列电子束激发稀有气体灯,光子通量达到了1013~1016 s−1,将电子束激发稀有气体灯与小型飞行时间质谱(TOFMS)或四级杆质谱(QMS)联用,能够在线检测体积分数为10−9以上的气态有机物。另外一种提升SPI-MS检测灵敏度的途径是增加SPI离子源内的压力[36-39],由此衍生出的技术包括低压光电离(LPPI)和高压光电离(HPPI)技术,相应的电离区压力为几十~几千Pa。SUN等[40]和LI等[41]使用光子通量为1014 s−1的射频VUV灯研制了1台低气压SPI-TOFMS,离子源内气压为500~1 000 Pa,在检测体积分数为10−9的气相苯系物时,10 s内的信号强度可达到5 000,有效提升了SPI-MS的检测灵敏度。然而,该仪器是概念型样机,体积较大,难以用于外场实地VOCs的在线监测。

    本研究在已有研究的基础上,基于高通量射频VUV灯、低气压光电离离子源和飞行时间质谱技术,研制出1台紧凑型高灵敏SPI-TOFMS,用苯标准气体对SPI-TOFMS的检测灵敏度、检测限、检测精确度和准确度进行性能测试,考察SPI-TOFMS在农药污染场地异味气体检测中的应用效果,验证SPI-TOFMS在实地VOCs混合物快速检测上的优势及定量能力,以期为环境科学与工程领域涉及的VOCs高灵敏在线监测提供技术支撑。

    • 高灵敏SPI-TOFMS装置结构如图1所示。该仪器主要由真空系统、进样系统、VUV光电离源、离子传输系统、垂直引入反射式飞行时间质量分析器和数据采集系统组成。整台仪器设计紧凑,主体部分长度为456 mm,宽度为380 mm。样品分子在VUV灯照射下发生单光子电离产生离子,被离子源的加速电压加速后,通过离子传输系统进入垂直引入反射式飞行时间质量分析器,通过无场飞行区后,到达微通道板离子检测器,最终被数据采集系统收集并进行质谱分析。离子反射区和离子引出区的电极设计和工作电压如图2所示。

    • 真空系统分为束源室、差分室和TOF室三级差分系统,分别由3台分子泵维持真空,另外使用1台干泵为3台分子泵提供前级真空。1台干泵为ECODRY 40 plus干式真空泵(德国Leybold公司),抽速为40 m3·h−1;分子泵为1台Agilent TV 301 Navigator涡轮分子泵(美国Agilent公司,对N2抽速为280 L·s−1)和2台Pfeiffer HiPace 300涡轮分子泵(德国Pfeiffer公司,对N2抽速为260 L·s−1);真空规为1个Pfeiffer TPR270皮拉尼规(德国Pfeiffer公司)和2个Pfeiffer PKR361全量程真空规(德国Pfeiffer公司)。真空系统能够使仪器的真空度在进样前保持在2×10−5 Pa以下,进样时,束源室、差分室和TOF室的动态真空度分别约为1、0.3和1×10−3 Pa。

    • 进样接口由直径为0.635 cm的不锈钢管将质谱仪与外界空气相连接,通过仪器负压将气相样品被动吸入仪器内。进样时,使用针阀控制进样流量,检测时流量通常为3.3 cm3·s−1。使用气体标定腔配制一定体积分数的样品气体。气体标定腔是一个体积为60 L的开口不锈钢圆筒,上端与一个特氟龙(Teflon)袋密封连接,以保证气体标定腔内维持1个大气压(101 325 Pa)。实验前,使用高纯氮将气体标定腔反复充放气来清洗气体标定腔,将其充气到一定体积。配制样品气体时,向气体标定腔内注射一定浓度的样品溶液,待其挥发完全,即得到一定浓度的气相样品。气体标定腔底部装有磁力搅拌风扇,使气相样品混合均匀;外部覆有加热衣,可调节气体标定腔的温度,便于样品溶液挥发。实验过程中的温度控制在65 ℃。

    • 真空紫外单光子电离源由VUV灯和电离器组成,结构示意图如图3所示。VUV灯主要由放电石英灯管、线圈、Kr气配气系统、氟化镁窗片和射频电源组成。射频电源工作频率为13.56 MHz,正常工作功率为60 W。射频电源通过线圈激发惰性气体(5%的Kr气,He气作为缓冲气体)产生真空紫外光。石英灯管内Kr气的压力为250 Pa。真空紫外光穿过氟化镁窗片进入电离器中,光子通量达到6.6×1014 s−1·cm−2,光子能量为10.0 eV(80%)和10.6 eV(20%)。样品分析物通过进样系统进入到电离器中,此时离子源的工作压力为1 300 Pa,经VUV光照射发生单光子电离,产生的离子随后进入离子传输系统。

    • 离子传输系统由1组与飞行时间质量分析器垂直装配的离子透镜组成。这种垂直装配的组成结构可以使离子传输系统与飞行时间质量分析器在不设置离子偏转装置的情况下,只需使用合适的加速电压匹配离子的入射动能即可使离子反射后落在检测区内,实现离子检测。离子透镜组由8片中空圆极板组成。给前后4片极板与中间4片极板施加不同的迁移电压,形成聚焦电场。聚焦电场将电离器输送来的离子聚焦为离子束,通过狭缝传输至飞行时间质量分析器。

    • 飞行时间质量分析器为垂直加速V型反射式结构,包括离子引出区、离子加速区、无场漂移区、离子反射区和微通道板检测器5个部分,离子飞行距离为220 mm。离子通过狭缝进入质量分析器后,在脉冲引出场的作用下,进入离子加速区加速,漂移过后,进入离子反射区。离子经过减速、反转和加速3个阶段后,漂移飞行进入离子检测器。当离子撞击到微通道板后,产生的电流信号由数据采集系统采集记录。质量分析器在 m/z=182处的质量分辨率(m/Δm)约为500。

    • 数据采集系统主要由脉冲/延时发生器、放大器、数据采集卡和计算机组成。微通道板检测器检测到的离子信号经过放大器放大20倍后,再用多通道数据采集卡(P7888,德国Fast ComTech公司)进行采集,每次采集时间为10 s。每次实验都会测量3次来保证数据的可重复性。

    • 气态苯是一种常见的室内室外污染物,具有较大的光电离截面,常被用来表征光电离质谱的检测灵敏度,因此,本研究使用苯标准蒸汽测试仪器的灵敏度及检出限。用二氯甲烷将纯苯稀释416倍,制备成苯标准溶液。用微量进样器取1 μL苯溶液,注入到气体标定腔内,待挥发完全,经风扇混匀后,得到体积分数为10×10−9的气相苯。在灵敏度实验中,通过注入的次数来控制气体标定腔内苯的气体体积分数。

    • 光通量是通过固定在距离灯出口73 mm处镀金的铜板测量的。将一个导流针放在金板的正上方,处于金板和灯之间并靠近金板的位置。当给导流针施加一个正直流电压时,导流针可以引导光电子离开镀金铜板表面,通过连接镀金铜板的皮安表(Keithley Instruments公司,6485型)可以测出此时产生的光电流。光电流转化成光子通量的计算方法如式(1)所示。

      式中:Ф为单位面积内的光子通量,s−1·cm−2Q为基本电荷,其数值为1.6×10−19 C;ε为光电子产率,数值为0.063;S为电离区入口的横截面积,cm2

    • 农药行业是异味污染的主要贡献者,特别是在废弃农药污染场地的修复再利用过程中,非常容易引起异味投诉。在本研究中,使用125 L的静态通量箱收集某废弃农药污染场地地面释放的异味气体0.5 h后,使用0.5 L的特氟龙袋采样,采用SPI-TOFMS对气袋内的VOCs进行直接检测。同时,将相同的静态通量箱内的气体用苏玛罐采样后,使用P&T GC-MS按照USEPA TO15-1999标准方法进行检测,将2种分析方法的结果进行对比分析[42]

    • 图4显示的是体积分数为10×10−9的苯在氮气中的SPI-TOFMS质谱图。由于配制苯标准溶液使用的溶剂是二氯甲烷,而当二氯甲烷存在时,SPI离子源内会产生大量的水合质子(H3O+)及其团簇离子((H2O)2H+、(H2O)3H+和(H2O)4H+),因此,为了得到简明的待测物质谱图,往往需要用待测物/二氯甲烷的质谱图减去等量纯二氯甲烷的质谱图(质谱背景)。由图4可以看出,减去二氯甲烷引起的质谱背景后,苯的SPI质谱图中只有m/z=78的母离子峰为主要特征峰。

    • 使用气体标定腔配制不同体积分数的苯,使用SPI-TOFMS获得不同体积分数下苯的信号强度。对分子离子信号强度(m/z=78)与气相苯的体积分数进行线性拟合,得到苯的灵敏度校正曲线。如图5所示,在体积分数为2×10−9~60×10−9时,线性拟合曲线的线性较好(R2=0.999)。由线性拟合的斜率可计算得到SPI-TOFMS对苯的检测灵敏度:体积分数为10−12的苯对应的信号强度为67±0.70(10 s检测时间)。目前已有研究[43]报道的灵敏度最高的PTR-MS对苯的检测灵敏度:体积分数为10−12的苯对应的信号强度为7左右(1 s检测时间)。因此,本文报道的紧凑型高灵敏SPI-TOFMS对苯的检测灵敏度与灵敏度最高的PTR-MS相当,且明显优于同类型SPI-MS。SPI-TOFMS对苯的检测限(LOD)的计算方法见式(2)。

      式中:L为检测限;σ为质谱信号背景噪声的标准偏差,其数值为2.2;s为检测灵敏度。

      在10 s采集时间内,仪器对苯的检测限(以体积分数计)为(0.09±0.00)×10−12。值得注意的是,SPI-TOFMS具有非常高的检测灵敏度,因此,在检测高浓度有机物时,因到达离子检测器的离子量过大,逐渐超出离子检测器对信号的线性响应范围,则信号强度与待测物浓度之间的线性度会有所下降(如本仪器对体积分数超过60×10−9的苯的线性度有所下降)。因此,该质谱技术适宜对环境空气中的低浓度痕量有机污染物进行在线监测。如果监测高浓度有机污染物,则需要预先对气体样品进行稀释处理,或者改变质谱内离子的迁移电压,人为降低仪器的检测灵敏度。

    • 在本研究中,准确度表示在3次平行实验中,苯的3次测量值与其平均值的比值。为了方便讨论,本研究选取3个比值中与100%差值最大的一个数值作为准确度;精确度表示苯的3次测量值的标准偏差。如表1所示,由SPI-TOFMS对体积分数为2×10−9~60×10−9的苯的检测结果可以得出,在此体积分数范围内,SPI-TOFMS对苯的检测准确度为95%~109%;精确度的标准偏差总体上小于8%。由此可知,SPI-TOFMS在VOCs的直接在线检测方面具有良好的可靠性。

    • 某农药污染场地释放的异味气体样品的SPI-TOFMS质谱图如图6所示,P&T GC-MS检测得到的化学组分如表2所示。可以看出,除了相对分子质量为26的乙炔,P&T GC-MS检测到的所有物质的相对分子质量(图6中以星号标记的质量峰)都能在SPI-TOFMS质谱图中看到。另外,除了P&T GC-MS检测到的这些质量峰外,在SPI-TOFMS质谱图中,还能观察到大量其他质量峰(除星号标记以外的质量峰),这些质量峰主要为未被P&T GC-MS检测到的物质。

      结合农药企业的原料和产品信息,将SPI-TOFMS质谱(图6)中观察到的m/z为48、62、76、94和126的质量峰归为挥发性有机硫化合物。这些有机硫化合物分别为甲硫醇(m/z=48)、二甲基硫(m/z=62)、乙硫醇(m/z=62)、甲基乙基硫(m/z=76)、二甲基二硫(m/z=94)和二甲基三硫(m/z=126)。在这些可能的有机硫化合物中,只有二甲基二硫在P&T GC-MS中具有100%的检出率,二甲基二硫也是该农药污染地块释放的主要有机污染物。此外,还有一些含氮的异味物质没有被P&T GC-MS检测到。根据农药企业的原料和产品信息,将m/z为69、79、87、93、108和123的质谱峰归为吡咯烷、吡啶、乙基丙胺、苯胺、邻苯二胺和硝基苯。

      为了评价SPI-TOFMS的定量能力,分别用SPI-TOFMS和P&T GC-MS测定了20组体积分数为56×10−9~246×10−9的二甲基二硫样品。如图7所示,2种检测方法得到的二甲基二硫的体积分数呈良好的线性关系,斜率为0.998,R2=0.98。2种方法的一致性可通过Bland-Altman分析方法来评估[44-45]。如图8所示,SPI-TOFMS和P&T GC-MS分别测定的二甲基二硫体积分数在此范围内有较小的负偏差(−1.7×10−9),标准差(SD)为8.16×10−9,95%的一致性界限(平均偏差±1.96SD)为−17.7×10−9~14.3×10−9。这说明SPI-TOFMS与P&T GC-MS标准方法的定量结果具有较好的一致性,但相比之下,SPI-TOFMS的分析时间要短得多。这些结果表明,高灵敏SPI-TOFMS有助于快速、全面地筛查复杂的异味气体的化学组成和浓度范围,从而对国标方法难以检测的未知物质做进一步分析,最终获得异味气体所有组分信息。

    • 1) 本研究研制的紧凑型高灵敏SPI-TOFMS可作为车载式仪器,直接、在线监测外场环境空气中的痕量VOCs。在10 s的检测时间内,该仪器对苯的检测限(以体积分数计)为0.09×10−12

      2) SPI-TOFMS对不同体积分数(2×10−9~60×10−9)的苯的检测准确度为95%~109%,检测精确度的标准偏差总体小于8%,表现出较好的检测稳定性和可靠性。

      3) 在农药污染场地异味气体分析中,SPI-TOFMS可以在10 s的检测时间内检测到更多P&T GC-MS标准方法未能检测到的异味物质;SPI-TOFMS与P&T GC-MS 2种方法对异味样品主要成分(二甲基二硫)的定量分析结果具有良好的一致性。

    参考文献 (45)

返回顶部

目录

/

返回文章
返回