-
污水处理厂污泥是污水处理过程中的副产物。随着我国城市生活污水处理系统的发展,污泥产量逐年增加[1]。污泥富集了大量有机物、营养物质、病原微生物和重金属等有毒有害物质[2],在处理处置及储运过程中不可避免地释放恶臭气味,极易形成二次污染,在严重时可能会构成污染公害事件[3]。尽管污泥产量仅为污水总量的0.3%~0.5% (体积分数) [4],但污泥处理过程是污水处理厂恶臭释放的主要来源[5]。处理后的污泥若仍存在恶臭 (或较强烈异味) ,将在极大程度上限制污泥土地利用等多种处置方式的实施。除污水来源及其处理工艺外,污泥处理与处置工艺和实际运行对污泥的性质有较大影响,从而导致污泥在处理过程中和处置利用时的恶臭释放特征存在显著差异[6]。因此,污泥恶臭污染有效控制是提高污泥处理效率、实现污泥资源化利用必须解决的技术难题。由于我国污泥产量快速增加,对污泥恶臭污染控制的技术需求更为迫切。
基于此,本文以城市污水处理厂污泥在处理和处置过程中的恶臭污染为研究对象,分析整理近20年来有关污泥恶臭及其控制技术的文献报道,从污泥产臭关键环节的污染特征和发生机制入手,通过分析污泥恶臭减排的控制措施与策略,讨论污泥恶臭污染防治的复杂性和挑战,以期为防控污泥处理处置过程中的恶臭污染提供参考。
污水处理厂污泥处理处置过程中的恶臭污染特征与恶臭物质减排控制措施
Odor characteristics of wastewater treatment plant sludge during treatment and disposal and emission reduction control measures: A short review
-
摘要: 随着污水处理厂规模的不断扩大,污泥产量持续增加。虽然“重水轻泥”现象已有所改变,但污泥处理处置技术仍面临各种挑战。污泥处理处置过程中的恶臭污染会对周围环境和人群健康造成不利影响,极易引发民众投诉,是提高污泥处理效率、实现污泥资源化利用的难点之一。污泥释放的恶臭物质组分复杂,且影响污泥恶臭释放的因素较多,目前针对污泥处理处置过程中恶臭产生机制和释放规律的研究尚不深入,导致污泥控臭除臭处理的效果仍不理想。因此,在归纳总结污泥常见恶臭物质及其产生来源的基础上,详细阐述了不同处理处置方式下污泥的恶臭污染特征与产生机制,从源头减排、过程控制、末端治理、排放管理4个方面评述了污泥恶臭减排控制措施的原理和发展前景,讨论了污泥恶臭污染防治的复杂性和挑战,以期为污泥恶臭污染防控提供参考。Abstract: As the scale of sewage treatment plants expanded, the production of sludge continuously increased in China. Although the treatment of sludge has been gradually paid more attention, the development of sludge treatment technology is still facing various challenges. Odor pollution emitted from sludge treatment and disposal cause negative effects on the surrounding environment and public health, and easily lead to public complaints. The deodorization is one of the technical problems that must be solved to improve the sludge treatment efficiency and to implement the sludge resource utilization. The component of malodorous compounds emitted from sludge are variable and complex, affecting by many different factors including the physical-chemical properties of sludge and the surrounding conditions. However, due to the lake of knowledge in the generation mechanism of odorants and the principle of odor formation, the performance of sludge odor control is often unsatisfactory. Thus, based on summarizing the general production sources of odorous substances in sludge, the pollution characteristics and generation mechanism of sludge odor upon different processing methods were expounded. The principles and development of various odor control measures were then reviewed from the perspectives of source emission reduction, process control, end-of-pipe treatment and discharge management to show the complexity and challenges in the sludge odor pollution prevention.
-
Key words:
- sludge /
- sludge treatment /
- sludge disposal /
- odor characteristics /
- emission reduction control measures
-
表 1 污泥处理处置过程中主要的恶臭物质嗅阈值及气味特征[11]
Table 1. Odor threshold and sensory properties during sludge treatment and disposal[11]
分类 物质名称 分子式 感官性质 嗅阈值/(mg·m−3) 含硫化合物 硫化氢 H2S 臭鸡蛋味 0.001 8 甲硫醇 CH3SH 烂菜心气味 0.000 1 二甲基硫醚 (CH3)2S 海鲜腥味 0.005 5 二甲基二硫醚 (CH3)2S2 洋葱味 0.046 3 含氮化合物 氨 NH3 强烈刺激性气味 0.227 7 三甲胺 (CH3)3N 鱼腥味 0.002 4 酸类 丙酸 CH3CH2COOH 刺激性气味 0.028 8 正丁酸 C3H7COOH 汗味、酸臭味 0.005 1 醛类 乙醛 CH3CHO 刺激性气味 0.035 4 丙醛 CH3CH2CHO 水果香味 0.041 5 苯系物 甲苯 C7H8 芳香气味 0.403 1 乙苯 C8H10 芳香气味 0.085 3 苯乙烯 C8H8 塑料味 0.158 1 对二甲苯 C8H10 芳香气味、水果香味 0.568 7 -
[1] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5. doi: 10.13789/j.cnki.wwe1964.2021.03.001 [2] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34. [3] CARRERA-CHAPELA F, DONOSO-BRAVO A, SOUTO J A, et al. Modeling the odor generation in WWTP: an integrated approach review[J]. Water, Air, & Soil Pollution, 2014, 225(6): 1-15. [4] 史昕龙, 陈绍伟. 城市污水污泥的处置与利用[J]. 环境保护, 2001(3): 45-46. doi: 10.3969/j.issn.0253-9705.2001.03.016 [5] JIANG G, MELDER D, KELLER J, et al. Odor emissions from domestic wastewater: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(17): 1581-1611. doi: 10.1080/10643389.2017.1386952 [6] LEWKOWSKA P, CIEŚLIK B, DYMERSKI T, et al. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques[J]. Environmental research, 2016, 151: 573-586. doi: 10.1016/j.envres.2016.08.030 [7] KARAGEORGOS P, LATOS M, KOTSIFAKI C, et al. Treatment of unpleasant odors in municipal wastewater treatment plants[J]. Water Science and Technology, 2010, 61(10): 2635-2644. doi: 10.2166/wst.2010.211 [8] 郭静, 梁娟, 匡颖, 等. 污水处理厂恶臭污染状况分析与评价[J]. 中国给水排水, 2002, 18(2): 41-42. doi: 10.3321/j.issn:1000-4602.2002.02.012 [9] BONNIN C, LABORIE A, PAILLARD H. Odor nuisances created by sludge treatment: problems and solutions[J]. Water Science and Technology, 1990, 22(12): 65-74. doi: 10.2166/wst.1990.0101 [10] DINCER F, MUEZZINOGLU A. Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas[J]. Journal of Environmental Science and Health Part A, 2008, 43(13): 1569-1574. doi: 10.1080/10934520802293776 [11] 王亘, 翟增秀, 耿静, 等. 40种典型恶臭物质嗅阈值测定[J]. 安全与环境学报, 2015, 15(6): 348-351. doi: 10.13637/j.issn.1009-6094.2015.06.072 [12] 杨庆, 李洋, 崔斌, 等. 城市污水处理过程中恶臭气体释放的研究进展[J]. 环境科学学报, 2019, 39(7): 2079-2087. [13] FISHER R M, LE-MINH N, SIVRET E C, et al. Distribution and sensorial relevance of volatile organic compounds emitted throughout wastewater biosolids processing[J]. Science of the Total Environment, 2017, 599: 663-670. [14] FISHER R M, LE-MINH N, ALVAREZ-GAITAN J P, et al. Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing[J]. Science of the Total Environment, 2018, 616: 622-631. [15] MURTHY S, KIM H, PEOT C, et al. Evaluation of Odor Characteristics of Heat‐Dried Biosolids Product[J]. Water environment research, 2003, 75(6): 523-531. doi: 10.2175/106143003X141312 [16] SIRONI S, CAPELLI L, CÉNTOLA P, et al. Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation[J]. Atmospheric Environment, 2010, 44(3): 354-360. doi: 10.1016/j.atmosenv.2009.10.029 [17] LEHTINEN J, VEIJANEN A. Odour monitoring by combined TD–GC–MS–Sniff technique and dynamic olfactometry at the wastewater treatment plant of low H2S concentration[J]. Water, Air, & Soil Pollution, 2011, 218(1): 185-196. [18] 唐小东, 王伯光, 赵德骏, 等. 城市污水处理厂的挥发性恶臭有机物组成及来源[J]. 中国环境科学, 2011, 31(4): 576-583. [19] KIM H, LEE H, CHOI E, et al. Characterization of odor emission from alternating aerobic and anoxic activated sludge systems using real-time total reduced sulfur analyzer[J]. Chemosphere, 2014, 117: 394-401. doi: 10.1016/j.chemosphere.2014.08.008 [20] 申翰彰. 城市污水处理厂污泥处理过程中恶臭气体排放特征和净化研究[D]. 北京: 北京林业大学, 2020. [21] KIM H, MURTHY S, PEOT C, et al. Examination of mechanisms for odor compound generation during lime stabilization[J]. Water Environment Research, 2003, 75(2): 121-125. doi: 10.2175/106143003X140908 [22] 刘璐, 陈同斌, 郑国砥, 等. 污泥堆肥厂臭气的产生和处理技术研究进展[J]. 中国给水排水, 2010, 26(13): 120-124. doi: 10.19853/j.zgjsps.1000-4602.2010.13.033 [23] CUI G, BHAT S A, LI W, et al. H2S, MeSH, and NH3 emissions from activated sludge: An insight towards sludge characteristics and microbial mechanisms[J]. International Biodeterioration & Biodegradation, 2022, 166: 105331. [24] HIGGINS M J, CHEN Y C, YAROSZ D P, et al. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors[J]. Water Environment Research, 2006, 78(3): 243-252. doi: 10.2175/106143005X90065 [25] 吴伟霞, 席北斗, 黄彩红, 等. 有机固废堆肥中产臭及除臭技术的微生物作用机制研究进展[J]. 环境科学研究, 2021, 34(10): 2486-2496. doi: 10.13198/j.issn.1001-6929.2021.05.38 [26] SUFFET I H, BURLINGAME G A, ROSENFELD P E, et al. The value of an odor-quality-wheel classification scheme for wastewater treatment plants[J]. Water Science and Technology, 2004, 50(4): 25-32. doi: 10.2166/wst.2004.0211 [27] 李冬娜, 马晓军. 污泥厌氧发酵产酸机理及应用研究进展[J]. 生物质化学工程, 2020, 54(2): 51-60. doi: 10.3969/j.issn.1673-5854.2020.02.008 [28] 沈玉君, 陈同斌, 刘洪涛, 等. 堆肥过程中臭气的产生和释放过程研究进展[J]. 中国给水排水, 2011, 27(11): 104-108. doi: 10.19853/j.zgjsps.1000-4602.2011.11.036 [29] GOLUEKE C G, OSWALD W J. Biological conversion of light energy to the chemical energy of methane[J]. Applied microbiology, 1959, 7(4): 219-227. doi: 10.1128/am.7.4.219-227.1959 [30] WATTS S F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide[J]. Atmospheric Environment, 2000, 34(5): 761-779. doi: 10.1016/S1352-2310(99)00342-8 [31] 李若愚. 城市污水处理厂恶臭气体排放特征与扩散规律研究[D]. 北京: 北京林业大学, 2021. [32] KELESSIDIS A, STASINAKIS A S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, 2012, 32(6): 1186-1195. doi: 10.1016/j.wasman.2012.01.012 [33] PARK M S, KISO Y, JUNG Y J, et al. Sludge thickening performance of mesh filtration process[J]. Water Science and Technology, 2004, 50(8): 125-133. doi: 10.2166/wst.2004.0505 [34] HAN Z, QI F, LI R, et al. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment[J]. Chemosphere, 2020, 249: 126077. doi: 10.1016/j.chemosphere.2020.126077 [35] 黄力华, 刘建伟, 夏雪峰, 等. 城市污水处理厂典型气体污染物产生特性研究[J]. 科学技术与工程, 2015, 15(3): 295-299. doi: 10.3969/j.issn.1671-1815.2015.03.059 [36] 眭光华, 李建军, 孙国萍. 城市污水处理厂恶臭污染源调查与研究[J]. 环境工程学报, 2008, 2(3): 399-402. [37] RAS M R, BORRULL F, MARCÉ R M. Determination of volatile organic sulfur compounds in the air at sewage management areas by thermal desorption and gas chromatography–mass spectrometry[J]. Talanta, 2008, 74(4): 562-569. doi: 10.1016/j.talanta.2007.06.017 [38] ZARRA T, NADDEO V, BELGIORNO V, et al. Instrumental characterization of odour: a combination of olfactory and analytical methods[J]. Water Science and Technology, 2009, 59(8): 1603-1609. doi: 10.2166/wst.2009.125 [39] ZARRA T, NADDEO V, BELGIORNO V, et al. Odour monitoring of small wastewater treatment plant located in sensitive environment[J]. Water Science and Technology, 2008, 58(1): 89-94. doi: 10.2166/wst.2008.330 [40] FRECHEN F B. Odour emission inventory of German wastewater treatment plants-odour flow rates and odour emission capacity[J]. Water Science and Technology, 2004, 50(4): 139-146. doi: 10.2166/wst.2004.0244 [41] LEITE W R M, GOTTARDO M, PAVAN P, et al. Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge[J]. Renewable Energy, 2016, 86: 1324-1331. doi: 10.1016/j.renene.2015.09.069 [42] MURTHY S, FORBES B, BURROWES P, et al. Impact of high shear solids processing on production of volatile sulfur compounds from anaerobically digested biosolids[J]. Proceedings of the Water Environment Federation, 2002, 2002(9): 64-75. doi: 10.2175/193864702784162741 [43] YAN W, XU H, LU D, et al. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions[J]. Bioresource Technology, 2022, 344: 126248. doi: 10.1016/j.biortech.2021.126248 [44] KIM J, NOVAK J T, HIGGINS M J. Multistaged anaerobic sludge digestion processes[J]. Journal of Environmental Engineering, 2011, 137(8): 746-753. doi: 10.1061/(ASCE)EE.1943-7870.0000372 [45] CHEN D, SZOSTAK P. Factor analysis of H2S emission at a wastewater lift station: a case study[J]. Environmental monitoring and assessment, 2013, 185(4): 3551-3560. doi: 10.1007/s10661-012-2809-4 [46] MURTHY S N, PEOT C, NORTH J, et al. Characterization and control of reduced sulfur odors from lime stabilized and digested biosolids[J]. Proceedings of the Water Environment Federation, 2002, 2002(3): 1105-1124. doi: 10.2175/193864702785302195 [47] KACKER R. Identification and generation pattern of odor-causing compounds in dewatered biosolids during long-term storage and effect of digestion and dewatering techniques on odors[M]. Blacksburg: Virginia Tech, 2011. [48] LI X, CHEN S, DONG B, et al. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds[J]. Chemosphere, 2020, 244: 125466. doi: 10.1016/j.chemosphere.2019.125466 [49] HAN Z, LI R, SHEN H, et al. Emission characteristics and assessment of odors from sludge anaerobic digestion with thermal hydrolysis pretreatment in a wastewater treatment plant[J]. Environmental Pollution, 2021, 274: 116516. doi: 10.1016/j.envpol.2021.116516 [50] WU G, PARKER W J. Development of a structured model for odour formation and emissions from anaerobic sludge digestion[J]. Proceedings of the Water Environment Federation, 2004, 2004(11): 237-253. doi: 10.2175/193864704784136180 [51] LOMANS B P, VAN DER DRIFT C, POL A, et al. Microbial cycling of volatile organic sulfur compounds[J]. Cellular and Molecular Life Sciences CMLS, 2002, 59(4): 575-588. doi: 10.1007/s00018-002-8450-6 [52] VERMA N, PARK C, NOVAK J T, et al. Effects of anaerobic digester sludge age on odors from dewatered biosolids[J]. Proceedings of the Water Environment Federation, 2006, 2006(12): 1119-1141. doi: 10.2175/193864706783749864 [53] FISHER R, BARCZAK R, GAITAN J P A, et al. Comparing static headspace and dynamic flux hood measurements of biosolids odour emissions[J]. Chemical Engineering Transactions, 2016, 54: 43-48. [54] ROSENFELD P E, HENRY C L, BENNETT D. Wastewater dewatering polymer affect on biosolids odor emissions and microbial activity[J]. Water environment research, 2001, 73(3): 363-367. doi: 10.2175/106143001X139380 [55] SPOELSTRA S F. Origin of objectionable odorous components in piggery wastes and the possibility of applying indicator components for studying odour development[J]. Agriculture and Environment, 1980, 5(3): 241-260. doi: 10.1016/0304-1131(80)90004-1 [56] CHEN Y C, HIGGINS M, MURTHY S, et al. Production of odorous indole, skatole, p-cresol, toluene, styrene, and ethylbenzene in biosolids[J]. Journal of Residuals Science and Technology, 2006, 3(4): 193-202. [57] JOHNSTON T, HIGGINS M, BRANDT R, et al. Effect of amendment addition on biosolids odors based on gas chromatography analysis and odor panel observations[J]. Proceedings of the Water Environment Federation, 2009: 607-626. [58] MATHUS T L, TOWNSEND D E, MILLER K W. Anaerobic biogenesis of phenol and p-cresol from L-tyrosine[J]. Fuel, 1995, 74(10): 1505-1508. doi: 10.1016/0016-2361(95)00109-I [59] NOVAK J T, MURTHY S, HIGGINGS M J, et al. Ten years of odor research on biosolids-what have we learned[J]. Proceedings of the Water Environment Federation, 2012, 2012(3): 527-541. doi: 10.2175/193864712811700633 [60] SHANKER R, BOLLAG J M. Transformation of indole by methanogenic and sulfate-reducing microorganisms isolated from digested sludge[J]. Microbial ecology, 1990, 20(1): 171-183. doi: 10.1007/BF02543875 [61] MA Q, MENG N, LI Y, et al. Occurrence, impacts, and microbial transformation of 3-methylindole (skatole): A critical review[J]. Journal of Hazardous Materials, 2021, 416: 126181. doi: 10.1016/j.jhazmat.2021.126181 [62] GAO W, YANG X, ZHU X, et al. The variation of odor characteristics of wastewater sludge treated by advanced anaerobic digestion (AAD) and the contribution pattern of key odorants[J]. Science of the Total Environment, 2022: 156722. [63] LIU S, ZHU N, LI L Y. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: stabilization process and mechanism[J]. Bioresource Technology, 2012, 104: 266-273. doi: 10.1016/j.biortech.2011.11.041 [64] DEMIRBAS A, COBAN V, TAYLAN O, et al. Aerobic digestion of sewage sludge for waste treatment[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2017, 39(10): 1056-1062. doi: 10.1080/15567036.2017.1289282 [65] GANCZARCZYK J, HAMODA M F, WONG H L. Performance of aerobic digestion at different sludge solid levels and operation patterns[J]. Water Research, 1980, 14(6): 627-633. doi: 10.1016/0043-1354(80)90120-7 [66] FISHER R M, BARCZAK R J, STUETZ R M. Identification of odorant characters using GC-MS/O in biosolids emissions from aerobic and anaerobic stabilisation[J]. Water Science and Technology, 2018, 2017(3): 736-742. doi: 10.2166/wst.2018.245 [67] LAYDEN N M, MAVINIC D S, KELLY H G, et al. Autothermal thermophilic aerobic digestion (ATAD)—Part I: Review of origins, design, and process operation[J]. Journal of Environmental Engineering and Science, 2007, 6(6): 665-678. doi: 10.1139/S07-015 [68] BOWKER R P G, TRUEBLOOD R. Control of ATAD odors at the Eagle River Water and Sanitation District[J]. Proceedings of the Water Environment Federation, 2002, 2002(5): 277-287. doi: 10.2175/193864702785139935 [69] WONG J W C, FANG M. Effects of lime addition on sewage sludge composting process[J]. Water Research, 2000, 34(15): 3691-3698. doi: 10.1016/S0043-1354(00)00116-0 [70] MENG L, LI W, ZHANG S, et al. Effects of sucrose amendment on ammonia assimilation during sewage sludge composting[J]. Bioresource Technology, 2016, 210: 160-166. doi: 10.1016/j.biortech.2016.01.094 [71] ZHU Y, ZHENG G, GAO D, et al. Odor composition analysis and odor indicator selection during sewage sludge composting[J]. Journal of the Air & Waste Management Association, 2016, 66(9): 930-940. [72] MAULINI-DURAN C, ARTOLA A, FONT X, et al. A systematic study of the gaseous emissions from biosolids composting: Raw sludge versus anaerobically digested sludge[J]. Bioresource Technology, 2013, 147: 43-51. doi: 10.1016/j.biortech.2013.07.118 [73] LI Y, LI W. Nitrogen transformations and losses during composting of sewage sludge with acidified sawdust in a laboratory reactor[J]. Waste Management & Research, 2015, 33(2): 139-145. [74] HAN Z, QI F, WANG H, et al. Emission characteristics of volatile sulfur compounds (VSCs) from a municipal sewage sludge aerobic composting plant[J]. Waste Management, 2018, 77: 593-602. doi: 10.1016/j.wasman.2018.05.049 [75] ZHAO S, YANG X, ZHANG W, et al. Volatile sulfide compounds (VSCs) and ammonia emission characteristics and odor contribution in the process of municipal sludge composting[J]. Journal of the Air & Waste Management Association, 2019, 69(11): 1368-1376. [76] HAN Z, QI F, WANG H, et al. Odor assessment of NH3 and volatile sulfide compounds in a full-scale municipal sludge aerobic composting plant[J]. Bioresource Technology, 2019, 282: 447-455. doi: 10.1016/j.biortech.2019.03.062 [77] LIANG Y, LEONARD J J, FEDDES J J, et al. A simulation model of ammonia volatilization in composting[J]. Transactions of the ASAE, 2004, 47(5): 1667. doi: 10.13031/2013.17609 [78] 李明峰, 马闯, 赵继红, 等. 污泥堆肥臭气的产生特征及防控措施[J]. 环境工程, 2014, 32(1): 92-96. [79] ROSENFELD P E, SUFFET I H. Understanding odorants associated with compost, biomass facilities, and the land application of biosolids[J]. Water Science and Technology, 2004, 49(9): 193-199. doi: 10.2166/wst.2004.0569 [80] 翁焕新, 高彩霞, 刘瓒, 等. 污泥硫酸盐还原菌(SRB)与硫化氢释放[J]. 环境科学学报, 2009, 29(10): 2094-2102. doi: 10.3321/j.issn:0253-2468.2009.10.012 [81] SCHIAVON M, MARTINI L M, CORRÀ C, et al. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices[J]. Environmental Pollution, 2017, 231: 845-853. doi: 10.1016/j.envpol.2017.08.096 [82] LAZAROVA V, BOUCHY L, SENANTE E, et al. Fingerprint of odour creation potential of sludge treatment[J]. Water Practice and Technology, 2008, 3(4): wpt2008082. doi: 10.2166/wpt.2008.082 [83] PAGANS E, BARRENA R, FONT X, et al. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534-1542. doi: 10.1016/j.chemosphere.2005.06.044 [84] MEL SUFFET I H, DECOTTIGNIES V, SENANTE E, et al. Sensory assessment and characterization of odor nuisance emissions during the composting of wastewater biosolids[J]. Water Environment Research, 2009, 81(7): 670-679. doi: 10.2175/106143008X390762 [85] EPSTEIN E, BOYETTE A, WU N. Odors and volatile organic compound emissions from composting facilities[J]. Proceedings of the Water Environment Federation, 2000, 2000(3): 789-810. doi: 10.2175/193864700785303394 [86] LI H F, IMAI T, UKITA M, et al. Compost stability assessment using a secondary metabolite: Geosmin[J]. Environmental Technology, 2004, 25(11): 1305-1312. doi: 10.1080/09593332508618374 [87] KROGMANN U, BOYLES L S, MARTEL C J, et al. Biosolids and sludge management[J]. Water environment research, 1997, 69(4): 534-550. doi: 10.2175/106143097X134830 [88] LOWE P. Developments in the thermal drying of sewage sludge[J]. Water and Environment Journal, 1995, 9(3): 306-316. doi: 10.1111/j.1747-6593.1995.tb00944.x [89] WANG Y, WANG F, JI M. Characteristics of Emitted Odor and Discharged Condensate Water of Sludge Thermal Drying Project in Shenzhen Nanshan Thermal Power Plant//Advanced Materials Research[J]. Trans Tech Publications Ltd, 2013, 777: 127-132. [90] WU M, WANG Z, ZHOU J, et al. Release characteristics and control of hydrogen sulfide during thermal drying of municipal wastewater sludge[J]. Journal of Material Cycles and Waste Management, 2018, 20(2): 946-954. doi: 10.1007/s10163-017-0657-6 [91] WENG H, DAI Z, JI Z, et al. Release and control of hydrogen sulfide during sludge thermal drying[J]. Journal of Hazardous Materials, 2015, 296: 61-67. doi: 10.1016/j.jhazmat.2015.04.037 [92] 翁焕新, 章金骏, 刘瓉, 等. 污泥干化过程氨的释放与控制[J]. 中国环境科学, 2011, 31(7): 1171-1177. [93] 刘瓒. 污泥干燥处理中典型恶臭的释放特点[D]. 杭州: 浙江大学, 2007. [94] DENG W Y, YAN J H, LI X D, et al. Emission characteristics of volatile compounds during sludges drying process[J]. Journal of Hazardous Materials, 2009, 162(1): 186-192. doi: 10.1016/j.jhazmat.2008.05.022 [95] ZHANG J, TIAN Y, CUI Y, et al. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study[J]. Bioresource Technology, 2013, 132: 57-63. doi: 10.1016/j.biortech.2013.01.008 [96] DING W, LI L, LIU J. Investigation of the effects of temperature and sludge characteristics on odors and VOC emissions during the drying process of sewage sludge[J]. Water Science and Technology, 2015, 72(4): 543-552. doi: 10.2166/wst.2015.246 [97] WENG H X, JI Z Q, CHU Y, et al. Benzene series in sewage sludge from China and its release characteristics during drying process[J]. Environmental Earth Sciences, 2012, 65(3): 561-569. doi: 10.1007/s12665-011-1100-2 [98] SHANABLEH A, JONES S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment[J]. Water Science and Technology, 2001, 44(10): 129-135. doi: 10.2166/wst.2001.0600 [99] ROSENFELD P E, HENRY C L, DILLS R L, et al. Comparison of odor emissions from three different biosolids applied to forest soil[J]. Water, Air, and Soil Pollution, 2001, 127(1): 173-191. [100] ZHANG J, SUN G, LIU J, et al. Co-combustion of textile dyeing sludge with cattle manure: Assessment of thermal behavior, gaseous products, and ash characteristics[J]. Journal of Cleaner Production, 2020, 253: 119950. doi: 10.1016/j.jclepro.2019.119950 [101] LIANG Y, XU D, FENG P, et al. Municipal sewage sludge incineration and its air pollution control[J]. Journal of Cleaner Production, 2021: 126456. [102] SEO B S, JEON Y H. A Study on the Odor and Ventilation in Sludge Incineration Facilities[J]. Journal of the Korea Safety Management and Science, 2020, 22(2): 7-13. [103] O’KELLY B C. Sewage sludge to landfill: Some pertinent engineering properties[J]. Journal of the Air & Waste Management Association, 2005, 55(6): 765-771. [104] DINCER F, ODABASI M, MUEZZINOGLU A. Chemical characterization of odorous gases at a landfill site by gas chromatography–mass spectrometry[J]. Journal of Chromatography A, 2006, 1122(1-2): 222-229. doi: 10.1016/j.chroma.2006.04.075 [105] ALLEN M R, BRAITHWAITE A, HILLS C C. Trace organic compounds in landfill gas at seven UK waste disposal sites[J]. Environmental Science & Technology, 1997, 31(4): 1054-1061. [106] FANG J J, YANG N, CEN D Y, et al. Odor compounds from different sources of landfill: characterization and source identification[J]. Waste Management, 2012, 32(7): 1401-1410. doi: 10.1016/j.wasman.2012.02.013 [107] GAO S, ZHAO P, LI Y, et al. Characterization and influence of odorous gases on the working surface of a typical landfill site: A case study in a Chinese megacity[J]. Atmospheric Environment, 2021, 262: 118628. doi: 10.1016/j.atmosenv.2021.118628 [108] LAOR Y, NAOR M, RAVID U, et al. Odorants and malodors associated with land application of biosolids stabilized with lime and coal fly ash[J]. Journal of Environmental Quality, 2011, 40(5): 1405-1415. doi: 10.2134/jeq2010.0033 [109] LI S, ZHANG K, ZHOU S, et al. Use of dewatered municipal sludge on Canna growth in pot experiments with a barren clay soil[J]. Waste Management, 2009, 29(6): 1870-1876. doi: 10.1016/j.wasman.2008.12.007 [110] 王维思. 污泥改良盐碱化土壤臭气逸散研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. [111] FAN H, LI L, LI Z, et al. Structure of sewage sludge-clay multiscale composite particles to control the mechanism of SO2 and H2S gas release[J]. Materials, 2022, 15(5): 1855. doi: 10.3390/ma15051855 [112] CREMADES L V, SORIANO C, CUSIDÓ J A. Tackling environmental issues in industrial ceramic sintering of sewage sludge: Odors and gas emissions[J]. Environment, Development and Sustainability, 2018, 20(4): 1651-1663. doi: 10.1007/s10668-017-9958-0 [113] PHOTHILANGKA P, SCHOEN M A, WETT B. Benefits and drawbacks of thermal pre-hydrolysis for operational performance of wastewater treatment plants[J]. Water Science and Technology, 2008, 58(8): 1547-1553. doi: 10.2166/wst.2008.500 [114] NGO P L, UDUGAMA I A, GERNAEY K V, et al. Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment[J]. Chemosphere, 2021, 281: 130890. doi: 10.1016/j.chemosphere.2021.130890 [115] FISHER R M, ALVAREZ-GAITAN J P, STUETZ R M. Review of the effects of wastewater biosolids stabilization processes on odor emissions[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(17): 1515-1586. doi: 10.1080/10643389.2019.1579620 [116] HIGGINS M J, MURTHY S N, NOVAK J T, et al. Effect of chemical addition on production of volatile sulfur compounds and odor from anaerobically digested biosolids[C]//Proceedings of Water Env. Fed. 75th Annual Conference. 2002. [117] VEGA E, MONCLUS H, GONZALEZ-OLMOS R, et al. Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes[J]. Journal of Environmental Management, 2015, 150: 111-119. [118] GRUCHLIK Y, FOUCHÉ L, JOLL C A, et al. Use of alum for odor reduction in sludge and biosolids from different wastewater treatment processes: Gruchlik et al[J]. Water Environment Research, 2017, 89(12): 2103-2112. doi: 10.2175/106143017X15054988926406 [119] TEPE N, YURTSEVER D, DURAN M, et al. Odor control during post-digestion processing of biosolids through bioaugmentation of anaerobic digestion[J]. Water Science and Technology, 2008, 57(4): 589-594. doi: 10.2166/wst.2008.008 [120] CHEN L, LI W, ZHAO Y, et al. Isolation and application of a mixotrophic sulfide-oxidizing Cohnella thermotolerans LYH-2 strain to sewage sludge composting for hydrogen sulfide odor control[J]. Bioresource Technology, 2022, 345: 126557. doi: 10.1016/j.biortech.2021.126557 [121] NGUYEN D, KHANAL S K. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process[J]. Biotechnology Advances, 2018, 36(7): 1971-1983. doi: 10.1016/j.biotechadv.2018.08.007 [122] LUO H, ZHANG D, TAYLOR M, et al. Aeration in sludge holding tanks as an economical means for biosolids odor control—A case study[J]. Water Environment Research, 2021, 93(10): 1808-1818. doi: 10.1002/wer.1582 [123] LIU N, GONG C, JIANG J, et al. Controlling odors from sewage sludge using ultrasound coupled with Fenton oxidation[J]. Journal of Environmental Management, 2016, 181: 124-128. [124] DHAR B R, YOUSSEF E, NAKHLA G, et al. Pretreatment of municipal waste activated sludge for volatile sulfur compounds control in anaerobic digestion[J]. Bioresource Technology, 2011, 102(4): 3776-3782. doi: 10.1016/j.biortech.2010.12.020 [125] SCHLEGELMILCH M, STREESE J, BIEDERMANN W, et al. Odour control at biowaste composting facilities[J]. Waste Management, 2005, 25(9): 917-927. doi: 10.1016/j.wasman.2005.07.011 [126] 许小平, 赵艳, 潘婷, 等. 污水处理厂除臭工艺收集系统的选择与分析[J]. 中国给水排水, 2012, 28(22): 54-58. [127] 王冬. 污水处理厂构筑物加盖(罩)除臭主要结构形式探讨[J]. 中国给水排水, 2010, 26(24): 47-50. doi: 10.19853/j.zgjsps.1000-4602.2010.24.012 [128] 张钢锋. 泄漏检测与修复(LDAR)技术在国内外的应用现状及发展趋势[J]. 环境工程学报, 2016, 10(9): 4621-4627. [129] KE J, LI S, ZHAO D. The application of leak detection and repair program in VOCs control in China’s petroleum refineries[J]. Journal of the Air & Waste Management Association, 2020, 70(9): 862-875. [130] ERDAL Z K, FORBES JR R H, WITHERSPOON J, et al. Recent findings on biosolids cake odor reduction—Results of WERF phase 3 biosolids odor research[J]. Journal of Environmental Science and Health Part A, 2008, 43(13): 1575-1580. doi: 10.1080/10934520802293792 [131] SUN X, TAN Z, HE X, et al. Initial active phase of in-vessel composting of sewage sludge, leaves and rice straw[J]. Nature Environment and Pollution Technology, 2022, 21(1): 83-90. doi: 10.46488/NEPT.2022.v21i01.009 [132] MURTHY S, HIGGINS M, CHEN Y C, et al. Influence of solids characteristics and dewatering process on volatile sulfur compound production from anaerobically digested biosolids[J]. Proceedings of the Water Environment Federation, 2003, 2003(1): 858-874. doi: 10.2175/193864703784292151 [133] CHEN Y C, HIGGINS M J, BEIGHTOL S M, et al. Anaerobically digested biosolids odor generation and pathogen indicator regrowth after dewatering[J]. Water Research, 2011, 45(8): 2616-2626. doi: 10.1016/j.watres.2011.02.014 [134] 陈丹丹, 窦昱昊, 卢平, 等. 污泥深度脱水技术研究进展[J]. 化工进展, 2019, 38(10): 4722-4746. [135] 陈俊, 陈同斌, 高定, 等. 城市污泥好氧发酵处理技术现状与对策[J]. 中国给水排水, 2012, 28(11): 105-108. [136] 陈俊, 高定, 陈同斌, 等. CTB污泥处理工艺的臭气控制效果研究[J]. 中国给水排水, 2010, 26(9): 134-137. [137] LE-MINH N, SIVRET E C, SHAMMAY A, et al. Factors affecting the adsorption of gaseous environmental odors by activated carbon: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(4): 341-375. doi: 10.1080/10643389.2018.1460984 [138] REN B, ZHAO Y, LYCZKO N, et al. Current status and outlook of odor removal technologies in wastewater treatment plant[J]. Waste and Biomass Valorization, 2019, 10(6): 1443-1458. doi: 10.1007/s12649-018-0384-9 [139] 陈运进, 黄华, 温元洪, 等. 催化型活性炭除臭系统对污水泵站臭气的净化效果[J]. 中国给水排水, 2007, 23(15): 76-78. doi: 10.3321/j.issn:1000-4602.2007.15.020 [140] WANG W, MA X, GRIMES S, et al. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal[J]. Chemical Engineering Journal, 2017, 328: 353-359. doi: 10.1016/j.cej.2017.06.178 [141] 秦琛. 污水处理中恶臭对周边环境的污染及治理[J]. 环境工程, 2009, 27(S1): 291-293. doi: 10.13205/j.hjgc.2009.s1.063 [142] LEBRERO R, RODRÍGUEZ E, GARCÍA-ENCINA P A, et al. A comparative assessment of biofiltration and activated sludge diffusion for odour abatement[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 622-630. [143] GHANBARABADI H, KHOSHANDAM B. Simulation and comparison of Sulfinol solvent performance with Amine solvents in removing sulfur compounds and acid gases from natural sour gas[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 415-420. doi: 10.1016/j.jngse.2014.12.024 [144] DOMEÑO C, RODRÍGUEZ-LAFUENTE A, MARTOS J M, et al. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization[J]. Environmental Science & Technology, 2010, 44(7): 2585-2591. [145] BINDRA N, DUBEY B, DUTTA A. Technological and life cycle assessment of organics processing odour control technologies[J]. Science of the Total Environment, 2015, 527: 401-412. [146] 沈东平, 方卫, 张甜甜. 城市污水厂除臭技术的应用综述[J]. 微生物学通报, 2009, 36(6): 887-891. doi: 10.13344/j.microbiol.china.2009.06.023 [147] WANG L, WANG X, NING P, et al. Simultaneous removal of COS, H2S, and dust in industrial exhaust gas by DC corona discharge plasma[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6568-6575. [148] LV J. Sewage odor elimination based on photocatalytic oxidation[J]. Chemical Engineering Transactions, 2018, 68: 499-504. [149] BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment–A review[J]. Journal of Cleaner Production, 2017, 152: 223-241. doi: 10.1016/j.jclepro.2017.03.093 [150] SAHU S, LENKA R K. European developments for purification of biological waste gas[J]. European Journal of Molecular Clinical Medicine, 2020, 7(11): 703-708. [151] KENNES C, VEIGA M C. Technologies for the abatement of odours and volatile organic and inorganic compounds[J]. Chemic. Engin. Transac, 2010, 23: 1-6. [152] LEBRERO R, BOUCHY L, STUETZ R, et al. Odor assessment and management in wastewater treatment plants: a review[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(10): 915-950. doi: 10.1080/10643380903300000 [153] PARK B G, SHIN W S, CHUNG J S. Simultaneous biofiltration of H2S, NH3 and toluene using an inorganic/polymeric composite carrier[J]. Environmental Engineering Research, 2008, 13(1): 19-27. doi: 10.4491/eer.2008.13.1.019 [154] 万顺刚, 李桂英, 安太成. 固定化微生物技术在大气恶臭污染物处理中应用研究进展[J]. 生态环境学报, 2011, 20(10): 1575-1584. doi: 10.3969/j.issn.1674-5906.2011.10.032 [155] 刘建伟, 马文林, 赵玉柱, 等. 两段生物滤池处理城市污水厂恶臭气体中试研究[J]. 环境工程学报, 2011, 5(8): 1825-1830. [156] 贾体沛, 王灿, 张亮, 等. 城镇污水处理厂生物除臭技术的关键影响因素及案例分析[J]. 环境工程学报, 2022, 16(4): 1074-1082. [157] FAN F, XU R, WANG D, et al. Application of activated sludge for odor control in wastewater treatment plants: Approaches, advances and outlooks[J]. Water Research, 2020, 181: 115915. doi: 10.1016/j.watres.2020.115915 [158] 杨凯雄, 李琳, 刘俊新. 挥发性有机污染物及恶臭生物处理技术综述[J]. 环境工程, 2016, 34(03): 107-111. doi: 10.13205/j.hjgc.201603022 [159] LEE E Y, LEE N Y, CHO K S, et al. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11[J]. Journal of Bioscience and Bioengineering, 2006, 101(4): 309-314. doi: 10.1263/jbb.101.309 [160] SEMPERE F, GABALDÓN C, MARTÍNEZ‐SORIA V, et al. Evaluation of a combined activated carbon prefilter and biotrickling filter system treating variable ethanol and ethyl acetate gaseous emissions[J]. Engineering in Life Sciences, 2009, 9(4): 317-323. doi: 10.1002/elsc.200900011 [161] WEI Z S, LI H Q, HE J C, et al. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process[J]. Bioresource Technology, 2013, 146: 451-456. doi: 10.1016/j.biortech.2013.07.114 [162] ANDERSEN K B, FEILBERG A, BEUKES J A. Use of non-thermal plasma and UV-light for removal of odour from sludge treatment[J]. Water Science and Technology, 2012, 66(8): 1656-1662. doi: 10.2166/wst.2012.367