-
人工湿地是一种运行费用低、管理维护简便的污水生态处理工艺,被广泛应用于生活、农业和工业废水的二级处理[1]。然而,在传统人工湿地系统中,有限的溶解氧(DO)使硝化过程不能顺利进行,从而导致脱氮效率不高[2],限制其进一步推广应用。此外,湿地系统被认为是全球N2O排放的重要来源[3-4],N2O全球变暖潜势为CO2的300倍,且其排放会造成严重的环境问题,如臭氧层破坏等[5]。生物炭作为一种环保材料,因其孔隙多、比表面积大等特点,常被应用于提升人工湿地脱氮性能,并实现温室气体减排[6-7]。现有研究表明,将生物炭添加至潜流人工湿地,能显著提升脱氮效率。当生物炭投加比为30%时,NH4+-N去除率为 (98.18±1.47) %[8],且在潜流人工湿地中,投加40%生物炭后可实现N2O减排70.13%[9]。
然而,现有研究并未明确湿地生物脱氮过程中,生物炭实现N2O减排的具体途径。由于人工湿地系统内同时具有好氧、厌氧、缺氧的环境,通过直接测定很难明确硝化、反硝化作用对N2O释放的具体贡献[10]。通过加入化学抑制剂阻断特定的N2O转化途径,从而实现量化N2O排放途径[11]。目前,已有研究指出,丙烯硫脲(Allylthiourea, ATU)+NaClO3作为化学阻断剂可用于研究污水生物处理中N2O的排放特征[12],而利用乙炔抑制剂法亦可用于量化N2O的排放途径[13]。
基于此,本研究通过在温室内构建生物炭曝气潜流人工湿地,以曝气潜流湿地作为对照,探究生物炭对曝气潜流湿地污染物去除及N2O释放的影响,同时采用化学抑制剂法量化N2O排放途径,分析湿地中生物炭对N2O排放途径的影响,以期为生物炭在人工湿地中进一步的应用提供参考。
生物炭的投加对曝气人工湿地中N2O主要产排途径的影响
Influences of biochar on the main production and discharge pathways of N2O in aerated constructed wetlands
-
摘要: 生物炭由于具有良好的微孔结构,较大的比表面积,被用于改善人工湿地内部环境,可实现强化脱氮和氧化亚氮(N2O)减排,但生物炭对N2O减排的途径尚不明晰。通过在温室内构建生物炭曝气潜流湿地(BW),以曝气潜流湿地(CK)作为对照,采用化学抑制剂法,量化湿地中N2O的排放途径,探究生物炭对N2O的减排效应。结果表明,生物炭投加可以显著提高湿地脱氮效率(p<0.05)。CK和BW系统N2O的平均释放量分别为17.62 mg·(m2·d)−1和10.45 mg·(m2·d)−1,30%的生物炭投加可实现N2O减排40.69%。化学抑制剂实验表明,湿地系统中硝化和反硝化作用对N2O释放的贡献率分别为43.48%和34.81%。生物炭的添加可使上述2个主要脱氮过程的N2O减排43.20%和71.93%。本研究可为污水处理流程的碳减排提供参考。Abstract: Biochar is used to improve the internal environment of constructed wetlands, achieving nitrogen removal enhancement and nitrous oxide (N2O) emission reduction, due to the microporous structure and huge specific surface area. However, the way of N2O emission reduction by biochar is not clear yet. In this experiment, the aeration subsurface flow constructed wetland with biochar (BW) was built in the greenhouse, using the one without biochar (CK) as control. The chemical inhibitor method was used to quantify the N2O emission pathway and explore the reduction effects of biochar on N2O. The results revealed that biochar addition could significantly improve the nitrogen removal efficiency (p <0.05). The average release of N2O in CK and BW were 17.62 mg·(m2·d)−1 and 10.45 mg·(m2·d)−1, respectively, and 30% biochar addition would reduce N2O emissions by 40.69%. Chemical inhibitor tests showed that the contribution of nitrification and denitrification to N2O release were 43.48% and 34.81%, and the addition of biochar could reduce the N2O emission by 43.20% and 71.93%, respectively, in these two major nitrogen removal processes.
-
Key words:
- constructed wetland /
- biochar /
- nitrogen removal /
- nitrous oxide /
- chemical inhibition
-
表 1 不同湿地的进出水水质
Table 1. Characteristics of influents and effluents of different CWs
水质指标 进水值 出水值 CK BW COD (410.81±11.14) mg·L−1 (45.92±12.54) mg·L−1 (36.92±13.63) mg·L−1 NH4+-N (39.90±2.08) mg·L−1 (8.00±2.77) mg·L−1 (4.31±1.78) mg·L−1 TN (43.45±2.89) mg·L−1 (10.56±2.04) mg·L−1 (6.21±2.15) mg·L−1 TP (5.08±0.57) mg·L−1 (1.85±0.97) mg·L−1 (1.70±0.63) mg·L−1 DO (8.12±0.15) mg·L−1 (0.53±0.12) mg·L−1 (0.48±0.08) mg·L−1 pH 7.64±0.08 7.43±0.06 7.36±0.08 注:NO3−-N和NO2−-N未检出。 -
[1] ZHANG X W, HU Z, NGO H H, et al. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland[J]. Water Research, 2018, 130: 79-87. doi: 10.1016/j.watres.2017.11.061 [2] FU G P, HUANGSHEN L K, GUO Z P, et al. Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland[J]. Bioresource Technology, 2017, 224: 214-221. doi: 10.1016/j.biortech.2016.11.007 [3] MANDER Ü, TOURNEBIZE J, KASAK K, et al. Climate regulation by free water surface constructed wetlands for wastewater treatment and created riverine wetlands[J]. Ecological Engineering, 2014, 72: 103-115. doi: 10.1016/j.ecoleng.2013.05.004 [4] JIANG X Y, TIAN Y F, JI X Y, et al. Influences of plant species and radial oxygen loss on nitrous oxide fluxes in constructed wetlands[J]. Ecological Engineering, 2020, 142(C): 105644-105644. [5] RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous Oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. doi: 10.1126/science.1176985 [6] ZHOU X, CHEN Z H, LI Z R, et al. Impacts of aeration and biochar addition on extracellular polymeric substances and microbial communities in constructed wetlands for low C/N wastewater treatment: Implications for clogging[J]. Chemical Engineering Journal, 2020, 396: 125349. doi: 10.1016/j.cej.2020.125349 [7] LU S B, ZHANG X L, WANG J H, et al. Impacts of different media on constructed wetlands for rural household sewage treatment[J]. Journal of Cleaner Production, 2016, 127: 325-330. doi: 10.1016/j.jclepro.2016.03.166 [8] 侯洁. 生物炭对潜流人工湿地生物脱氮影响机理研究[D]. 重庆: 西南大学, 2017. [9] 邓朝仁, 梁银坤, 黄磊, 等. 生物炭对潜流人工湿地污染物去除及N2O排放影响[J]. 环境科学, 2019, 40(6): 2840-2846. [10] 赵联芳, 梅才华, 丁小燕, 等. 人工湿地污水脱氮中N2O的产生机理和影响因素[J]. 科学技术与工程, 2013, 13(29): 8705-8714. doi: 10.3969/j.issn.1671-1815.2013.29.029 [11] ZHAO W, WANG Y Y, LIN X M, et al. Identification of the salinity effect on N2O production pathway during nitrification: Using stepwise inhibition and 15 N isotope labeling methods[J]. Chemical Engineering Journal, 2014, 253: 418-426. doi: 10.1016/j.cej.2014.05.052 [12] 李一冉, 张建, 胡振, 等. 以化学抑制法研究污水生物处理过程中N2O的释放源[J]. 中国环境科学, 2011, 31(9): 1438-1443. [13] 高雪梅, 佘冬立, 颜晓元, 等. 不同量碳源输入梯度下果园排水沟底泥氮素反硝化与N2O排放研究[J]. 环境科学, 2016, 37(7): 2731-2737. [14] 王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学, 2018, 39(10): 4505-4511. doi: 10.13227/j.hjkx.201801302 [15] HUANG L, CHEN Y C, LIU G, et al. Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L. ) using thermogravimetric analysis[J]. Energy, 2015, 87: 31-40. doi: 10.1016/j.energy.2015.04.089 [16] 蒋甫阳, 李凯, 方芳, 等. C/N对单级脱氮系统N2O排放量及其途径的影响[J]. 环境工程学报, 2016, 10(7): 3483-3490. doi: 10.12030/j.cjee.201502033 [17] 张苗苗, 沈菊培, 贺纪正, 等. 硝化抑制剂的微生物抑制机理及其应用[J]. 农业环境科学学报, 2014, 33(11): 2077-2083. [18] 张曼. 氮肥用量与硝化抑制剂对菜地N2O排放的影响研究[D]. 南京: 南京农业大学, 2015. [19] 国家环境保护总局. 水和废水监测分析方法[M]. (第4版). 北京: 中国环境科学出版社, 2002. [20] 姜丽秀. 好氧亚硝化颗粒污泥工艺及其N2O释放的研究[D]. 济南: 山东大学, 2012. [21] GUPTA P, ANN T W, LEE S M. Use of biochar to enhance constructed wetland performance in wastewater reclamation[J]. Environmental Engineering Research, 2016, 21(1): 36-44. doi: 10.4491/eer.2015.067 [22] BRASSARD P, GODBOUT S, RAGHAVAN V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved[J]. Journal of Environmental Management, 2016, 181: 484-497. [23] KIZITO S, LV T, WU S B, et al. Treatment of anaerobic digested effluent in biochar-packed verticalflow constructed wetland columns: role of media and tidal operation[J]. Science of the Total Environment, 2017, 592: 197-205. doi: 10.1016/j.scitotenv.2017.03.125 [24] FAN J L, ZHANG B, ZHANG J, et al. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands[J]. Bioresource Technology, 2013, 141: 117-122. doi: 10.1016/j.biortech.2013.03.077 [25] ZHOU X, LIANG C L, JIA L X, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: Impact of influent strengths[J]. Bioresource Technology, 2018, 247: 844-850. doi: 10.1016/j.biortech.2017.09.044 [26] 陈炜. 序批式人工湿地污水处理氧化亚氮减排实验研究[D]. 重庆: 重庆大学, 2014. [27] MAMPAEY K E, DE KREUK M K, VAN DONGEN U, et al. Identifying N2O formation and emissions from a full-scale partial nitritation reactor[J]. Water Research, 2016, 88: 575-585. doi: 10.1016/j.watres.2015.10.047 [28] KAMPSCHREUR M J, TEMMINK H, KLEEREBEZEM R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17): 4093-4103. doi: 10.1016/j.watres.2009.03.001 [29] LIU X. , MAO P N, LI L H, et al. Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis[J]. Science of the Total Environment, 2019, 656: 969-976. doi: 10.1016/j.scitotenv.2018.11.396 [30] FENG Z J, ZHU L Z. Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil[J]. Science of the Total Environment, 2017, 584-585: 776-782. doi: 10.1016/j.scitotenv.2017.01.115 [31] LIANG Y K, WANG Q H, HUANG L, et al. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity[J]. Bioresource Technology, 2020, 307: 123249. [32] 吕婉琳. 生物炭对潜流人工湿地N2O排放的影响机理研究[D]. 重庆: 西南大学, 2018. [33] JI B H, CHEN J Q, LI W, et al. Greenhouse gas emissions from constructed wetlands are mitigated by biochar substrates and distinctly affected by tidal flow and intermittent aeration modes[J]. Environmental Pollution, 2020, 271: 116328.