-
随着机场建设规模和飞行覆盖范围的逐年扩大,飞机噪声污染扰民事件日益严重。作为飞机噪声管控的重要基础措施,飞机噪声自动监测系统已在国内外众多机场得到应用[1-4],而最新公布的《中华人民共和国噪声污染防治法》也明确提出“对机场周围民用航空器噪声进行监测”。飞机噪声监测点位布设往往与机场规模、地形地貌、周边功能区分布等因素密切联系[5-7]。方孝华等[8]提出,对拟设点位周边噪声污染状况、人口、建筑物和地形以及气象条件等因素,应按相关要求进行优化。面对飞机噪声污染频发又无法对所有声环境敏感点实现自动监测的境况,如何实现飞机噪声自动监测点位决策优化,通过有限的监测点位实现监测系统代表性、有效性和经济性的最大化,是当前亟需解决的现实问题。目前,用于噪声监测点位优化的研究方法较多,但飞机噪声监测点位的优化尚未形成一套成熟完善的标准体系[9-11]。已有的机场噪声监测优化研究方法(如蜂群算法、最小定点覆盖模型等[12-13])主要从传感器网络节点部署和区域覆盖的角度进行优化,未考虑周边环境敏感点影响指标。现状机场周边环境敏感点的监测布设大多通过敏感点手工噪声监测值比较以及专家经验来确定,敏感点手工监测能够反映局部区域噪声影响程度,但难以覆盖所有敏感点位,专家经验易受主观因素影响,存在判定标尺不一等问题。
环境监测布点受影响源位置、源强、影响途径、受体特征等多个属性影响,点位优化属于多属性决策问题,属性权重的合理确定对决策结果的准确性至关重要。目前,获得权重的方法主要包括主观赋权法和客观赋权法。主观赋权法即决策者根据主观偏好给出属性权重,通常具有主观偏差性;而客观权重是基于客观信息矩阵,再通过最小平方法[14]、熵权法[15]等进行权重向量求解,受信息数量与数值大小影响,对于表现稳定的重要性指标或表现不稳定的非重要性指标,容易导致权重信息损失。有研究[16-18]表明,通过主观与客观权重相结合获得综合权重的方式,可在一定程度上避免权重损失。
目前,监测点位优化决策的常用评价和优化方法有TOPSIS法[19-20]、物元可拓法[21-22]、最优指标法[23]等。TOPSIS法[24]通过评价目标属性信息与最优解、最劣解距离来进行排序或通过接近程度进行优化;物元可拓模型[25]通过构造目标物元矩阵和可拓节域物元矩阵,建立可拓集与目标物元集之间的关联函数,计算方法较复杂;最优指标法[23]通过评价目标属性信息与最优水平的接近程度来进行决策,计算方法简便,但未考虑属性最劣水平,在属性最劣水平差异较大的情况下,会导致评价结果具有一定偏差。综上所述,本研究以国内某新建大型机场飞机噪声自动监测点位布设为研究实例,构建以拟选点位的噪声敏感度、噪声等值线距离、主航迹线距离以及交通干线干扰等属性为指标的评价体系,将综合权重-TOPSIS法应用于监测点位评价优化过程,并从点位空间和指标数据分布的角度对方法可行性和优劣性进行定量分析,旨在为优化飞机噪声自动监测点位及完善监测方法体系建设提供参考。
基于综合权重-TOPSIS法的飞机噪声自动监测点位优化及效果对比
Optimization and effect comparison of aircraft noise automatic monitoring sites based on comprehensive weight-TOPSIS
-
摘要: 为克服飞机噪声监测系统传统布点方式存在的主观偏差,通过有限的监测点位实现监测系统代表性、有效性和经济性的最大化,采用综合权重-TOPSIS法对监测点布设位置与数量进行优化;基于机场布局、飞机噪声等值线、交通干线、土地利用及行政区划等机场所在区域相关信息空间叠图,构建机场噪声评价指标体系;结合决策群体主观偏好与指标表征数据的熵权,应用综合权重-TOPSIS法对某大型机场飞机噪声自动监测点位进行优化。结果表明:指标体系主要参考因素是飞机噪声等值线距离(指标②)、噪声敏感度(指标①)和主航迹线距离(指标③),综合权重值分别为0.327、0.293和0.221;拟选监测点位指标①、②、③的相对贡献率变化较大,说明点位受噪声敏感度、飞机噪声影响差异性大;根据相对最优贴近度值,将20个拟选点位优化为12个点位,与物元可拓法、最优指标法点位重复率分别为66.7%、75.0%,综合权重-TOPSIS法对飞机噪声等值线距离(指标②)和主航迹线距离(指标③)的优化效果均为最好。本研究成果可为飞机噪声自动监测体系标准化建设提供参考。Abstract: In order to overcome the subjective bias of traditional site layout of aircraft noise monitoring system, the comprehensive weight TOPSIS method was used to optimize the layout position and quantity of monitoring points to realize the representativeness, effectiveness and economy of the monitoring system. Based on the spatial overlay of information, such as airport layout, aircraft noise contours, traffic arteries, land use, and administrative divisions, etc.. the evaluation index system for airport environmental noise was constructed. Combined with the entropy weight of decision-making group’s subjective preferences and the index representation data, the comprehensive weight-TOPSIS method was used to optimizing aircraft noise automatic monitoring sites at a big airport. The results showed that the main reference factors were index ②: aircraft noise contour distance, index ①: noise sensitivity and index ③: main flight path line distance, the comprehensive weights were 0.327, 0.293 and 0.221, respectively. The relative contribution rates of the above index at these proposed monitoring sites changed greatly, indicating there were relatively big differences in noise sensitivity and aircraft noise among these points. According to the relative optimal closeness value, the 20 proposed points were optimized to 12 points, in which the point repetition rates of the matter-element extension method and the optimal index method were 66.7% and 75.0%, respectively. After the normalization of the index values, the comprehensive weight-TOPSIS method had the best optimization effects on index ② and index ③. The research results can provide a reference for the standardization construction of the aircraft noise automatic monitoring system.
-
Key words:
- aircraft noise /
- automatic monitoring /
- position optimization /
- comprehensive weight /
- TOPSIS
-
表 1 评价指标含义与属性
Table 1. Implication and attribute of evaluation index
指标代码 评价指标 指标表征 指标属性 ① 噪声敏感度 监测点位所在地用地类型与噪声控制区级别 收益型指标 ② 飞机噪声等值线距离 监测点位与飞机噪声等值线的直线最短距离 成本型指标 ③ 主航迹线距离 监测点位与最近一条主航迹线的直线最短距离 成本型指标 ④ 交通噪声影响 监测点位与交通干线(道路/轨道)的直线最短距离 收益型指标 表 2 噪声敏感度量化赋值
Table 2. Quantification value of noise sensitivity
噪声敏感度 城乡用地类型 噪声控制区级别 受影响人群数量/人 量化赋值 敏感 居民住宅、教育科研、医疗卫生等 1 ≥500 10 敏感 居民住宅、教育科研、医疗卫生等 1 100~500 9 敏感 居民住宅、教育科研、医疗卫生等 1 <100 8 较敏感 行政办公、文化艺术、商业服务等 2 ≥100 6 较敏感 行政办公、文化艺术、商业服务等 2 <100 5 较不敏感 工业生产、物流仓储、体育娱乐、公园广场等 3 — 3 不敏感 农业生产、矿业生产、交通设施、公用设施等 4 — 1 注:噪声敏感度和城乡用地类型参照《机场周围飞机噪声环境标准》(GB 9660-1988)[26]和美国联邦航空局(FAA)提出的《机场噪声相容性规划》进行分类;量化赋值按受飞机噪声影响度的高低加以确定。 表 3 拟选监测点位指标量化值
Table 3. Quantitative value of indicators of monitoring points
点位编号 噪声敏感度
(指标①)飞机噪声等值线
距离(指标②)主航迹线
距离(指标③)交通噪声影响
(指标④1))点位编号 噪声敏感度
(指标①)飞机噪声等值线
距离(指标②)主航迹线
距离(指标③)交通噪声影响
(指标④1))E01 5 2.630 0 1.310 0 0.200 0 E11 3 10.250 0 0.225 0 0.200 0 E02 8 0.500 0 0.075 0 0.200 0 E12 9 11.160 0 0.463 0 0.200 0 E03 5 0.500 0 0.067 5 0.200 0 E13 10 11.290 0 0.556 0 0.200 0 E04 8 0.300 0 0.022 5 0.100 0 E14 10 10.880 0 0.463 0 0.200 0 E05 8 0.281 0 0.788 0 0.200 0 E15 5 0.728 0 0.894 0 0.200 0 E06 5 0.844 0 1.010 0 0.200 0 N06 9 0.600 0 0.012 0 0.200 0 E07 6 0.281 0 0.612 0 0.200 0 N07 8 0.282 0 0.206 0 0.150 0 E08 6 15.380 0 0.225 0 0.200 0 N08 5 1.880 0 0.263 0 0.200 0 E09 8 13.310 0 0.327 0 0.200 0 N09 5 2.340 0 0.327 0 0.200 0 E10 5 14.160 0 0.498 0 0.200 0 N10 8 1.690 0 0.225 0 0.120 0 注:1)参照《公路建设项目环境影响评价规范》(JTG B03-2006)[27],交通噪声影响在路中心线两侧各200 m范围内,故指标④忽略与交通干线距离大于200 m点位的实际距离,表征值均取200 m。 表 4 指标权重值
Table 4. Weigth value of the index
权重
类型噪声敏感度
(指标①)飞机噪声等值线
距离(指标②)主航迹线距离
(指标③)交通噪声影响
(指标④)客观 0.296 0.348 0.196 0.159 主观 0.287 0.278 0.280 0.155 综合 0.293 0.327 0.221 0.158 表 5 监测点位最优贴近度、指标相对贡献率及优化结果
Table 5. Monitoring sites ranking, index contribution rate and optimization results
序号 点位编号 最优
贴近度指标相对贡献率/% 点位分组 优选结果 噪声敏感度
(指标①)飞机噪声等值线
距离(指标②)主航迹线距离
(指标③)交通噪声影响
(指标④)1# N06 0.079 756 26.41 33.66 23.27 16.65 N06 N06 2# E02 0.153 571 23.24 35.79 23.38 17.59 E02、N07 E02、N07 3# N07 0.214 641 26.04 40.68 23.42 9.85 E02、N07 E02、N07 4# E05 0.267 548 26.71 41.73 11.36 20.21 E05、N10 E05 5# N10 0.280 259 28.97 41.04 25.61 4.38 E05、N10 E05 6# E04 0.286 703 27.70 43.23 29.06 0 E04 E04 7# E07 0.327 761 17.20 44.80 16.30 21.70 E07、E03、N08 E07、E03 8# E03 0.330 112 10.78 41.52 27.29 20.40 E07、E03、N08 E07、E03 9# N08 0.358 888 11.74 41.01 25.04 22.21 E07、E03、N08 E07、E03 10# N09 0.370 972 12.10 40.80 24.22 22.88 N09、E14 N09 11# E14 0.391 745 42.26 14.06 20.83 22.85 N09、E14 N09 12# E15 0.409 924 13.28 50.34 11.25 25.13 E15、E13、E12、E06 E15、E13 13# E13 0.410 205 43.83 13.25 19.23 23.69 E15、E13、E12、E06 E15、E13 14# E12 0.423 196 38.92 14.16 22.38 24.54 E15、E13、E12、E06 E15、E13 15# E06 0.424 668 13.77 51.77 8.41 26.05 E15、E13、E12、E06 E15、E13 16# E01 0.484 069 16.15 53.28 0 30.56 E01、E09 E01 17# E09 0.487 431 36.08 7.73 28.89 27.30 E01、E09 E01 18# E08 0.573 980 26.78 0 39.45 33.77 E08、E11 E08 19# E11 0.577 418 0 24.45 40.71 34.85 E08、E11 E08 20# E10 0.622 275 20.57 6.49 34.02 38.92 E10 — 注:4个指标相对贡献率的标准偏差依次为指标① 11.53、指标② 16.70、指标③ 9.96、指标④ 9.52。 -
[1] 顾徐衡, 张佳萍. 浅谈中国机场噪声监控系统的发展[J]. 环境监控与预警, 2017, 9(4): 62-66. doi: 10.3969/j.issn.1674-6732.2017.04.016 [2] 闫国华, 李启龙. 单机飞机噪声等值线面积与测量点噪声级关系[J]. 环境工程学报, 2017, 11(8): 4881-4887. [3] 龚辉, 王巧燕. 机场航空噪声监测终端选址方法和实践[J]. 噪声与振动控制, 2013, 33(1): 140-142. [4] 余成轩. 机场航空噪声监测系统及其作用[J]. 中国民航大学学报, 2012, 30(6): 71-74. doi: 10.3969/j.issn.1674-5590.2012.06.017 [5] 王文团, 郑雁, 王文雷, 等. 飞机噪声对机场周围敏感区域影响的探讨[J]. 噪声与振动控制, 2006, 26(5): 107-110. [6] 王文团, 李恒庆, 卢守舟, 等. 机场周围飞机噪声影响规律的研究[J]. 中国环境监测, 2008, 24(6): 92-95. doi: 10.3969/j.issn.1002-6002.2008.06.022 [7] 符江涛. 机场周围飞机噪声测量的影响因素分析[J]. 中国环境监测, 2016, 32(4): 126-129. [8] 方孝华, 陈潇江. 功能区噪声自动监测点位布设探讨[J]. 环境监控与预警, 2010, 2(4): 23-25. doi: 10.3969/j.issn.1674-6732.2010.04.007 [9] 田岳林, 李金玉, 韩雨婧, 等. 机场噪声自动监测系统应用现状与前景展望[J]. 环境监控与预警, 2021, 13(4): 59-66. [10] 申旭辉. 机场环保验收的噪声监测方法探讨[J]. 噪声与振动控制, 2011, 31(4): 115-118. doi: 10.3969/j.issn.1006-1355-2011.04.027 [11] 王暾. 机场飞机噪声自主验收监测难点与解决对策探讨[J]. 中国环境监测, 2020, 36(3): 127-131. [12] 丁文婷, 徐涛, 杨国庆. 单个飞机噪声事件最小顶点覆盖模型的机场噪声监测点分布方法[J]. 噪声与振动控制, 2012, 32(3): 166-170. [13] 丁建立, 朱德龙, 陈蓉. 基于蜂群理论的机场噪声监测点布局优化方法[J]. 计算机与数字工程, 2014, 42(5): 743-746. [14] CHU A T W, KALABA R E, SPINGARN K. A comparison of two methods for determining the weights of belonging to fuzzy sets[J]. Journal of Optimization Theory & Applications, 1979, 27(4): 531-538. [15] 周荣喜, 何大义, 徐建荣. 基于决策者偏好的区间型属性熵权确定方法[J]. 运筹与管理, 2010, 19(1): 60-64. [16] 周荣喜, 范福云, 何大义, 等. 多属性群决策中基于数据稳定性与主观偏好的综合熵权法[J]. 控制与决策, 2012, 27(8): 1169-1174. [17] 苏律文, 杨侃, 邓丽丽, 等. 主观偏好和改进熵权的TOPSIS法在长江中游水库多目标调度中的应用[J]. 水电能源科学, 2018, 36(9): 76-80. [18] 蒋艳君, 谢悦波, 黄旻. 基于改进TOPSIS法的水质监测断面优化研究[J]. 南水北调与水利科技, 2016, 14(5): 78-82. [19] 许丽忠, 张江山, 王菲凤. 熵权多目标决策环境监测优化布点模型及应用[J]. 环境工程, 2007, 25(1): 61-63. [20] 冯光文, 胡有华, 刘茜. 熵权TOPSIS法在新疆辐射环境监测优化布点中的应用[J]. 辐射研究与辐射工艺学报, 2009, 27(5): 269-274. [21] 钱琪所, 林秀珠. 城市噪声监测优化布点研究[J]. 环境科学导刊, 2015, 34(4): 112-117. [22] 谢永霞, 胡素霞, 叶晓彬. 物元分析进行噪声监测优化布点[J]. 河南师范大学学报(自然科学版), 2001, 29(1): 70-73. [23] 张苗云, 张迎, 钱益跃. 最优指标法在环境监测优化布点中的应用[J]. 安全与环境学报, 2004, 4(2): 66-67. [24] HWANG C L, YOON K. Multiple Attribute Decision Making: Methods and Applications[M]. Berlin: Springer-Verlag, 1981. [25] 谢伊涵, 李根, 杨梦杰, 等. 基于PSR和物元可拓模型的跨界河流健康评价: 以太浦河干流为例[J]. 华东师范大学学报(自然科学版), 2020(1): 110-122. [26] 国家环境保护局: 机场周围飞机噪声环境标: GB 9660-1988[S]. 北京: 中国环境科学出版社, 1988. [27] 中华人民共和国交通部: 公路建设项目环境影响评价规: JTG B03-2006[S]. 北京: 人民交通出版社, 2006. [28] 秦铁山. 浅论按数量标志分组时的组数和组距[J]. 鞍山钢铁学院学报, 1993, 16(1): 42-45. [29] 王友胜. 淮河流域黄泛区风水侵蚀格局及其驱动因子研究[D]. 济南: 山东农业大学, 2012.