-
土壤是人类农业生产的物质基础,一旦遭受污染,会对粮食安全和人体健康造成危害。2014年发布的《全国土壤污染状况调查公报》[1]显示,我国土壤重金属污染问题不容乐观,污染土壤中约82.4%的土壤受到重金属及准金属污染,且土壤重金属污染具有隐蔽性、滞后性、治理难、周期长的特点[2]。重金属极易在土壤-植株体系内迁移和累积,会造成环境污染和生态破坏。因此,对土壤重金属的治理迫在眉睫。
目前,土壤重金属的处理方法包括物理法(土壤淋洗、蒸汽浸提、电动力学修复)、化学法(化学修复剂)和生物法(微生物催化降解、植物修复、动物修复)[3]。化学原位钝化技术因其成本低、见效快、处理效果显著而得到广泛的应用[4]。常用的钝化剂主要有石灰[5]、磷酸盐[6]、有机质[7-8]、金属氧化物[9-11]和黏土矿物[12]。其中,凹凸棒石是一种典型的含水富镁铝硅酸盐黏土矿物,具有独特的化学成分和物理结构,内表面积大、孔隙较多、离子交换能力强,在化工、环保和印染等领域得到了广泛的应用。谭科艳等[13]研究了凹凸棒石对铜锌镉重金属污染土壤的修复效果,结果表明,适量添加凹凸棒石黏土矿物可对Cu的平均修复率达到31.50%,对Zn元素的平均修复率达到26.15%,对Cd元素的平均修复率达到34.92%,能够有效减少蔬菜对Cu、Zn、Cd元素的吸收。马博[14]研究表明,凹凸棒石综合钝化能力更强,且在酸性较高的极端条件下效果优于膨润土和沸石,低配比凹凸棒石对衡阳尾矿中Cr、Zn、Cd、Pb、Cu的钝化效果显著。ZHANG等[15]发现,凹凸棒石的施加可显著降低Cu的生物可利用态质量分数,缓解重金属Cu对油菜植株的生理胁迫效应。
常用的凹凸棒石改性方法有无机改性、有机改性、生物质改性和微波改性[16]。LIANG等[17]通过制备巯基改性凹凸棒石钝化Cd污染土壤,可显著增强土壤颗粒对Cd的吸附,抑制农作物对重金属Cd的吸收。XU等[18]将纳米零价铁负载凹凸棒石施用进土壤中,可有效促进重金属Cd、Cr和Pb发生形态转变,并将其固定下来。甘肃省具有丰富的凹凸棒石矿藏,但常常因为品位较低未能得到大规模开发利用。为解决此问题,制备5种不同体积分数H2SO4、不同改性时间的酸改性凹凸棒石,探讨不同钝化材料的添加量对土壤重金属Cu和Zn的钝化效果,并结合环境风险指数和重金属修复效率评估酸改性凹凸棒石的最佳投加量,以期为农田重金属污染土壤的治理和甘肃省凹凸棒石的应用提供参考。
酸改性凹凸棒石对土壤Cu-Zn的钝化修复
Stabilization of Cu-Zn in soil by acid-modified attapulgite
-
摘要: 过量的重金属积累在农田土壤中会对粮食安全和人体健康造成危害。通过调整酸体积分数和改性时间,制备5种酸改性凹凸棒石,分别按2、4、8、16和24 g·kg−1的投加量施用于土壤中,通过钝化实验,结合单级提取态和BCR多级提取态,对酸改性凹凸棒石的钝化效果进行评价,并分析了重金属污染土壤钝化前后的环境风险因子和修复效率。结果表明,添加16 g·kg−1的酸改性凹凸棒石,可有效改善土壤理化性质,H2O提取态Cu、Zn质量分数分别较对照组降低了25.91%~47.87% 和49.69%~65%,二乙烯三胺五乙酸提取态(DTPA提取态)Cu、Zn质量分数分别较对照组降低了8.63%~24.30% 和28.26%~46.84%。酸改性凹凸棒石的施用也促进了重金属Cu和Zn由酸溶态、可还原态向较稳定的可氧化态、残渣态转变。当投加量为16 g·kg−1时,12.5%体积分数H2SO4改性72 h制得的酸改性凹凸棒石处理组对Cu、Zn的修复效率最高,分别为11.96%和27.70%,本研究结果可为北方碱性农田重金属污染的钝化修复提供参考。Abstract: Excessive accumulation of heavy metals in farmland soil will do harm to food security and human health. In this study, five kinds of acid modified attapulgite were prepared by adjusting acid concentration and modification time and then applied to the soil at the dosage of 2, 4, 8, 16 and 24 g·kg−1, respectively. The stabilization effect of acid modified attapulgite was evaluated by stabilization experiment, combined with bioavailable extraction and BCR extraction. The environmental risk factor and remediation ratio of contaminated soil by heavy metals before and after stabilization were analyzed. The results showed that the addition of 16 g·kg−1 acid modified attapulgite could effectively improve the physical and chemical properties of soil. Compared with the control group, the H2O- extracted Cu and Zn were reduced by 25.91%~47.87% and 49.69%~65%, respectively. The diethylenetriamine pentaacetic acid extracted-Cu and Zn (DTPA-extracted Cu and Zn) were decreased by 18.63%~24.30% and 28.26%~46.84% respectively. The application of acid modified attapulgite also promoted the transformation of heavy metals Cu and Zn from acid soluble and reducible speciation to more stable oxidizable and residual speciation. When the dosage was 16 g·kg−1, the acid modified attapulgite treatment group prepared by 12.5% volume fraction H2SO4 modification for 72 hours had the highest remediation ratio for Cu and Zn, which was 11.96% and 27.70%, respectively. The results of this study can provide a reference for the stabilization and remediation of heavy metal pollution in alkaline farmland in north China.
-
Key words:
- attapulgite /
- acid modification /
- heavy metal /
- stabilization and remediation /
- environmental risk
-
表 1 酸改性凹凸棒石的制备方法
Table 1. The preparation method of acid modified attapulgite
实验编号 H2SO4体积分数/% 反应时间/h A1 10.0 72 A2 12.5 48 A3 12.5 72 A4 12.5 96 A5 15.0 72 表 2 土壤中单一重金属(Er)的潜在生态风险指数
Table 2. The potential ecological risk index of single heavy metal (Er) in Soil
Er 风险程度 Er ≤ 40 低风险 40 ≤Er <80 中风险 80 ≤ Er < 160 较高风险 160 ≤ Er < 320 高风险 Er > 320 极高风险 表 3 土壤中复合重金属(RI)的潜在生态风险指数
Table 3. The potential ecological risk index of total heavy metals (RI) in Soil
RI 风险程度 RI ≤ 150 低风险 150 ≤ RI <300 中风险 300 ≤ RI <600 高风险 RI ≥ 600 极高风险 表 4 不同添加量酸改性凹凸棒石钝化土壤中Cu的环境风险指数
Table 4. The environmental risk index of Cu in soil stabilized with different amount of acid-modified attapulgite
酸改性凹凸棒石
添加量/(g·kg−1)ERI/% A1 A2 A3 A4 A5 2 21.81±0.13Aa 20.80±0.02Ab 20.40±0.11Ac 20.35±0.07Ac 20.49±0.23Ac 4 21.72±0.06Aa 20.32±0.14Bb 19.88±0.26BCc 19.77±0.15BCc 20.28±0.13Ab 8 20.26±0.07Ba 19.97±0.14Cb 20.10±0.13ABab 19.42±0.18Dab 19.36±0.06Bc 16 19.80±0.15Ca 19.35±0.21Db 19.67±0.11Ca 19.87±0.07Ba 18.48±0.17Dc 24 19.43±0.18Dab 19.24±0.15Db 19.35±0.17Dab 19.56±0.10CDab 18.78±0.09Cc 注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。 表 5 不同添加量酸改性凹凸棒石钝化土壤中Zn的环境风险指数
Table 5. The environmental risk index of Zn in soil stabilized with different amount of acid-modified attapulgite
酸改性凹凸棒石
添加量/(g·kg−1)ERI/% A1 A2 A3 A4 A5 2 9.47±0.03Aa 8.85±0.09Ab 8.55±0.11Ac 8.24±0.11Ad 8.31±0.04Ad 4 8.52±0.11BCab 8.59±0.11Ba 8.36±0.06Abc 8.00±0.08Bd 8.31±0.15Ac 8 8.83±0.10BCa 8.39±0.10Cb 8.48±0.19Ab 7.29±0.15Cc 8.21±0.20Ab 16 8.27±0.06Ca 8.13±0.09Da 6.13±0.10Bc 7.09±0.10Db 8.11±0.16Aa 24 8.88±0.66Ba 8.14±0.15Db 6.23±0.22Bd 7.00±0.09Dc 8.26±0.14Ab 注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。 表 6 不同添加量酸改性凹凸棒石钝化土壤中Cu的修复效率
Table 6. The remediation ratio of Cu in soil stabilized with different amount of acid-modified attapulgite
酸改性凹凸棒石
添加量/(g·kg−1)RR/% A1 A2 A3 A4 A5 2 7.90±0.22Dc 7.48±0.26Cc 9.52±0.12Ca 8.55±0.58Cb 7.64±0.17Dc 4 8.56±0.12Cb 7.82±0.31BCc 9.74±0.25Ca 9.62±0.23BCa 8.55±0.26Cb 8 9.11±0.12Bcd 8.53±0.24Bd 10.20±0.45BCb 11.01±0.62ABa 9.76±0.20Bbc 16 11.51±0.30Aa 9.87±0.28Ab 11.96±0.93Aa 11.24±0.15Aab 11.15±0.32Aab 24 11.30±0.31Aab 9.47±0.88Ac 11.00±0.38Bab 11.58±0.60Aa 10.35±0.74Bbc 注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。 表 7 不同添加量酸改性凹凸棒石钝化土壤中Zn的修复效率
Table 7. The remediation ratio of Zn in soil stabilized with different amount of acid-modified attapulgite
酸改性凹凸棒石
添加量/(g·kg−1)RR/% A1 A2 A3 A4 A5 2 19.21±0.40Cc 20.83±0.38Cb 22.62±0.47Da 20.51±0.98Db 23.52±0.99Ca 4 21.20±0.48Bb 20.86±0.46Cb 24.86±1.00Ca 21.18±0.30CDb 25.63±0.30ABa 8 22.39±0.72ABb 22.50±0.60BCb 24.74±0.34Ca 21.97±0.52BCb 25.14±0.72BCa 16 23.55±0.12Ac 25.16±0.15Abc 27.70±0.11Aa 24.82±0.11Ac 27.40±0.14Aab 24 23.06±0.70Ab 22.91±0.15Bb 26.23±0.36Ba 23.06±0.39Bb 26.77±0.12ABa 注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。 -
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报(2014)[EB/OL]. [2014-04-17]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm. [2] 焦丽香, 郭加朋. 土壤重金属的污染与治理进展研究[J]. 科技情报开发与经济, 2009, 19(1): 155-156. [3] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417. [4] 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014, 23(4): 721-728. doi: 10.3969/j.issn.1674-5906.2014.04.029 [5] GUO F Y, DING C F, ZHOU Z G, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification[J]. Ecotoxicology And Environmental Safety, 2018, 161: 164-172. doi: 10.1016/j.ecoenv.2018.05.088 [6] HUANG G Y, GAO R L, YOU J W, et al. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils[J]. Ecotoxicology And Environmental Safety, 2019, 174.: 401-407. doi: 10.1016/j.ecoenv.2019.02.076 [7] LIU Y Y, XU Y M, QIN X, et al. Effects of water and organic manure coupling on the immobilization of cadmium by sepiolite[J]. Journal of Soils and Sediments, 2019, 19(2): 798-808. doi: 10.1007/s11368-018-2081-5 [8] MU J, HU Z Y, HUANG L J, et al. Influence of alkaline silicon-based amendment and incorporated with biochar on the growth and heavy metal translocation and accumulation of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils[J]. Journal of Soils and Sediments, 2019, 19(5): 2277-2289. doi: 10.1007/s11368-018-2219-5 [9] YU Y Q, ZHANG K W, YANG J Y. Stabilization of Cd and Zn in soil using pairwise mixed amendments of three raw materials: nanohydroxyapatite, nanoiron and nanoalumina[J]. Research on Chemical Intermediates, 2018, 44(5): 2965-2981. doi: 10.1007/s11164-018-3288-1 [10] FAJARDO C, COSTA G, MANDE M, et al. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact[J]. Science of the Total Environment, 2019, 656: 421-432. doi: 10.1016/j.scitotenv.2018.11.323 [11] 袁峰, 唐先进, 吴骥子, 等. 两种铁基材料对污染农田土壤砷、铅、镉的钝化修复[J]. 环境科学, 2021, 42(7): 3535-3548. [12] 丁园, 敖师营, 陈怡红, 等. 4种钝化剂对污染水稻土中Cu和Cd的固持机制[J]. 环境科学, 2021, 42(8): 4037-4044. [13] 谭科艳, 刘晓端, 刘久臣, 等. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究[J]. 岩矿测试, 2011, 30(4): 451-456. doi: 10.3969/j.issn.0254-5357.2011.04.012 [14] 马博. 凹凸棒石对重金属的钝化及在尾矿和农田中的应用研究[D]. 北京: 中国地质大学, 2018. [15] ZHANG M D, RAN R L, NAO SAI W Q, et al. Physiological effects of short-term copper stress on rape (Brassica napus L. ) seedlings and the alleviation of copper stress by attapulgite clay in growth medium[J]. Ecotoxicology and Environmental Safety, 2019, 171: 876-886. [16] 田振华, 薛胜平. 凹凸棒石改性及其修复重金属污染土壤的研究[J]. 应用化工, 2019, 48(4): 883-887. doi: 10.3969/j.issn.1671-3206.2019.04.036 [17] LIANG X F, LI N, HE L Z, et al. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L. ) grown in alkaline soil using mercapto-modified attapulgite[J]. Science of the Total Environment, 2019, 688: 818-826. doi: 10.1016/j.scitotenv.2019.06.335 [18] XU C B, QI J, YANG W J, et al. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J]. Science of the Total Environment, 2019, 686: 476-483. doi: 10.1016/j.scitotenv.2019.05.330 [19] 生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国标准出版社, 2018. [20] 任珺, 刘丽莉, 陶玲, 等. 甘肃地区凹凸棒石的矿物组成分析[J]. 硅酸盐通报, 2013, 32(11): 2362-2365. [21] 陶玲, 杨欣, 颜子皓, 等. 酸活化坡缕石制备重金属钝化材料的研究[J]. 非金属矿, 2018, 41(1): 11-14. doi: 10.3969/j.issn.1000-8098.2018.01.004 [22] XUE W J, HUANG D L, ZENG G M, et al. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments[J]. Journal of Hazardous Materials, 2018, 341: 381-389. doi: 10.1016/j.jhazmat.2017.06.028 [23] KE X, GUI S F, HUANG H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 2017, 175: 473-481. doi: 10.1016/j.chemosphere.2017.02.029 [24] NEMATI K, ABU B N K, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410. [25] 王英杰, 邹佳玲, 杨文弢, 等. 组配改良剂对稻田系统Pb、Cd和As生物有效性的协同调控[J]. 环境科学, 2016, 37(10): 4004-4010. [26] WANG W, CHEN H, WANG A. Adsorption characteristics of Cd (II)from aqueous solution onto activated palygorskite[J]. Separation and Purification Technology, 2007, 55(2): 157-164. doi: 10.1016/j.seppur.2006.11.015 [27] 廖启林, 刘聪, 朱伯万, 等. 凹凸棒石调控Cd污染土壤的作用及其效果[J]. 中国地质, 2014, 41(5): 1693-1704. doi: 10.3969/j.issn.1000-3657.2014.05.023 [28] 赵廷伟, 李洪达, 周薇, 等. 施用凹凸棒石对Cd污染农田土壤养分的影响[J]. 农业环境科学学报, 2019, 38(10): 2313-2318. doi: 10.11654/jaes.2019-0783 [29] 雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 2007(5): 1551-1556. [30] 关天霞, 何红波, 张旭东, 等. 土壤中重金属元素形态分析方法及形态分布的影响因素[J]. 土壤通报, 2011, 42(2): 503-512. doi: 10.19336/j.cnki.trtb.2011.02.049 [31] 罗宁临, 李忠武, 黄梅, 等. 壳聚糖(改性)-沸石对农田土壤重金属镉钝化技术研究[J]. 湖南大学学报(自然科学版), 2020, 47(4): 132-140. [32] 章绍康, 弓晓峰, 申钊颖, 等. 改性凹凸棒土对土壤中Cd2+吸附解吸及钝化效果影响[J]. 环境工程, 2019, 37(3): 192-197. [33] 陈炳睿, 徐超, 吕高明, 等. 6种固化剂对土壤Pb Cd Cu Zn的固化效果[J]. 农业环境科学学报, 2012, 31(7): 1330-1336. [34] 韩君, 梁学峰, 徐应明, 等. 黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014, 34(11): 2853-2860. [35] 赵庆圆, 李小明, 杨麒, 等. 磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤[J]. 环境科学, 2018, 39(1): 389-398. [36] ZHU Y G, CHEN S B, YANG J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China[J]. Environ International, 2004, 30(3): 351-356. doi: 10.1016/j.envint.2003.07.001 [37] WEN J, ZENG G M. Chemical and biological assessment of Cd-polluted sediment for land use: The effect of stabilization using chitosan-coated zeolite[J]. Journal of Environmental Management, 2018, 212: 46-53. [38] 武成辉, 李亮, 雷畅, 等. 硅酸盐钝化剂在土壤重金属污染修复中的研究与应用[J]. 土壤, 2017, 49(3): 446-452. [39] 陶玲, 张晓郡, 刘瑞珍, 等. 热改性坡缕石对土壤镉污染的钝化效果及对土壤镉生态毒性的影响[J]. 环境工程学报, 2021, 15(6): 2008-2017. doi: 10.12030/j.cjee.202101103 [40] WANG H, WANG X J, Li J, et al. Comparison of palygorskite and struvite supported palygorskite derived from phosphate recovery in wastewater for in-situ immobilization of Cu, Pb and Cd in contaminated soil[J]. Journal of Hazardous Materials, 2018, 346: 273-284. doi: 10.1016/j.jhazmat.2017.12.042 [41] 于方群, 周健民, 王火焰, 等. 凹凸棒石环境矿物材料的制备及应用[J]. 土壤, 2009, 41(4): 525-533. doi: 10.3321/j.issn:0253-9829.2009.04.004 [42] 黄昌勇. 土壤学[J]. 中国农业出版社, 2010: 158-168. [43] 陈雪芳, 熊莲, 王璨, 等. 酸改性对低品位凹凸棒石的白度和组成结构的影响[J]. 硅酸盐通报, 2017, 36(12): 4198-4204. [44] 于方群, 周健民, 王火焰, 等. 不同浓度酸改性对凹凸棒石黏土磷吸附性能的影响[J]. 土壤学报, 2010, 47(2): 319-324. doi: 10.11766/trxb2010470216 [45] 雷春生, 朱晓峰, 高雯, 等. 酸活化凹凸棒黏土对印染废水中亚甲基蓝的吸附性能[J]. 环境工程学报, 2017, 11(2): 885-891. doi: 10.12030/j.cjee.201509236 [46] 张萍, 文科, 王钺博, 等. 酸处理对坡缕石结构及其苯吸附性能的影响[J]. 矿物学报, 2018, 38(1): 93-99. doi: 10.16461/j.cnki.1000-4734.2018.011