-
我国部分地区农田土壤中的重金属累积量远远高于土壤背景值,对农产品安全和人群健康构成了严重危害[1-2]。通过降低农田土壤重金属的生物有效性,从而减少重金属通过农作物吸收及食物链进入人畜体内一直是有效、廉价的治理途径之一[3]。有研究表明,磷肥中的磷酸盐对土壤重金属具有较好的钝化效果[4-5]。但是,为了增加土壤重金属的钝化效果往往会过量施用磷肥,从而造成磷在农田土壤不同深度上的累积和对地下水的污染[6-8]。
目前,有关磷肥最佳施用量的研究结果存在一定的分歧。一些研究者认为,磷与重金属的摩尔比为3∶5较为合适[9-10],而另一些研究者认为,磷与重金属的摩尔比为4∶1较好[11-12]。有研究发现,磷肥加入单一Pb、Cu、Zn污染土壤时,均会使Pb、Cu、Zn的有效性降低[13-14];而向Pb、Cu、Zn复合污染土壤中添加磷肥时,则会使Pb的有效性降低,Cu、Zn的有效性略微增加[15]。施尧等[16]运用水溶性磷肥重过磷酸钙和难溶性磷肥磷灰石矿尾料(施磷量7 g·kg−1)钝化修复Pb、Cu和Zn复合污染土壤,发现重过磷酸钙相比于磷灰石矿尾料对重金属的钝化效果较好,但重过磷酸钙相比于磷灰石矿尾料更易导致下层土壤中磷的质量分数升高。姚臻晖等[17]在田间实验中施用钙镁磷肥(750 kg·hm−2)使农田土壤重金属Cd的钝化率达到46.90%,当磷肥施用量增加到1 500 kg·hm−2时,对Cd的钝化率仅为54.50%,且随着磷肥施用量的成倍增加而显著增加了土壤60~90 cm深度渗滤水中磷的质量浓度。陈世宝等[18]通过土柱淋溶实验,分别向污染土壤中施加5 g·kg−1不同溶解性的磷肥,会使土壤有效态Pb质量分数下降81.10%~89.70%;同时,水溶性磷肥相较于枸溶性磷肥也更易导致土壤表层以下(<70 cm)有效磷和全磷质量分数增加。MIGNARDI等[19]发现,磷肥能有效降低重金属复合污染土壤中的重金属有效性,但施用高溶解性磷肥也可能造成水体富营养化的风险。可见,施用不同溶解性磷肥及不同用量治理重金属或多种重金属复合污染时,重金属钝化效果和磷肥迁移流失风险存在较大关系。因此,迫切需要理清不同溶解性磷肥及用量对复合污染土壤中不同重金属的钝化效果和磷肥的迁移流失风险,并结合磷肥的钝化效果和磷肥的迁移流失风险合理选择磷肥的类型和用量。
根据前人通过不同磷肥钝化土壤重金属效果的研究[12-13],本研究选取2种溶解性不同且钝化效果较好的常用磷肥作为钝化剂,通过土培实验和土柱淋溶实验,研究其不同施用量对Pb、Cd、Cu、Zn复合污染土壤中不同重金属的钝化效果,并对水溶性、枸溶性磷肥的重金属钝化性能与迁移流失特征之间可能存在的相关性进行探讨,以期为施用磷肥修复重金属污染土壤及其二次污染防控提供参考。
磷肥钝化修复重金属污染土壤及其环境风险
Immobilization remediation of heavy metal contaminated soil by phosphate fertilizer and its environmental risk
-
摘要: 磷肥广泛应用于农田重金属污染土壤钝化修复,但不同类型磷肥对多种重金属复合污染土壤的修复效果及其环境风险尚不明确。通过室内土壤培养和土柱淋溶模拟实验,研究枸溶性磷肥-钙镁磷肥(CMP)和水溶性磷肥-磷酸二氢钾(MPP)对重金属Pb、Cd、Cu、Zn复合污染土壤的钝化效果以及磷在土壤剖面中的淋溶损失特征。结果表明,CMP和MPP施用量(以P2O5计)为8 g·kg−1时,Pb、Cd的钝化率分别为35.05%和71.72%、31.76%和40.99%,而Cu、Zn则出现一定程度的活化(最高达29.62%)。MPP对Pb的钝化效果显著优于CMP,但对Cd而言,2者差异不明显,且磷肥用量的成倍增加并不能显著提升钝化效果。土柱中土壤全磷、有效磷和淋溶液总磷的质量分数均随着深度(20~65 cm)递增而显著下降,且在某一深度上随着施磷量(1~8 g·kg−1)的增加而显著升高。MPP在高用量下造成的磷淋溶风险显著大于CMP。采用磷肥钝化修复复合重金属污染土壤应综合重金属类型、钝化效果以及潜在的磷流失风险,选择适当的磷肥种类和用量。本研究结果可为磷肥钝化修复重金属污染土壤提供参考。Abstract: Phosphate fertilizer is widely used in the passivation remediation of heavy metal contaminated soils in farmland. However, the remediation effect and environmental risk of different types of phosphate fertilizer on soil contaminated by multiple heavy metals have not been fully concerned. By indoor soil culture and soil column leaching simulation experiments, the passivation effect of calcium-magnesia phosphate (CMP) (citric soluble) and monopotassium phosphate (MPP) (water soluble) on Pb, Cd, Cu, Zn contaminated soil and the characteristics of phosphorus leaching loss in soil profile were investigated. The results showed that when the application rate of CMP and MPP (measured by P2O5) was 8 g·kg−1, the passivation rates of Pb, Cd were 35.05% and 71.72%, 31.76% and 40.99%, respectively, while Cu and Zn were activated to a certain extent (up to 29.62%). The passivation effect of MPP on Pb was obvious better than that of CMP, but for Cd, the difference was not obvious, and the doubling of the amount of phosphate fertilizer did not obvious improve the passivation effect. The mass fraction of soil total P, available P and total P in leaching solution in the soil column decreased significantly with the increase of depth (20~65 cm), and at a certain depth, with the application of phosphorus (1~8 g·kg−1) increased significantly. The risk of phosphorus leaching caused by MPP at high application rate was obvious higher than that caused by CMP. When using phosphate fertilizer passivation to remediate multiple heavy metal contaminated soil, the types of heavy metals, the passivation effect and the potential risk of phosphorus loss should be synthetically considered, and the appropriate type and amount of phosphate fertilizer should be selected. The results of this study can provide a reference for the remediation of heavy metal contaminated soil by phosphate fertilizer passivation.
-
Key words:
- heavy metal /
- phosphate fertilizer /
- passivation /
- soil column leaching /
- phosphorus migration and loss
-
表 1 土壤基本理化性质
Table 1. Basic physical and chemical properties of soil
pH 有机质/(g·kg−1) 有效磷/(mg·kg−1) 全磷/(g·kg−1) 总Pb/(mg·kg−1) 总Cd/(mg·kg−1) 总Cu/(mg·kg−1) 总Zn/(mg·kg−1) 5.34 32.25 13.49 0.61 533.37 7.99 761.46 707.43 表 2 2种磷肥的性质
Table 2. Properties of two phosphate fertilizers
供试肥料 pH 溶解性 P2O5量 磷酸二氢钾(MPP) 4.64 水溶性 52% 钙镁磷肥(CMP) 8.43 枸溶性 12% -
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 国土资源部, 2014: 8-10. [2] 陈世宝, 王萌, 李杉杉, 等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35-41. [3] LI C, ZHOU K, QIN W, et al. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques[J]. Soil and Sediment Contamination, 2019, 28(2): 1-15. [4] 武晓微, 翟文珺, 高超, 等. 钝化剂对土壤性质及镉生物有效性的影响研究[J]. 农业环境科学学报, 2021, 40(3): 562-569. doi: 10.11654/jaes.2020-0826 [5] 丁淑芳, 谢正苗, 吴卫红, 等. 含磷物质原位化学钝化重金属污染土壤的研究进展[J]. 安徽农业科学, 2012, 40(35): 17093-17097. doi: 10.3969/j.issn.0517-6611.2012.35.045 [6] VALDEMIR R, JOAN E, MAURICIO R, et al. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil)[J]. Science of the Total Environment, 2018: 622-623. [7] RIBAUDO M O, HEIMLICH R, CLASSEN R, et al. Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin[J]. Ecological Economics, 2001, 37(2): 183-197. doi: 10.1016/S0921-8009(00)00273-1 [8] 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050. doi: 10.3321/j.issn:1000-0933.2007.07.046 [9] BASTA N T, MCGOWEN S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J]. Environmental Pollution, 2004, 127(1): 73-82. doi: 10.1016/S0269-7491(03)00250-1 [10] HETTIARACHCHI G M, PIERZYNSKI G M, RANSOM M D. In Situ stabilization of soil lead using phosphorus and manganese oxide[J]. Journal of Environmental Quality, 2001, 30(4): 1214. doi: 10.2134/jeq2001.3041214x [11] CAO X, MA L Q, CHEN M, et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site[J]. Environmental Science & Technology, 2002, 36(24): 5296-304. [12] 周佚群, 梁成华, 杜立宇, 等. 不同施磷水平对土壤中重金属镉的钝化效果评价[J]. 水土保持通报, 2014, 34(6): 68-72. [13] 钱海燕, 王兴祥, 黄国勤, 等. 钙镁磷肥和石灰对受Cu Zn污染的菜园土壤的改良作用[J]. 农业环境科学学报, 2007, 26(1): 235-239. doi: 10.3321/j.issn:1672-2043.2007.01.046 [14] 刘洁, 陈杰, 李顺奇, 等. 几种含磷材料对紫色土铅稳定条件优化及磷淋失环境风险评价[J]. 环境工程学报, 2018, 12(8): 2301-2310. doi: 10.12030/j.cjee.201801073 [15] CAO X, WAHBI A, MA L, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials, 2009, 164(2/3): 555-564. [16] 施尧. 磷基材料钝化修复重金属Pb、Cu、Zn复合污染土壤[D]. 上海:上海交通大学, 2011. [17] 姚臻晖, 涂理达, 周慧平, 等. 稻田镉污染原位钝化修复及磷积累与迁移特征[J]. 中国环境科学, 2021, 41(5): 2374-2379. [18] 陈世宝, 朱永官, 马义兵. 不同磷处理对污染土壤中有效态铅及磷迁移的影响[J]. 环境科学学报, 2006, 26(7): 1140-1144. doi: 10.3321/j.issn:0253-2468.2006.07.016 [19] MIGNNADI S, C0RAMI A, FERRINI V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn[J]. Chemosphere, 2012, 86(4): 354-360. doi: 10.1016/j.chemosphere.2011.09.050 [20] 刘凤枝, 李玉浸. 土壤监测分析技术[M]. 北京:化学工业出版社, 2015(7). [21] 吴龙华, 骆永明. 根际土壤溶液取样器: 介绍一种新型原位土壤溶液采集装置[J]. 土壤, 1999, 31(1): 55-57. [22] TOWNSEND T, DUBEY B, TOLAYMAT T. Interpretation of Synthetic Precipitation Leaching Procedure (SPLP) Results for Assessing Risk to Groundwater from Land-Applied Granular Waste[J]. Environmental Engineering Science, 2006, 23(1): 239-251. doi: 10.1089/ees.2006.23.239 [23] CUI H B, ZHANG S W, Li R Y, et al. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain[J]. Environmental Science & Pollution Research, 2017, 24(26): 21128-21137. [24] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. [25] 陈建军, 俞天明, 王碧玲, 等. 用TCLP和形态法评估含磷物质修复铅锌矿污染土壤的效果及其影响因素[J]. 环境科学, 2010, 31(1): 185-191. [26] 付煜恒, 张惠灵, 王宇, 等. 磷酸盐对铅镉复合污染土壤的钝化修复研究[J]. 环境工程, 2017, 35(9): 176-180. [27] APPEL C, MA L Q, RHUE R D, et al. Sequential sorption of lead and cadmium in three tropical soils[J]. Environmental Pollution, 2008, 155(1): 132-140. doi: 10.1016/j.envpol.2007.10.026 [28] 王碧玲. 含磷物质修复铅锌矿污染土壤的机理和技术[D]. 杭州:浙江大学, 2008. [29] CAO X D, WAHBI A, RHUE D R, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environment Pollution, 2004, 131(3): 435-444. doi: 10.1016/j.envpol.2004.03.003 [30] 何振立. 污染及有益元素的土壤化学平衡[M]. 北京:中国环境科学出版社, 1998. [31] 徐明岗, 刘平, 宋正国, 等. 施肥对污染土壤中重金属行为影响的研究进展[J]. 农业环境科学学报, 2006, 25(S1): 328-333. [32] 郭亮, 李忠武, 黄斌, 等. 不同施磷量(KH2PO4)作用对Cu、Zn在红壤中的迁移转化[J]. 环境科学, 2014, 35(9): 3546-3552. [33] 魏晓欣. 含磷物质钝化修复重金属复合污染土壤[D]. 西安:西安科技大学, 2010. [34] SHUMAN L M. Effect of ionic strength and anions on zinc adsorption by two soils[J]. Soil Science Society of America Journal, 1986, 50(6): 1438-1442. doi: 10.2136/sssaj1986.03615995005000060012x [35] KAUSHIK R D, GUPTA V K, SINGH J P. Distribution of zinc, cadmium, and copper forms in soils as influenced by phosphorus application[J]. Arid Land Research and Management, 1993, 7(2): 163-171. doi: 10.1080/15324989309381345 [36] 张磊, 宋航, 陈小琴, 等. 穴施条件下肥料养分在土壤中迁移规律的初步研究[J]. 土壤, 2020, 52(6): 1145-1151. [37] 李学平, 孙燕, 石孝均. 紫色土稻田磷素淋失特征及其对地下水的影响[J]. 环境科学学报, 2008, 28(9): 1832-1838. doi: 10.3321/j.issn:0253-2468.2008.09.018 [38] GAZIS C, FENG X. A stable isotope study of soil water: evidence for mixing and preferential flow paths[J]. Geoderma, 2004, 119(1/2): 97-111. [39] JIN H P, BOLAN N, MEGHARAJ M, et al. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils[J]. Science of the Total Environment, 2011, 409(4): 853-860. doi: 10.1016/j.scitotenv.2010.11.003