固化/稳定化修复后场地土壤中铬的环境行为与归趋

胡清, 罗培, 冯明玉, 韦黎华, 王宏. 固化/稳定化修复后场地土壤中铬的环境行为与归趋[J]. 环境工程学报, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036
引用本文: 胡清, 罗培, 冯明玉, 韦黎华, 王宏. 固化/稳定化修复后场地土壤中铬的环境行为与归趋[J]. 环境工程学报, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036
HU Qing, LUO Pei, FENG mingyu, WEI Lihua, WANG Hong. Environmental behavior and fate of chromium in the soils of solidification/stabilization post-remediation sites[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036
Citation: HU Qing, LUO Pei, FENG mingyu, WEI Lihua, WANG Hong. Environmental behavior and fate of chromium in the soils of solidification/stabilization post-remediation sites[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036

固化/稳定化修复后场地土壤中铬的环境行为与归趋

    作者简介: 胡清(1964—),女,博士,教授,huq@sustech.edu.cn
    通讯作者: 胡清(1964—),女,博士,教授,huq@sustech.edu.cn
  • 基金项目:
    国家重点研发计划资助项目(2018YFC1801403)
  • 中图分类号: X53

Environmental behavior and fate of chromium in the soils of solidification/stabilization post-remediation sites

    Corresponding author: HU Qing, huq@sustech.edu.cn
  • 摘要: 土壤重金属铬(Cr)污染形势严峻,对人群健康和生态环境构成了严重威胁。通过固化/稳定化技术降低土壤中金属的毒性或迁移性,是Cr污染场地常用的修复技术之一。由于Cr的环境行为变化多端、机制复杂,故导致固化/稳定化修复后场地存在Cr污染反弹的环境风险。综述了Cr在土壤中的氧化还原、吸附与解吸、沉淀与溶解,以及植物、微生物吸收与转化等多种环境行为;并梳理了已修复的Cr污染场地案例及场地长期跟踪监测数据,探讨了固化/稳定化修复后Cr的环境归趋及其影响因素,以期为修复后场地的风险管理提供参考。
  • 微塑料(microplastics,MPs)被定义为尺寸小于5 mm的塑料颗粒、碎片或纤维[1],按照来源被分为初级微塑料和次级微塑料[2],初级微塑料主要是以微尺度制造的应用于化妆品等日用品行业[3-4],如个人洗护产品(磨砂膏、牙膏和洗面奶等)、化妆品(眼影、指甲油和粉底液等)、药物和树脂颗粒等[5]。次级微塑料是由大块塑料经过紫外线照射(光降解、脆化、光氧化)、风化和腐蚀等外界因素被分解成较小的塑料碎片[6]。近年来,微塑料对环境的污染越来越受到人们的关注,据报道,在海水[7-8]、淡水[9-10]、土壤[11]、室内灰尘[12]、空气[13]、人和动物粪便[14]以及人体胎盘[15]中都已经检测到微塑料。微塑料作为重要的新型污染物,其对人体、环境以及生态系统造成的潜在威胁应予以高度重视。

    目前,提取沉积物中的微塑料通常采用密度分离法——使用饱和盐溶液(如NaCl或NaI溶液)将沉积物中的微塑料悬浮或漂浮于上层溶液,进一步从上清液中将微塑料分离出来[16],但该方法不适合分离粒径更小的塑料颗粒(<10 μm)[17],而且对于高密度微塑料来说,可能沉降于盐溶液底部,导致漏测现象发生。此外,还有研究根据微塑料的物理化学性质进行分离,例如使用油进行疏水性分离或利用尼罗红的吸附能力进行提取[18-19]。目前,多数文献报道中沉积物微塑料以数量浓度计算,主要反映微塑料的数量丰度,而质量浓度参数也是评估微塑料污染状况的重要指标之一。通过质量浓度测量,可反映微塑料在环境介质中的赋存量级,为微塑料环境污染状况进行整体评估及监测提供基础数据[20]。2017年,Connors等[21]指出微塑料暴露浓度以质量浓度(mg·L−1)表示可支持毒理学研究数据的一致性和可比性。Fuller等[22]开发了利用加压流体萃取(PFE)的方法对微塑料的质量浓度进行测量的分析方法,为了减少复杂介质中基质的干扰,在100 ℃下使用甲醇清洗,在180 ℃下用二氯甲烷(dichloromethane,DCM)提取微塑料,吹干后对残留物进行重量分析,并通过傅里叶变换红外光谱(FTIR)进行微塑料成分的鉴定。在实际样品分析中,利用甲醇预清洗可能会损失一部分微塑料,提取物中通常包含色素等其他有机杂质,对于方法的定性定量均可能产生干扰。本研究基于溶解—析出过程的特点,将溶解度参数(δ)作为指示性参数,可为微塑料质量浓度的检测提供新思路。

    物质的溶解度参数被定义为:每单位体积物质的气化能的平方根,是一个能够表征简单液体分子间相互作用强度的参数值,用δ表示[23],公式如下:

    δ=(ΔEv/V)1/2 (1)

    其中,δ为溶解度参数,(J·cm−31/2ΔEv/V是每单位体积物质的气化能,又叫内聚能,J·cm−3

    通过计算聚合物的溶解度参数,并与溶剂的溶解度参数进行比较,可以对聚合物和溶剂之间的溶解程度进行量化表征。根据计算模型,聚合物和溶剂的溶解度参数越接近,则聚合物的溶解程度越高[24];反之,聚合物和溶剂的溶解度参数差异越大,则聚合物的溶解程度越低,在溶剂中越易析出。

    本研究在加压流体萃取法(PFE)的基础上,建立了基于“溶解度参数”计算对沉积物中微塑料进行分析检测的新方法。通过将加压萃取得到的提取物进行浓缩,并根据溶解度参数计算结果,调整溶剂组成比例,选择与微塑料溶解度差异较大的溶剂体系进行微塑料选择性析出,将得到的提取物进行重量分析以及红外光谱检测,实现对沉积物中微塑料的定量定性分析。所建立的方法进一步通过对实际沉积物样品中的微塑料检测进行了验证。该方法可为土壤、沉积物以及室内灰尘等复杂介质中的微塑料测量提取提供新的思路。

    仪器:ASE-350快速溶剂萃取仪(ASE)(Thermo,美国),IKA®RV10基本型旋转蒸发仪,溶剂过滤器(津腾)(附0.22 μm玻璃纤维过滤膜),傅里叶变换红外光谱仪(Nicolet iS10),XP205电子天平(瑞士 Mettler Toledo公司)。

    试剂:二氯甲烷(dichloromethane,DCM)、甲醇(methanol,MeOH)、乙腈(acetonitrile,ACN)、异辛烷(iso-octane)和正己烷(n-Hexane)(HPLC级,99.9%,J.T.Baker公司),溴化钾(KBr,99.99%,金属分析,J&K®)。

    标准品:聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)、聚苯乙烯(poly(styrene),PS)、聚碳酸酯(polycarbonate,PC)、聚氯乙烯(polyvinyl chloride,PVC)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)。本实验所用的微塑料购买自上海远纺工业有限公司,其中PE微塑料d50约为20 μm,PET微塑料d50约为50 μm,其余4种微塑料d50均约为80 μm。

    准确称取10.00 g冷冻干燥的沉积物样品加入ASE萃取池中,分别加入10.00 mg左右PP、PE、PS、PC、PVC和PET 等6种标准微塑料,加入与样品等体积的硅藻土混匀,按照如下条件进行加速溶剂萃取:萃取溶剂为二氯甲烷;温度180 ℃,压力1500 psi左右,淋洗体积为80%,加热9 min,3个静态循环,吹扫时间为75 s,静置时间为1 min。

    为进一步验证溶解度参数对微塑料的选择性析出的影响,将收集得到的提取物分别采用3种不同的方式进行处理:(a)直接抽滤;(b)浓缩至10 mL左右;(c)浓缩至10 mL后调节体系溶解度参数:(c1)加入与微塑料溶解度参数不同的溶剂(其中,PP和PE中加入乙腈溶剂,PS、PC、PVC和PET中加入异辛烷溶剂)至100 mL;(c2)加入与微塑料溶解度参数差异更大的甲醇作为溶剂至100 mL,用溶剂过滤器进行抽滤。将滤膜烘干,称重,用傅里叶变换红外光谱仪(Nicolet iS10)进行成分鉴定,得到光谱图。具体提取和分析方法流程如图1所示。实验重复3次,共计72组实验。

    图 1  提取和分析方法流程图
    Figure 1.  Flow chart of extraction and analysis methods

    为了扣除沉积物本底中微塑料的干扰,设置了平行对照组实验。将10.00 g沉积物和等体积的硅藻土混匀,按照上述实验步骤进行处理,得到本底中微塑料的质量及光谱图。

    傅里叶变换红外光谱仪(Nicolet iS10)的检测器类型为DTGS/KBr,波数范围为400—4000 cm−1,样品扫描次数:32次,分辨率:4.00 cm−1。将图谱与标准品谱库(OMNIC谱库)进行比对,规定匹配度达70%及以上的谱图对应的样品为微塑料,以此确定微塑料的成分。

    (1)采用基团贡献法对微塑料的溶解度参数进行计算[23],计算公式如下:

    δ=ρFi/M (2)

    式中,ρ为聚合物的密度,M为聚合物链节的分子量,Fi为聚合物分子中各基团组分的摩尔引力常数。本研究6种微塑料的δ值参考已报道过的溶解度参数值[25],见表1

    表 1  6种微塑料的溶解度参数δ
    Table 1.  δ values of six microplastics
    微塑料 Microplastics溶解度参数δ/(J·cm−31/2
    PP 16.98
    PE 18.42
    PS 19.55
    PC 19.43
    PVC 19.69
    PET 20.53
     | Show Table
    DownLoad: CSV

    (2)单一溶剂的溶解度参数值参考已有文献[24],见表2

    表 2  单一溶剂的溶解度参数δ值(298.15 K)
    Table 2.  δ value of single solvent (298.15K)
    溶剂 Solvent溶解度参数δ/(J·cm−31/2
    二氯甲烷(DCM) 19.84
    异辛烷(iso-octane) 14.29
    乙腈(ACN) 24.29
    甲醇(MeOH) 29.86
     | Show Table
    DownLoad: CSV

    (3)混合溶液的溶解度参数根据以下公式进行计算[23]

    δmix=ni=1ϕiδi (3)

    式中,ϕiδi为是第i组分溶剂的体积分数和溶解度参数,所有溶剂的体积分数之和∑ϕi为1。经计算,得到混合溶剂的δ值见表3

    表 3  混合溶剂的溶解度参数δ值(298.15 K)
    Table 3.  δ value of mixed solvent (298.15K)
    混合溶剂(VV)Mixed solvent溶解度参数δ/(J·cm−31/2
    DCM∶iso-octane(10∶90) 14.85
    DCM∶ACN(10∶90) 23.85
    DCM∶MeOH(10∶90) 28.86
     | Show Table
    DownLoad: CSV

    为了研究溶解度参数对微塑料选择性析出的影响,将收集得到的提取物采用如下方式进行处理:(a)直接抽滤,实验中发现只有PP和PE微塑料明显析出,这是由于DCM与PP和PE的溶解度参数存在差异,│Δδ│值分别为2.86、1.42(J·cm−31/2,导致PP和PE常温常压下在DCM中溶解度较小,而DCM与PS、PC、PVC和PET 等4种微塑料的溶解度参数较为接近,│Δδ│值分别为0.29、0.41、0.15、0.69(J·cm−31/2,因此未观察到明显析出;(b)采用旋转蒸发仪将提取液浓缩,通过减少溶剂的方式使微塑料析出,但实验中观察到浓缩至10 mL左右,微塑料并未明显析出,而由于溶解度的差异,提取液中的其他共萃物逐渐析出,表明浓缩的方式难以实现对微塑料的选择性析出;(c)为实现微塑料选择性析出,本研究进一步采用不同溶剂来调节体系的溶解度参数。针对PP和PE,选取乙腈进行添加,使溶剂体系溶解度参数与PP和PE的差值│Δδ│分别为6.87(J·cm−31/2和5.43(J·cm−31/2,针对PS、PC、PVC和PET,选取异辛烷进行添加,│Δδ│值分别为4.71、4.59、4.85、5.69(J·cm−31/2,得到的回收率如表4所示。

    为了得到更加精确的回收率,本研究的回收率计算均通过平行试验扣除沉积物本底后进行计算。在3种不同的处理方式下,PP微塑料的回收率均高于93%,而通过计算发现,PP溶解度参数与DCM差异较大,因此常温常压下几乎完全析出。对于PET微塑料,在3种处理方式下,回收率均较低,均在30%以下。为了考察所建立方法的准确性,本研究设计两组加标实验进行验证:将PET微塑料标准品与硅藻土(模拟沉积物)混匀后经ASE提取:第一组将提取液经缓流氮气吹干,结果表明回收率在95%以上;第二组将提取液浓缩后加入甲醇,进行抽滤,回收率在85%以上。由此可见,PET微塑料在沉积物中的低回收率可能是由于沉积物环境引起的。有研究表明河流沉积物中的腐殖酸含有较多的羰基官能团[26],而PET微塑料的化学结构中存在两个羰基官能团,依据“相似相溶”原理,增强了PET在沉积物中的吸附效应,从而导致回收率较低。

    表 4  不同析出方法的加标回收率(%)及相对标准偏差RSD(%,n=3)
    Table 4.  Spiked recoveries (%) and relative satandard deviation (RSD) (%, n=3) of different precipitation methods
    直接抽滤浓缩浓缩后调节溶剂体系Solvent system after concentration
    微塑料MicroplasticsDirect filtrationDirect filtrationc1c2
    回收率Recoveries相对标准偏差RSD回收率Recoveries相对标准偏差RSD回收率Recoveries相对标准偏差RSD回收率Recoveries相对标准偏差RSD
    PP94.67 ± 4.104.3398.54 ± 0.540.5593.16 ± 5.956.3995.55 ± 3.393.55
    PE68.98 ± 11.2116.2572.16 ± 0.941.3181.82 ± 1.071.3192.75 ± 2.742.95
    PS27.32 ± 1.013.7027.14 ± 3.9514.5574.61 ± 4.646.2184.88 ± 0.891.04
    PC6.56 ± 1.5423.451.96 ± 0.2915.0362.17 ± 5.008.0375.67 ± 3.374.46
    PVC8.80 ± 1.9922.656.95 ± 1.6824.1652.96 ± 2.584.8780.75 ± 0.780.97
    PET15.49 ± 4.2127.1522.56 ± 2.7512.2024.16 ± 4.7919.8227.28 ± 2.639.63
       (c1) PP、PE微塑料用乙腈析出,PS、PC、PVC、PET4种微塑料用异辛烷析出; (c2) 6种微塑料用甲醇析出。   (c1) PP and PE microplastics were precipitated with acetonitrile, PS, PC, PVC and PET microplastics were precipitated with isooctane; (c2) 6 microplastics were precipitated with methanol.
     | Show Table
    DownLoad: CSV

    图2可以发现,直接抽滤(a)和浓缩处理(b)后的微塑料回收率无明显提升,而采用本研究所建立的溶解度参数计算结果对溶剂体系进行调整(c1)后,除PP和PET外,其他4种微塑料的回收率均有明显提高,表明增大溶剂体系溶解度参数与微塑料的差值│Δδ│对微塑料的选择性析出起到促进作用。

    图 2  不同处理方式下沉积物中微塑料的回收率
    Figure 2.  Recoveries of microplastics in sediments under different treatment methods
    (a) 直接抽滤;(b)浓缩;(c1)PP、PE微塑料用乙腈析出,PS、PC、PVC、PET 4种微塑料用异辛烷析出;(c2)6种微塑料用甲醇析出。
    (a) direct filtration; (b) concentration;(c1)PP and PE microplastics were precipitated with acetonitrile, PS, PC, PVC and PET microplastics were precipitated with isooctane; (c2) 6 microplastics were precipitated with methanol.

    进一步采用添加与微塑料溶解度参数差异更大的甲醇调节溶剂体系的溶解度参数(c2),使溶剂体系溶解度参数与PP、PE、PS、PC、PVC和PET的差值│Δδ│分别达到11.88、10.44、9.31、9.43、9.17、8.33(J·cm−31/2,观察对6种微塑料析出的影响,得到的回收率如图2(c2)所示。通过图2中(c1)和(c2)结果对比发现,PE、PS、PC和PVC回收率均进一步提高,且得到的回收率均处于稳定的范围内,验证了│Δδ│值与微塑料析出量之间的相关性。

    本研究中,6种微塑料在3种不同的处理方式下,由于所使用的试剂不同,选择性析出的组分会对微塑料成分鉴定造成不同的影响,鉴定结果如图3所示。由图3可以看出,在a、b、c1方式处理下,6种微塑料的红外光谱图与标准微塑料光谱相比,在指纹区(波段500—1500 cm−1)会存在杂峰干扰,在c2方式处理下,光谱图整体峰形与标准微塑料光谱图一致,匹配度较高。与谱库的匹配数据结果如表5所示。

    表 5  不同处理方式下沉积物中6种微塑料的鉴定结果
    Table 5.  Identification results of 6 microplastics in sediments under different treatment methods
    加标聚合物Spiked polymers不同处理方式 Different treatment methods聚合物识别 Polymers identifiedOMNIC 匹配度/% OMNIC Match
    PPaPP83.43
    bPP85.42
    c1PP84.67
    c2PP90.53
    PEaPE87.30
    bPE88.83
    c1PE79.76
    c2PE89.92
    PSaPE90.11
    bPE85.45
    c1ND
    c2PS93.19
    PCaND
    bND
    c1PC94.83
    c2PC97.22
    PVCaPE81.85
    bPVC68.07
    c1PVC69.04
    c2PVC86.29
    PETaND
    bND
    c1PET69.06
    c2PET89.98
      ND.,未检出。not detected.  
     | Show Table
    DownLoad: CSV

    图3中PP和PE可知,在a、b、c1方式处理下,PP和PE微塑料在指纹区(波段500—1500 cm−1)波形明显上移,且存在杂峰干扰,表明在微塑料析出过程中,溶剂和沉积物中有机质的存在会对微塑料成分鉴定造成一定的影响,这是由于在FTIR检测过程中,微塑料样品孔隙间存在沉积物中的有机质等杂质,会影响光谱图质量。但从整体来看,在c2处理方式下得到的光谱图和标准微塑料光谱图匹配度较高。

    图 3  不同处理方式下沉积物中6种微塑料的红外光谱图
    Figure 3.  FTIR spectra of microplastics in sediments under different treatment methods
      (a)直接抽滤;(b)浓缩;(c1)PP、PE微塑料用乙腈析出,PS、PC、PVC、PET等4种微塑料用异辛烷析出;(c2)6种微塑料用甲醇析出。
    (a) direct filtration; (b) concentration;(c1)PP and PE microplastics were precipitated with acetonitrile, PS, PC, PVC and PET microplastics were precipitated with isooctane; (c2) 6 microplastics were precipitated with methanol.

    图3中PS可知,在a、b两种处理方式下,得到的光谱图经谱库检索,与PE光谱图匹配度达到90.11%和85.45%,这是由于PS的回收率较低,在30%以下,并且经过红外检测沉积物内存在PE微塑料本底,如图3中空白对照所示,导致光谱图特征峰被沉积物中的PE微塑料的光谱图所覆盖。c1处理方式下,PS光谱图在1796、1749、1714、1688、1641 cm−1处出现杂峰,与标准微塑料红外光谱图相比,存在一定的差异,经谱库检索,未得到匹配的聚合物。在c2处理方式下,光谱图与标准谱图匹配度较高。由图3中PC可知,在a、b两种处理方式下,由于PC微塑料回收率较低,经谱库检索,未得到匹配的聚合物。在c1和c2处理方式下,得到的光谱图与标准微塑料光谱图匹配度均较高。另外,由于原PC微塑料标准品的粒径相比于经过ASE萃取回收得到的微塑料粒径较大,使其在指纹区(500—1460 cm−1)的峰形分割不清晰,而经过萃取后,微塑料粒径变小且表面更加光滑、分布更加均匀,从而得到质量较好的光谱图。有研究表明红外谱仪检测时对样品的表面光滑度、厚度等要求较高,样品表面粗糙,易出现散射导致谱图信号变弱,从而对光谱图质量造成干扰[27]

    图3中PVC可知,PVC微塑料在a、b、c1处理方式下,在指纹区(波段500—1500 cm−1)的峰形与原微塑料的红外光谱图相比存在明显差异,峰形不清晰,且多为杂峰,经谱库检索,在a处理方式下得到了PE的特征峰,而在b和c1处理方式下,得到的光谱图与PVC匹配度较低,无法判断聚合物类型。而在c2处理方式下,其红外光谱图与标准谱图匹配度较高。由图3 中PET可知,在a、b两种处理方式下,得到的光谱图经OMNIC谱库检索,未得到匹配的聚合物。在c1处理方式下,得到的光谱图与PET匹配度为69.06%,无法判断其聚合物类型。在c2处理方式下,得到的光谱图与原标准微塑料的红外光谱图匹配度较高。

    综上所述,经ASE萃取得到的提取液经浓缩后添加与微塑料溶解度参数差异更大的甲醇溶剂能够使微塑料析出更加完全,且没有明显杂质干扰,得到的红外光谱图与标准谱图匹配度较高,可以实现对复杂介质中微塑料的选择性析出及检测。

    为了更加全面地探究微塑料的析出情况,本研究进一步进行了混合微塑料加标实验:即称取10.00 g干燥的沉积物样品放入ASE萃取池中,加入各2.00 mg左右的6种微塑料,加入等体积的硅藻土混合均匀,按照1.2实验方法部分的步骤进行ASE萃取,得到的萃取物经旋蒸后分别按c1和c2的步骤进行处理。结果表明,经c1处理后,得到混合微塑料总回收率为77.94%,经c2处理后,混合微塑料总回收率为81.08%,得到的红外光谱图如图4所示。

    图 4  不同处理方式下混合微塑料的红外光谱图
    Figure 4.  FTIR spectra of microplastics in sediments under different treatment methods

    由谱库可知,6种微塑料的红外标准谱图特征峰的出峰位置见表6图4中混标的红外光谱图特征峰出现的位置在3085、3060、3026、2951、2919、2850、1776、1725、1601、1505、1453、1376、1232、1194、1164、1081、1015、972、832、758、698 cm−1等波数附近,与单标特征峰位置有重合,由此可以判断存在微塑料共析出的情况。结合红外光谱法的特征,在基于溶解度参数计算的前处理技术基础上,可对样品中具有标准谱图的微塑料成分进行初步定性,并可进一步采用Pry-GC-MS等技术对未知成分进行定性识别[28]

    表 6  微塑料的红外标准谱图特征峰位置
    Table 6.  Position of characteristic peak of FTIR standard spectrum of microplastics
    塑料类型红外标准谱图特征峰位置/cm−1
    PP2958、2919、1457、1374、1163、986
    PE2920、2848、1466、721
    PS3082、3060、3026、2920、2850、1601、1452、1375、1181、1028、906、756
    PC2967、2920、2850、1774、1601、1505、1464、1409、1365、1228、1193、1163、1103、1081、1015、831、769
    PVC2920、2850、1431、1330、1247、1093、964、695
    PET2920、2850、1725、1457、1411、1258、1105、1023、729
     | Show Table
    DownLoad: CSV

    应用建立的基于溶解度参数计算选择性析出微塑料的方法对采集自黄河三角洲地区的30个沉积物样品进行检测分析,样品量为30 g。表7总结了所采集的沉积物中微塑料浓度分布及类型。

    表 7  黄河三角洲沉积物中微塑料浓度分布及类型
    Table 7.  concentrations and types of microplastics in sediments of Yellow River Delta
    样品Samples浓度/(mg·g−1)Concentration微塑料类型Microplastic types样品Samples浓度/(mg·g−1)Concentration微塑料类型Microplastic types
    10.04PE160.11PE
    20.14PE170.21PS
    30.05PE180.16PE
    40.19PE190.15PE
    50.08PE200.16PP
    60.08PE210.26PS
    70.15PE220.13PE
    80.07PE230.17PS
    90.08PE240.09PE
    100.39PE250.16PS
    110.25PE260.10PS
    120.25PE270.11PP
    130.23PE280.10PE
    140.15PVC290.27PE
    150.17PE300.25PE
     | Show Table
    DownLoad: CSV

    图5为黄河三角洲沉积物中微塑料的红外光谱图。结果表明,共有4种微塑料被检出,分别为PE、PS、PP和PVC,检出率范围为3.33%—73.33%,其中,PE的检出率最高,其他3种微塑料的检出率均低于20%。有研究表明,渔业是沿海地区微塑料的主要来源[29],PE常用于包装和渔具等材料[5]。因此,渔业产生的塑料污染和河流引入可能是黄河三角洲地区沉积物中微塑料的主要来源。张起源[30]在湛江红树林湿地沉积物中开展的微塑料污染研究同样发现PE占比最高,该地区渔业养殖、河流引入以及海水中微塑料的沉积是微塑料的主要来源,与本研究结果基本一致。Zuo等[31]在珠江口红树林沉积物中发现PE和PP在各采样点中占比最高,由于PP常用于编织袋、包装袋等产品[32],从而导致PP在沉积物中的检出率同样较高。此外,本研究中微塑料浓度范围为0.04—0.39 mg·g−1,平均浓度为0.16 mg·g−1,远高于我国雨山湖和南湖沉积物中微塑料的平均含量(0.04 mg·g−1[33],结合当地产业发展,应进一步开展对于该地区的微塑料污染监测。

    图 5  黄河三角洲沉积物中微塑料红外光谱图
    Figure 5.  FTIR spectra of microplastics in sediments of Yellow River Delta

    本研究建立了基于溶解度参数计算的沉积物中微塑料的检测方法。通过调节溶剂体系的溶解度参数与微塑料的差值│Δδ│,实现了微塑料的选择性析出。结果表明,增大│Δδ│值对微塑料的选择性析出能起到促进作用。将本方法应用于黄河三角洲地区30个实际沉积物样品,共检出4种微塑料,进一步证实了本方法在实际样品分析检测中的可行性和实用价值。本研究为土壤、沉积物以及室内灰尘等复杂介质中微塑料的提取和分析提供了一种新的思路。

  • 图 1  土壤中Cr的氧化与还原反应[19, 22-25]

    Figure 1.  Oxidation and reduction of chromium in soils[19, 22-25]

    图 2  Cr污染土壤的根际效应和微生物作用

    Figure 2.  Rhizosphere effect and microbial process of Cr contaminated soil

    图 3  修复后场地土壤中Cr的迁移和转化

    Figure 3.  The migration and transport of Cr in post-remediated soil

    表 1  Cr(VI)还原的常用反应体系

    Table 1.  The common system of Cr(VI) reduction

    反应体系还原类型还原条件环境介质还原剂/还原微生物还原效果参考文献
    材料体系铁基材料材料投加量2.5%,土壤中Cr(Ⅵ)质量分数85.8 mg·kg−1土壤零价铁土壤中Cr(Ⅵ)质量分数降低92%[53]
    摩尔比≥ 5∶1,土壤中Cr(Ⅵ)质量分数94 mg·kg−1土壤硫酸亚铁土壤中Cr(Ⅵ)质量分数降低84%[54]
    pH = 6.0,Cr(Ⅵ)质量浓度4.65 mg·L−1水溶液硫化亚铁1 h,Cr(Ⅵ)质量浓度降低99%以上[55]
    硫基材料材料投加量5%,Cr(Ⅵ)浸出浓度664.0 mg·L−1土壤硫化钠Cr(Ⅵ)浸出浓度降低99%以上[56]
    pH = 7.6,H2S浓度800 μmol·L−1,Cr(Ⅵ)浓度40 μmol·L−1水溶液硫化氢pH = 7.6时,21 min内Cr(Ⅵ) 浓度降低到12.6 μmol·L−1[58]
    碳基材料pH = 7.5和pH = 5.5,材料投加量5%,土壤中Cr(Ⅵ)质量分数100 mg·kg−1土壤生物炭土壤中Cr(Ⅵ)质量分数分别降低74%和88%[60]
    pH = 5.8,固液比1g∶100 mL,Cr(Ⅵ)浓度1.1 mmol·L−1水溶液泥炭腐殖酸2 d后Cr(Ⅵ)浓度降低100%[62]
    生物体系还原微生物pH = 7.2,Cr(Ⅵ)质量浓度20~100 mg·L−1水溶液Aeromonas hydrophila ATCC 796660 h内Cr(Ⅵ)浓度达到平衡,Cr(Ⅵ)修复速率分别为0.200,0.175,0.125,0.090和0.075 mg·(L−1·h−1)[64]
    pH = 7.0,Cr(Ⅵ)质量浓度分别在10~70、80~300 、500 mg·L−1水溶液Stenotrophomonas maltophilia各组Cr(Ⅵ)质量浓度分别降低100%,98%~ 99%和92%[65]
    耦合体系材料+微生物材料投加量1.5%,土壤中Cr(Ⅵ)质量分数100 mg·kg−1,25 ℃,土壤湿度60%土壤纳米FeS@HA-Cr-resistant microflora90 d后土壤中Cr(Ⅵ)质量分数下降99.16%[66]
    pH = 7.0,初始Cr(Ⅵ)浓度0.1 mmol·L−1,进液Cr(Ⅵ)浓度0.2 mmol·L−1水溶液氢氧化铁/三氧化二铁-Shewanella alga strain BrYCr(Ⅵ)最大还原速率为5.5 μg·h−1[67]
    反应体系还原类型还原条件环境介质还原剂/还原微生物还原效果参考文献
    材料体系铁基材料材料投加量2.5%,土壤中Cr(Ⅵ)质量分数85.8 mg·kg−1土壤零价铁土壤中Cr(Ⅵ)质量分数降低92%[53]
    摩尔比≥ 5∶1,土壤中Cr(Ⅵ)质量分数94 mg·kg−1土壤硫酸亚铁土壤中Cr(Ⅵ)质量分数降低84%[54]
    pH = 6.0,Cr(Ⅵ)质量浓度4.65 mg·L−1水溶液硫化亚铁1 h,Cr(Ⅵ)质量浓度降低99%以上[55]
    硫基材料材料投加量5%,Cr(Ⅵ)浸出浓度664.0 mg·L−1土壤硫化钠Cr(Ⅵ)浸出浓度降低99%以上[56]
    pH = 7.6,H2S浓度800 μmol·L−1,Cr(Ⅵ)浓度40 μmol·L−1水溶液硫化氢pH = 7.6时,21 min内Cr(Ⅵ) 浓度降低到12.6 μmol·L−1[58]
    碳基材料pH = 7.5和pH = 5.5,材料投加量5%,土壤中Cr(Ⅵ)质量分数100 mg·kg−1土壤生物炭土壤中Cr(Ⅵ)质量分数分别降低74%和88%[60]
    pH = 5.8,固液比1g∶100 mL,Cr(Ⅵ)浓度1.1 mmol·L−1水溶液泥炭腐殖酸2 d后Cr(Ⅵ)浓度降低100%[62]
    生物体系还原微生物pH = 7.2,Cr(Ⅵ)质量浓度20~100 mg·L−1水溶液Aeromonas hydrophila ATCC 796660 h内Cr(Ⅵ)浓度达到平衡,Cr(Ⅵ)修复速率分别为0.200,0.175,0.125,0.090和0.075 mg·(L−1·h−1)[64]
    pH = 7.0,Cr(Ⅵ)质量浓度分别在10~70、80~300 、500 mg·L−1水溶液Stenotrophomonas maltophilia各组Cr(Ⅵ)质量浓度分别降低100%,98%~ 99%和92%[65]
    耦合体系材料+微生物材料投加量1.5%,土壤中Cr(Ⅵ)质量分数100 mg·kg−1,25 ℃,土壤湿度60%土壤纳米FeS@HA-Cr-resistant microflora90 d后土壤中Cr(Ⅵ)质量分数下降99.16%[66]
    pH = 7.0,初始Cr(Ⅵ)浓度0.1 mmol·L−1,进液Cr(Ⅵ)浓度0.2 mmol·L−1水溶液氢氧化铁/三氧化二铁-Shewanella alga strain BrYCr(Ⅵ)最大还原速率为5.5 μg·h−1[67]
    下载: 导出CSV

    表 2  EPA超级基金Cr污染场地修复后的长期监测数据[70]

    Table 2.  Long-term monitoring data of EPA Superfund Cr contaminated in post-remediation sites[70]

    序号场地名称涉及污染物修复措施监测年份地下水中Cr是否超标Cr质量浓度分析
    1Bennington Municipal Sanitary LandfillAs、Hg、Cr、有机物等表面覆盖阻隔、拦截沟、渗滤液收集及处理系统、沉积物清理1999—2019监测点位Cr质量浓度稍有波动,但未曾超标。
    2BFI Sanitary LandfillAs、Cr、有机物等表面覆盖阻隔、地下水拦截沟、气体收集及处理系统1994—2019Cr质量浓度基本均低于检测限,仅MW-9中Cr超标时有发生,监测质量浓度总体无明显变化趋势。
    3Elizabeth MineAs、Cr、有机物等污染区覆盖阻隔,部分污染土固化处理;污染水域填土和覆土2004— 2019缺乏Cr相关长期监测数据。
    4Parker Sanitary LandfillAs、Cr、有机物等表面屏障、地下水处理系统、气体收集及处理系统、地下水及沉积物定期监测1999-2019地下水中Cr监测未超标。
    5Pownal TanneryAs、Hg、Cr、有机物等废弃物清挖、固化并进行原位覆盖阻隔,地下水及沉积物定期监测1999—2019地下水中Cr监测未超标。
    6Tansitor Electronics Inc.As、Cr、有机物等制度控制,长期监测1999—2019缺乏Cr相关长期监测数据。
    7Saco Tannery Waste PitsAs、Cr、有机物等废物堆和排水区覆盖阻隔,补偿性湿地系统修复1993—2019地下水Cr基本均低于检测限,仅MW-114B质量浓度存在超标,监测质量浓度总体无明显变化趋势。
    8Hatheway & PattersonAs、Cr、有机物等拆除建筑物,As污染土原位固化/稳定化,二恶英污染土异位处理2004-2019地下水中Cr监测未超标。
    9Hocomonoco PondAs、Cr、有机物等DNAPL收集处理系统,底泥清运,污染土固化。1999—2019缺乏Cr相关长期监测数据。
    10Nyanza Chemical Waste DumpAs、Hg、Cr、有机物等地下水收集处理系统,底泥清运,污染土固化/稳定化1990—2019缺乏Cr相关长期监测数据。
    11Silresim Chemical CorporationAs、Hg、Cr、有机物等阻隔装置,土壤真空/气相抽提,地下水处理设施(地下水抽提、气提、碳吸附、热氧化等)1994—2019地下水中Cr监测未超标。
    12Federal Facility: South Weymouth Naval Air StationAs、Cr、有机物等划为10区分开修复。以As、Cr污染的OU1填埋区为例,清理表土,铺设覆盖层,重建湿地,自然衰减监测2004—2019地下水中Cr监测未超标。
    13W.R. Grace & Co., IncAs、Cr、有机物等污染土和底泥固化/稳定化、堆存并表面覆盖,地下水抽提以及自然衰减1994-2019地下水中Cr监测未超标。
    14Wells G&H, WoburnAs、Hg、Cr、有机物等原位土壤气相抽提,污泥清挖处置,地下水抽提处理,原位化学氧化1994—2019地下水中Cr测未超标。
    15Federal Facility: Pease Air Force BaseAs、Hg、Cr、有机物等固废及底泥清挖异位处置,灌注土壤改良剂,地下水抽提处理及生物修复。土壤和地下水曝气(地下水位以下),土壤气相抽提(地下水位以上)1994—2019地下水中Cr监测未超标。底泥中位于Paol上游和中游的点位Cr质量浓度存在一次超标,推测与附近污染场地的地表径流相关。
    16Pine Street CanalAs、Cr(Ⅵ)、有机物等污染底泥覆盖阻隔,栖息地恢复以及长期监测2001-20192007—2011,地下水中Cr监测未超标;2012—2016,Cr不继续作为关注污染物进行监测。
    17Town Garage/Radio BeaconCr、有机物等制度控制,长期监测1994—2019地下水Cr轻度超标,浓度偏高可能是采样扰动有关。采用低流速地下水采样后,重金属指标均未超标。
    18New Hampshire PlatingAs、Cr、有机物等石灰和次氯酸钠处理排水系统,建筑物及废弃物清运,污染土化学稳定化2004-2019地下水中Cr监测未超标。
    序号场地名称涉及污染物修复措施监测年份地下水中Cr是否超标Cr质量浓度分析
    1Bennington Municipal Sanitary LandfillAs、Hg、Cr、有机物等表面覆盖阻隔、拦截沟、渗滤液收集及处理系统、沉积物清理1999—2019监测点位Cr质量浓度稍有波动,但未曾超标。
    2BFI Sanitary LandfillAs、Cr、有机物等表面覆盖阻隔、地下水拦截沟、气体收集及处理系统1994—2019Cr质量浓度基本均低于检测限,仅MW-9中Cr超标时有发生,监测质量浓度总体无明显变化趋势。
    3Elizabeth MineAs、Cr、有机物等污染区覆盖阻隔,部分污染土固化处理;污染水域填土和覆土2004— 2019缺乏Cr相关长期监测数据。
    4Parker Sanitary LandfillAs、Cr、有机物等表面屏障、地下水处理系统、气体收集及处理系统、地下水及沉积物定期监测1999-2019地下水中Cr监测未超标。
    5Pownal TanneryAs、Hg、Cr、有机物等废弃物清挖、固化并进行原位覆盖阻隔,地下水及沉积物定期监测1999—2019地下水中Cr监测未超标。
    6Tansitor Electronics Inc.As、Cr、有机物等制度控制,长期监测1999—2019缺乏Cr相关长期监测数据。
    7Saco Tannery Waste PitsAs、Cr、有机物等废物堆和排水区覆盖阻隔,补偿性湿地系统修复1993—2019地下水Cr基本均低于检测限,仅MW-114B质量浓度存在超标,监测质量浓度总体无明显变化趋势。
    8Hatheway & PattersonAs、Cr、有机物等拆除建筑物,As污染土原位固化/稳定化,二恶英污染土异位处理2004-2019地下水中Cr监测未超标。
    9Hocomonoco PondAs、Cr、有机物等DNAPL收集处理系统,底泥清运,污染土固化。1999—2019缺乏Cr相关长期监测数据。
    10Nyanza Chemical Waste DumpAs、Hg、Cr、有机物等地下水收集处理系统,底泥清运,污染土固化/稳定化1990—2019缺乏Cr相关长期监测数据。
    11Silresim Chemical CorporationAs、Hg、Cr、有机物等阻隔装置,土壤真空/气相抽提,地下水处理设施(地下水抽提、气提、碳吸附、热氧化等)1994—2019地下水中Cr监测未超标。
    12Federal Facility: South Weymouth Naval Air StationAs、Cr、有机物等划为10区分开修复。以As、Cr污染的OU1填埋区为例,清理表土,铺设覆盖层,重建湿地,自然衰减监测2004—2019地下水中Cr监测未超标。
    13W.R. Grace & Co., IncAs、Cr、有机物等污染土和底泥固化/稳定化、堆存并表面覆盖,地下水抽提以及自然衰减1994-2019地下水中Cr监测未超标。
    14Wells G&H, WoburnAs、Hg、Cr、有机物等原位土壤气相抽提,污泥清挖处置,地下水抽提处理,原位化学氧化1994—2019地下水中Cr测未超标。
    15Federal Facility: Pease Air Force BaseAs、Hg、Cr、有机物等固废及底泥清挖异位处置,灌注土壤改良剂,地下水抽提处理及生物修复。土壤和地下水曝气(地下水位以下),土壤气相抽提(地下水位以上)1994—2019地下水中Cr监测未超标。底泥中位于Paol上游和中游的点位Cr质量浓度存在一次超标,推测与附近污染场地的地表径流相关。
    16Pine Street CanalAs、Cr(Ⅵ)、有机物等污染底泥覆盖阻隔,栖息地恢复以及长期监测2001-20192007—2011,地下水中Cr监测未超标;2012—2016,Cr不继续作为关注污染物进行监测。
    17Town Garage/Radio BeaconCr、有机物等制度控制,长期监测1994—2019地下水Cr轻度超标,浓度偏高可能是采样扰动有关。采用低流速地下水采样后,重金属指标均未超标。
    18New Hampshire PlatingAs、Cr、有机物等石灰和次氯酸钠处理排水系统,建筑物及废弃物清运,污染土化学稳定化2004-2019地下水中Cr监测未超标。
    下载: 导出CSV
  • [1] YANG Z H, ZHANG X M, JIANG Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil: A review[J]. Science of the Total Environment, 2021, 773: 145654. doi: 10.1016/j.scitotenv.2021.145654
    [2] 王春峰, 姚丹, 陈冠飞, 等. 赤泥重金属和放射性元素的毒性浸出和生物可给性[J]. 环境科学研究, 2017, 30(5): 809-816.
    [3] ALI S, BAI P, ZENG F R, et al. The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance[J]. Environmental and Experimental Botany, 2011, 70(2/3): 185-191.
    [4] SU H J, FANG Z Q, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214: 94-100. doi: 10.1016/j.envpol.2016.03.072
    [5] REALE L, FERRANTI F, MANTILACCI S, et al. Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium[J]. Chemosphere, 2015, 145: 98-105.
    [6] SUZUKI T, KAWAI K, MORIBE M, et al. Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier[J]. Journal of Hazardous Materials, 2014, 278: 297-303. doi: 10.1016/j.jhazmat.2014.05.086
    [7] XIA S P, SONG Z L, JEYAKUMAR P, et al. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater[J]. Environment Geochemistry and Health, 2020, 42: 1543-1567. doi: 10.1007/s10653-019-00445-w
    [8] 谷庆宝, 马福俊, 张倩, 等. 污染场地固化/稳定化修复的评价方法与标准[J]. 环境科学研究, 2017, 30(5): 755-764.
    [9] 姚瑶, 张世熔, 王怡君, 等. 3种环保型淋洗剂对重金属污染土壤的淋洗效果[J]. 环境工程学报, 2018, 12(7): 2039-2046. doi: 10.12030/j.cjee.201801198
    [10] XU Y F, XU X J, HOU H, et al. Moisture content-affected electrokinetic remediation of Cr(VI)-contaminated clay by a hydrocalumite barrier[J]. Environmental Science and Pollution Research, 2016, 23: 6517-6523. doi: 10.1007/s11356-015-5685-y
    [11] SHI L, DENG X P, YANG Y, et al. A Cr(VI)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation[J]. Chemosphere, 2019, 224: 862-872. doi: 10.1016/j.chemosphere.2019.03.015
    [12] FIELD E K, BLASKOVICH J P, PEYTON B M, et al. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate[J]. Journal of Hazardous Materials, 2018, 355: 162-169. doi: 10.1016/j.jhazmat.2018.05.020
    [13] LI D N, LI G H, ZHANG D Y. Field-scale studies on the change of soil microbial community structure and functions after stabilization at a chromium-contaminated site[J]. Journal of Hazardous Materials, 2021, 415: 125727. doi: 10.1016/j.jhazmat.2021.125727
    [14] SHEN Z T, JIN F, O’CONNOR D, et al. Solidification/stabilization for soil remediation: An old technology with new vitality[J]. Environmental Science & Technology, 2019, 53: 11615-11617.
    [15] AO M, CHEN X T, DENG T H, et al. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review[J]. Journal of Hazardous Materials, 2022, 424: 127233. doi: 10.1016/j.jhazmat.2021.127233
    [16] 王亚平, 黄毅, 王苏明, 等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009
    [17] 刘雪, 王兴润, 张增强. pH和有机质对铬渣污染土壤中Cr赋存形态的影响[J]. 环境工程学报, 2010, 4(6): 1436-1440.
    [18] 郭越宏, 王建生, 张学洪, 等. 腐植酸对李氏禾-红壤处理系统中的铬赋存形态、微生物群落及酶活性影响[J]. 环境工程, 2021, 39(12): 234-242.
    [19] LIU W Z, LI J, ZHENG J Y, et al. Different pathways for Cr(III) oxidation: Implications for Cr(VI) reoccurrence in reduced chromite ore processing residue[J]. Environmental Science & Technology, 2020, 54(19): 11971-11979.
    [20] PALMER C D, WITTBRODT P R, FSIH W. Chromium mineral phases at a highly contaminated hardchrome plating site[J]. Eos Transactions of the American Geophysical Union, 1990, 71(36): 1068.
    [21] BARTLETT J R. Chromium cycling in soils and water: Links, gaps, and methods[J]. Environmental Health Perspectives, 1991, 92(178): 17-24.
    [22] PAN C, LIU H, CATALANO J G, et al. Rates of Cr(VI) generation from CrxFe1-x(OH)3 solids upon reaction with manganese oxide[J]. Environmental Science & Technology, 2017, 51(21): 12416-12423.
    [23] BARTLETT R, JAMES B. Behavior of chromium in soils: III. Oxidation[J]. Journal of Environmental Quality, 1979, 8(1): 31-35.
    [24] THOMAS H Y, CHEN, TRAINA S J. Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions[J]. Environmental Science & Technology, 2004, 38(21): 5535-5539.
    [25] MAHDIEH K, SHAHIN O, NOSRATOLLAH N, et al. Treatment of Cr(VI)-spiked soils using sulfur-based amendments[J]. Archives of Agronomy and Soil Science, 2016, 62(10): 1474-1485. doi: 10.1080/03650340.2016.1152358
    [26] BLOOMFIELD C, PRUDEN G. The behaviour of Cr(VI) in soil under aerobic and anaerobic conditions[J]. Environmental Pollution Series A, Ecological and Biological, 1980, 23(2): 103-114. doi: 10.1016/0143-1471(80)90058-6
    [27] JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review[J]. Chemosphere, 2018, 207: 255-266. doi: 10.1016/j.chemosphere.2018.05.050
    [28] 杜晓丽, 刘殿威, 崔申申. 径流入渗土壤胶体释放对重金属截留的影响[J]. 中国环境科学, 2022, 42(3): 1278-1286. doi: 10.3969/j.issn.1000-6923.2022.03.033
    [29] 蒋越, 李广辉, 王东辉, 等. 天然有机酸和DTPA组合工艺对Cr(Ⅵ)污染土壤的淋洗修复[J]. 环境工程学报, 2020, 14(7): 1903-1914. doi: 10.12030/j.cjee.201911073
    [30] 李东, 贺丽洁, 盛培培. Tessier连续提取法用于土壤铬分析的Cr(Ⅵ)-Cr(Ⅲ)转化及适用性[J]. 环境工程学报, 2021, 15(7): 2368-2378. doi: 10.12030/j.cjee.202012141
    [31] MCLEAN J E, BLEDSOE B E. Behavior of metals in soils[M]. Washington, DC: EPA Ground Water Issue, 1992: EPA 540-S-92-018.
    [32] PUNIA S, WU Lisha, KHODADOUST A P. Adsorption of hexavalent chromium from water using manganese-aluminum coated sand: Kinetics, equilibrium, effect of pH and ionic strength[J]. Journal of Environmental Science and Health, Part A, 2021, 56: 334-345. doi: 10.1080/10934529.2021.1877513
    [33] SHI Z Q, PENG S M, LIN X F, et al. Predicting Cr(VI) adsorption on soils: The role of the competition of soil organic matter[J]. Environmental Science:Processes and Impacts, 2020, 22(1): 95-104. doi: 10.1039/C9EM00477G
    [34] ZHANG X W, TONG J X, WEI W S, et al. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(VI)) in soil column[J]. Environmental Science and Pollution Research, 2018, 25: 459-468. doi: 10.1007/s11356-017-0263-0
    [35] NJOYA O, ZHAO S X, QU Y F, et al. Performance and potential mechanism of Cr(VI) reduction and subsequent Cr(III) precipitation using sodium borohydride driven by oxalate[J]. Journal of Environmental Management, 2020, 275: 111165. doi: 10.1016/j.jenvman.2020.111165
    [36] COOK K R. In situ treatment of soil and groundwater contaminated with chromium-technical resource guide[M]. Washington DC: EPA, 2000: EPA 625-R-00-005.
    [37] DAI C, ZUO X B, CAO B, et al. Homogeneous and heterogeneous (Fex, Cr1-x)(OH)3 precipitation: Implications for Cr sequestration[J]. Environmental Science & Technology, 2016, 50(4): 1741-1749.
    [38] LEE G, HERING J G. Oxidative dissolution of chromium(III) hydroxide at pH 9, 3, and 2 with product inhibition at pH 2[J]. Environmental Science & Technology, 2005, 39(13): 4921-4928.
    [39] BARTLETT R J, KIMBLE J M. Behavior of chromium in soils, Ⅰ: Trivalent forms[J]. Journal of Environmental Quality, 1976, 5(4): 379-383.
    [40] JAMES B R, BARTLETT R J. Behavior of chromium in soils, VII: Adsorption and reduction of hexavalent forms[J]. Journal of Environmental Quality, 1983, 12(2): 177-181.
    [41] GUSTAFSSON J P, PERSSON I, OROMIEH A G, et al. Chromium(III) complexation to natural organic matter: Mechanisms and modeling[J]. Environmental Science & Technology, 2014, 48(3): 1753-1761.
    [42] CAO X H, GUO J, MAO J D, et al. Adsorption and mobility of Cr(III)-organic acid complexes in soils[J]. Journal of Hazardous Materials, 2011, 192(3): 1553-1538.
    [43] KANMANI P, ARAVIND J, PRESTON D. Remediation of chromium contaminants using bacteria[J]. International Journal of Environmental Science and Technology, 2011, 9(1): 183-193.
    [44] GUO S Y, XIAO C Q, ZHOU N, et al. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination[J]. Environmental Chemistry Letters, 2020, 19(2): 1413-1431.
    [45] ASATIANI N V, ABULADZE M K, KARTVELISHVILI T M, et al. Effect of chromium(VI) action on Arthrobacter oxydans[J]. Current Microbiology, 2004, 49(5): 321-326. doi: 10.1007/s00284-004-4351-2
    [46] WANG Y Y, LIU Y D, ZHENG K X, et al. The role of extracellular polymeric substances (EPS) in the reduction of Cr(VI) by Pannonibacter phragmitetus BB[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106163. doi: 10.1016/j.jece.2021.106163
    [47] XU Z R, CAI M L, CHEN S H, et al. High-affinity sulfate transporter Sultr1;2 is a major transporter for Cr(VI) uptake in plants[J]. Environmental Science & Technology, 2021, 55(3): 1576-1584.
    [48] ZENG Q, HU Y T, YANG Y R, et al. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium[J]. Journal of Hazardous Materials, 2019, 368: 149-155. doi: 10.1016/j.jhazmat.2019.01.031
    [49] LIU J, DUAN C Q, ZHANG X H, et al. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil[J]. Journal of Hazardous Materials, 2011, 188(1/3): 85-91.
    [50] JAN S, NOMAN A, KAYA C, et al. 24-Epibrassinolide alleviates the injurious effects of Cr(VI) toxicity in tomato plants: Insights into growth, physio-biochemical attributes, antioxidant activity and regulation of ascorbate-glutathione and glyoxalase cycles[J]. Journal of Plant Growth Regulation, 2020, 39: 1587-1604. doi: 10.1007/s00344-020-10169-2
    [51] VAMERALI T, BANDIERA M, COLETTO L, et al. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy)[J]. Environmental Pollution, 2009, 157(3): 887-94. doi: 10.1016/j.envpol.2008.11.003
    [52] QIAN Y T, QIN C D, CHEN M M, et al. Nanotechnology in soil remediation applications vs implications[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110815. doi: 10.1016/j.ecoenv.2020.110815
    [53] ZHOU Z C, ALHADIDI Q, DELIZ K Q, et al. Removal of oxyanion forming elements from contaminated soils through combined sorption onto zero-valent iron (ZVI) and magnetic separation: Arsenic and chromium as case studies[J]. Journal of Soil Contamination, 2019, 29(2): 1-12.
    [54] PALMA L D, GUEYE M T, PETRUCCI E. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2015, 281(8): 70-76.
    [55] WANG T, QIAN T W, HUO L J, et al. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles[J]. Environmental Pollution, 2019, 255: 112992. doi: 10.1016/j.envpol.2019.112992
    [56] YUAN W Y, XU W T, WU Z B, et al. Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process[J]. Chemosphere, 2018, 212: 540-547. doi: 10.1016/j.chemosphere.2018.08.121
    [57] 赖冬麟, 张奇, 陈亭亭, 等. 张家口市某机械厂原址电镀污染场地土壤修复工程实践[J]. 环境工程, 2020, 38(6): 75-80.
    [58] LAN Y Q, DENG B L, KIM C, et al. Catalysis of elemental sulfur nanoparticles on chromium(VI) reduction by sulfide under anaerobic conditions[J]. Environmental Science & Technology, 2005, 39(7): 2087-2094.
    [59] SONG Z L, FANG L C, WANG J, et al. Use of biogas solid residue from anaerobic digestion as an effective amendment to remediate Cr(VI)-contaminated soils[J]. Environmental Science and Pollution Research, 2019, 26: 13041-13053. doi: 10.1007/s11356-019-04786-y
    [60] MANDAL S, SARKAR B, BOLAN N, et al. Enhancement of chromate reduction in soils by surface modified biochar[J]. Journal of Environmental Management, 2017, 186(2): 277-284.
    [61] BASHIR M S, NAVEED M, AHMAD Z, et al. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L. ) in tannery polluted soils[J]. Journal of Environmental Management, 2020, 259: 110051. doi: 10.1016/j.jenvman.2019.110051
    [62] ALDMOUR S T, BURKE I T, BRAY A W, et al. Abiotic reduction of Cr(VI) by humic acids derived from peat and lignite: Kinetics and removal mechanism[J]. Environmental Science and Pollution Research, 2019, 26: 4717-4729. doi: 10.1007/s11356-018-3902-1
    [63] SU C Q, LI L Q, YANG Z H, et al. Cr(VI) reduction in chromium-contaminated soil by indigenous microorganisms under aerobic condition[J]. 2019, 29: 1304-1311.
    [64] HUANG X N, MIN D, LIU D F, et al. Formation mechanism of organo-chromium(III) complexes from bioreduction of chromium(VI) by Aeromonas Hydrophila[J]. Environment International, 2019, 129: 86-94. doi: 10.1016/j.envint.2019.05.016
    [65] BALDIRIS, ACOSTA N T, MONTES A, et al. Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas Maltophilia[J]. Molecules, 2018, 23(2): 406. doi: 10.3390/molecules23020406
    [66] TAN H, WANG C, LI H, et al. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora[J]. Chemosphere, 2020, 242: 125251. doi: 10.1016/j.chemosphere.2019.125251
    [67] BRUCE W L, MIZUBA M M, HANSEL C M, et al. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria[J]. Environmental Science & Technology, 2001, 35(3): 522-527.
    [68] ZHANG K, LIAO P, JIN Y W, et al. Conductive property of secondary minerals triggered Cr(VI) bioreduction by dissimilatory iron reducing bacteria[J]. Environmental Pollution, 2021, 286: 117227. doi: 10.1016/j.envpol.2021.117227
    [69] JAMES B R, BARTLETT R J. Behavior of chromium in soils, VI: Interactions between oxidation-reduction and organic complexation[J]. Journal of Environmental Quality, 1983, 12(2): 173-176.
    [70] US Environmental Protection Agency. Search superfund site information [EB/OL]. [2021-11-15] https://cumulis.epa.gov/supercpad/cursites/srchsites.cfm.
    [71] HE L, WANG Z, GU W B. Evolution of freeze-thaw properties of cement-lime solidified contaminated soil[J]. Environmental Technology & Innovation, 2020, 21: 101189.
    [72] TU Y M, LIU D Y, WANG T F, et al. Evaluation on later-age performance of concrete subjected to early-age freeze-thaw damage[J]. Construction and Building Materials, 2020, 270: 121491.
    [73] LIAO Y P, MIN X B, YANG Z H, et al. Assessment of the stability of chromium in remedied soils by Pannonibacter Phragmitetus BB and its risk to groundwater[J]. Journal of Soils and Sediments, 2014, 14: 1098-1106. doi: 10.1007/s11368-014-0860-1
    [74] WEN F, HOU H, YAO N, et al. Effects of simulated acid rain, EDTA, or their combination, on migration and chemical fraction distribution of extraneous metals in ferrosol[J]. Chemosphere, 2013, 90(2): 349-357. doi: 10.1016/j.chemosphere.2012.07.027
    [75] SLEJKO F F, PETRINI R, LUTMAN A, et al. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy[J]. Isotopes Environ Health Studies, 2019, 55(1): 56-69. doi: 10.1080/10256016.2018.1560278
    [76] ZHAO Y P, XIANG W, HUANG C L, et al. Production of hydroxyl radicals following water-level drawdown in peatlands: A new induction mechanism for enhancing laccase activity in carbon cycling[J]. Soil Biology and Biochemistry, 2021, 156: 108241. doi: 10.1016/j.soilbio.2021.108241
    [77] JIA M Q, BIAN X, YUAN S H. Production of hydroxyl radicals from Fe(II) oxygenation induced by groundwater table fluctuations in a sand column[J]. Science of the Total Environment, 2017, 584: 41-47.
    [78] YE T T, LI H B, WANG Z X, et al. Transport and fate of hexavalent chromium in slag-soil system[J]. Environmental Earth Sciences, 2019, 78: 239-250. doi: 10.1007/s12665-019-8245-9
    [79] KIMBROUGH D E, COHEN Y WINER A M, et al. A critical assessment of chromium in the environment[J]. Critical Reviews in Environmental Science and Technology, 1999, 29(1): 1-46. doi: 10.1080/10643389991259164
    [80] MOHANTY A, PATRA H K. Phytoremediation potential of paragrass-an in situ approach for chromium contaminated soil[J]. International Journal of Phytoremediation, 2012, 14(8): 796-805. doi: 10.1080/15226514.2011.619595
    [81] RANIERI E, FRATINO U, PETRELLA A, et al. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil[J]. Environmental Science and Pollution Research, 2016, 23: 15983-15989. doi: 10.1007/s11356-016-6804-0
    [82] 陈子方, 赵勇胜, 孙家强. 铅和铬污染包气带及再释放规律的实验研究[J]. 中国环境科学, 2014, 34(9): 2211-2216.
    [83] 童菊秀, 刘洋, 孙怀卫. 土壤中Cr(Ⅵ)的地表径流迁移试验研究[J]. 排灌机械工程学报, 2014, 32(3): 271-276. doi: 10.3969/j.issn.1674-8530.13.0133
    [84] WEI Y Q, XU X Y, CHEN X, et al. Migration and transformation of chromium in unsaturated soil during groundwater table fluctuations induced by rainfall[J]. Journal of Hazardous Materials, 2021, 45: 126229.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.1 %DOWNLOAD: 6.1 %HTML全文: 86.7 %HTML全文: 86.7 %摘要: 7.2 %摘要: 7.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.4 %其他: 96.4 %XX: 2.2 %XX: 2.2 %北京: 0.4 %北京: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %广州: 0.1 %广州: 0.1 %无锡: 0.1 %无锡: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.3 %深圳: 0.3 %湘潭: 0.1 %湘潭: 0.1 %邯郸: 0.1 %邯郸: 0.1 %青岛: 0.1 %青岛: 0.1 %其他XX北京哈尔滨广州无锡武汉深圳湘潭邯郸青岛Highcharts.com
图( 3) 表( 2)
计量
  • 文章访问数:  7939
  • HTML全文浏览数:  7939
  • PDF下载数:  160
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-04-24
  • 刊出日期:  2022-07-31
胡清, 罗培, 冯明玉, 韦黎华, 王宏. 固化/稳定化修复后场地土壤中铬的环境行为与归趋[J]. 环境工程学报, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036
引用本文: 胡清, 罗培, 冯明玉, 韦黎华, 王宏. 固化/稳定化修复后场地土壤中铬的环境行为与归趋[J]. 环境工程学报, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036
HU Qing, LUO Pei, FENG mingyu, WEI Lihua, WANG Hong. Environmental behavior and fate of chromium in the soils of solidification/stabilization post-remediation sites[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036
Citation: HU Qing, LUO Pei, FENG mingyu, WEI Lihua, WANG Hong. Environmental behavior and fate of chromium in the soils of solidification/stabilization post-remediation sites[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2122-2134. doi: 10.12030/j.cjee.202112036

固化/稳定化修复后场地土壤中铬的环境行为与归趋

    通讯作者: 胡清(1964—),女,博士,教授,huq@sustech.edu.cn
    作者简介: 胡清(1964—),女,博士,教授,huq@sustech.edu.cn
  • 1. 南方科技大学环境科学与工程学院,深圳 518055
  • 2. 南方科技大学工程技术创新中心(北京),北京 100083
基金项目:
国家重点研发计划资助项目(2018YFC1801403)

摘要: 土壤重金属铬(Cr)污染形势严峻,对人群健康和生态环境构成了严重威胁。通过固化/稳定化技术降低土壤中金属的毒性或迁移性,是Cr污染场地常用的修复技术之一。由于Cr的环境行为变化多端、机制复杂,故导致固化/稳定化修复后场地存在Cr污染反弹的环境风险。综述了Cr在土壤中的氧化还原、吸附与解吸、沉淀与溶解,以及植物、微生物吸收与转化等多种环境行为;并梳理了已修复的Cr污染场地案例及场地长期跟踪监测数据,探讨了固化/稳定化修复后Cr的环境归趋及其影响因素,以期为修复后场地的风险管理提供参考。

English Abstract

  • 铬(Cr)是一种过渡金属元素,亦是一种潜在有毒元素存在于整个环境中[1]。尤其是六价铬(Cr(Ⅵ))被认为是第一类致癌物质[2],Cr(Ⅵ)不仅会影响作物产量和质量[3],还会对人群健康造成有害影响,包括致癌和遗传毒性等[4]。在过去几十年中,土壤Cr污染问题越来越严峻,主要集中于皮革鞣制、金属电镀、不锈钢生产、合金制造、印染、化学品生产等行业地区[5]。据报道,在美国国家优先清单上,Cr污染场地约占11%;日本在污染场地中,Cr(Ⅵ)污染场地占14%[6];而我国Cr污染土壤问题也尤为突出,Cr污染土地面积占污染土地总面积的5.1%[7]

    目前,许多修复Cr污染的方法已被开发并应用于实践,例如固化/稳定[8]、土壤淋洗[9]、电动修复[10]、植物修复[11]和生物修复[12]等。尤其是固化/稳定化修复技术[13],该技术包括固化和稳定化2个过程。其中,固化过程通常是利用水泥基材将Cr污染物通过包埋的形式固定在土壤中。稳定化过程则是向土壤中添加稳定剂(还原剂),将高毒性、迁移性强的Cr(Ⅵ)还原成为低毒性的Cr(Ⅲ),进一步形成沉淀或难溶物质,阻止其迁移,最终稳定在土壤中。由于固化/稳定化修复技术能够以相对较低的成本实现修复目标,且具有周期短、效率高等优点。同时,该技术还能够原位或异位处置各种重金属污染物,在我国已被广泛采用。据统计,仅2017-2018年我国土壤修复工程中固化/稳定化修复技术的选取率就高达48.5%[14]。然而,我国修复场地多数以修复工程竣工验收设为终点,却忽略了土壤修复的长期有效性、缺乏对验收后Cr的环境归趋的关注。此外,Cr在修复后土壤中,具有环境行为多变、机制复杂,易迁移和转化的特点,修复后的环境风险也值得重点关注[15]

    综述了Cr在土壤中的氧化与还原、吸附与解吸、沉淀与溶解等物理化学反应以及被植物、微生物吸收与转化等生物作用的环境行为,并通过调研Cr污染场地长期监测现状,探索污染场地修复后Cr的环境归趋及其影响因素,以期为修复后场地的长期风险管理提供参考依据。

    • 由于Cr的核外电子结构为[Ar]3d54s1,Cr存在多种价态与形态,但在土壤介质中主要以Cr(Ⅲ)和Cr(Ⅵ)存在。根据BCR连续提取法[16],可将土壤介质中Cr的赋存形态划分为弱酸提取态、可还原态、可氧化态、残渣态。土壤介质中Cr的赋存形态受到多种因素的影响,如pH、有机质、以及微生物等。刘雪等[17]选用3种不同的Cr污染土壤作为试样,研究了pH和有机质投加量对土壤介质中Cr形态的影响,发现随pH降低和有机质投加量增大,土壤介质中Cr(Ⅵ)含量减少,Cr(Ⅲ)增加。另外,Cr的弱酸可提取态组分占比会减小,而Cr的可氧化态和可还原态组分占比增加,且可氧化态组分增加明显。这表明,酸性条件和有机质有利于Cr(Ⅵ)的还原和弱酸可提取态的Cr向可还原态和可氧化态Cr的转化。另外,郭越宏等[18]探究了腐植酸对李氏禾(Leersia hexandra Swartz)修复红壤中Cr赋存形态的影响。在添加腐植酸后,红壤中Cr的可氧化态组分占比提高,可还原态组分占比降低。

    • Cr能够与土壤中多种介质发生氧化还原反应(图1)[19]。在酸性环境中,Cr(Ⅵ)是一种强氧化剂,具有非常高的氧化还原电位(E0 (Cr(Ⅵ)/Cr(Ⅲ)) = 1.33 V),而碱性条件下的氧化还原电位为−0.13 V。另外,土壤中溶解氧(E0(O2/OH) = 0.40 V)和Mn(Ⅳ)(E0(MnO2/Mn2+) = 1.23 V)能够形成一定的氧化环境进而对Cr(Ⅲ)产生氧化作用。PALMER等[20]通过实验证实了溶解氧对Cr(Ⅲ)的氧化是一个缓慢的过程,通常需要数月之久。这说明,溶解氧能够氧化Cr(Ⅲ),但并非占主导地位。而BARTLETT[21]研究发现,正常干燥土壤中Cr(Ⅲ)难被氧化成Cr(Ⅵ),需要有H2O的参与。PAN等[22]发现,锰氧化物与含Cr(Ⅲ)沉积物发生反应,导致地下水中Cr(Ⅵ)浓度升高。LIU等[19]探究了碱性环境中Cr(OH)3的3种氧化机制。结果表明,O2对Cr(OH)3的氧化贡献占比较低,而短时间内(10 d)MnO2贡献占比较高(51%),而在长期(365 d)实验中,MnOx催化氧化贡献占比最高(78%)。

      土壤中能够还原Cr(Ⅵ)介质包括Fe(Ⅱ)、硫化物、有机质、微生物等。BARTLETT和JAMES[23]以及THOMAS等[24]研究了不同pH环境下Fe(II)对Cr(Ⅵ)的还原机制。在不同pH范围内呈现2种不同的反应特点。其中,在低pH或中性环境(pH = 1.5 ~ 8.7)下,由于Fe(Ⅱ)具有较低的氧化还原电位(E0 (Fe(Ⅲ)/Fe(Ⅱ) = 0.77 V),对Cr(Ⅵ)表现出高效的还原作用;而在强碱性(pH ≥ 13.5)的环境中,Fe(Ⅱ)能够形成Fe(OH)3的中间态产物,Fe(OH)3能与还原生成的Cr(Ⅲ)反应,形成Fe-Cr共沉淀物,从而进一步促进Cr(Ⅵ)的还原。MAHDIEH等[25]研究了4种硫化物(CaSx、FeS、FeS2和Na2S)在不同pH条件下对土壤中Cr(Ⅵ)的还原效率。结果发现,CaSx、Na2S和FeS均能够有效还原Cr(Ⅵ),而FeS2的效果不佳。其中,在碱性土壤中,对Cr(Ⅵ)还原能力的大小顺序为:Na2S > CaSx > FeS > FeS2。在中性土壤中,顺序为:Na2S >> CaSx ~ FeS > FeS2。在弱酸性土壤中,顺序为:Na2S >> FeS > CaSx ~ FeS2。BARTLETT等[21]在研究土壤中有机质还原Cr(Ⅵ)的过程中,发现包括光照、酸化、冻融、隔绝氧气等环境的变化均能够提高有机质对Cr(Ⅵ)的还原能力。此外,植物和微生物通过根际效应,胞外吸附与吸收、胞内呼吸等作用,还可以将Cr(Ⅵ)富集到生物体内后,经过生化途径将其还原[26-27]

    • Cr(Ⅲ)很容易被土壤胶体吸附形成极低溶解度的沉淀物,这是由于天然土壤胶体表面带有负电荷,有利于阳离子(如Cr3+)的吸附,其吸附容量是Cr(Ⅵ)的30 ~ 300倍[28]。因此,Cr(Ⅲ)通常以氢氧化物和氧化物的形式存在形成,或吸附在粘土颗粒、土壤有机物、金属羟基氧化物等相对不溶且流动性较差的沉淀物上,进而阻碍其迁移[29]。相反,Cr(Ⅵ)主要以相对易溶的阴离子(如Cr2O72-、HCrO4和CrO42-)形式存在土壤中,不易被土壤胶体吸附,在土壤中具有强迁移能力[30]。土壤对Cr(Ⅵ)主要的吸附包括非静电引起的专性吸附,以及静电作用形成的非专性吸附。非专性吸附形成的化合物或配合物不稳定,易受到土壤pH值或其它离子组分的影响而发生解吸[31-32]。SHI等[33]研究了Cr(Ⅵ)在14种土壤中吸附行为。对比了土壤性质、pH、Cr(Ⅵ)初始浓度、腐殖酸以及Fe、Al的(氢)氧化物含量等因素对Cr(Ⅵ)吸附的影响,并建立了多位点表面络合模型。结果表明,Fe、Al的(氢)氧化物和腐殖酸是土壤对Cr(Ⅵ)吸附的主要影响因素。ZHANG等[34]通过动态吸附和解吸土壤柱实验研究了土壤中Cr(Ⅵ)的迁移和转化。结果表明,Cr(Ⅵ)初始浓度越高,土壤对Cr(Ⅵ)的吸附能力越差。此外,Cr(Ⅵ)的吸附还明显受pH的影响,在低pH(pH=2)时,土壤对Cr(Ⅵ)的吸附能力会增大。这是因为,pH的变化会导致土壤表面带正电荷的基团与HCrO4之间的静电吸引力更高,进而增加了Cr(Ⅵ)的吸附。同时,在低pH条件下,Cr(Ⅵ)具有更高的氧化还原电位(1.33 V),易被还原生成Cr3+进而使Cr(Ⅵ)总量减少。此外,解吸实验结果表明,Cr(Ⅵ)不易被土壤固定,更易从土壤中浸出,其吸附过程以弱吸附为主。在环境因素如雨水冲刷下,土壤中的Cr(Ⅵ)也会释放,进而造成污染。

    • 土壤中Cr的沉淀形式包括单一沉淀,与其它金属离子形成的共沉淀以及与有机分子形成的络合沉淀等[35-36]。在土壤溶液中,Cr能够与Fe形成Fe-Cr共沉淀。DAI等[37]探究了Cr(Ⅲ)与Fe(Ⅲ)在均质和异质中形成共沉淀的机制。通过X射线分析发现,Fe-Cr共沉淀与Cr(Ⅲ)/Fe(Ⅲ)浓度、(Fex,Cr1-x)(OH)3沉淀物的化学成分、沉淀物的过饱和度以及介质表面电荷等因素有关。进一步用不同的Cr(Ⅲ)/Fe(Ⅲ)比,探究了均质-溶液和异质-石英载体形成(Fex,Cr1-x)(OH)3的沉淀速率。结果表明,在高比值的Cr(Ⅲ)/Fe(Ⅲ)均质溶液中,Cr(Ⅲ)能够吸附在共沉淀物表面,导致溶液中沉淀颗粒生长较慢;而在石英表面上可以形成快速沉淀。这是因为,石英表面的Zeta电位为负有利于Cr(Ⅲ)的沉淀。同时发现,共沉淀颗粒在石英表面上能够快速生长,在1 h内从2 nm增长到4 nm。

      影响Cr沉淀溶解包括的因素包括土壤pH、有机酸等[38]。例如,在酸性条件下Cr(OH)3会发生再次溶解、迁移[39-40]。土壤中柠檬酸、富里酸等小分子有机酸可与Cr(Ⅲ)形成可溶性络合物。GUSTAFSSON等[41]利用EXAFS光谱技术探究了Cr(Ⅲ)与天然有机物(黄腐酸)的络合作用。EXAFS结果表明,在低pH(< 5)时,Cr(Ⅲ)与黄腐酸形成单体络合物,仅有Cr-O-C之间的成键作用;而在pH > 5时,会形成多核的Cr(Ⅲ)-黄腐酸络合物(二聚体和四聚体),存在Cr与Cr之间的相互作用。CAO等[42]利用柱实验探究了Cr(Ⅲ)在土壤中的溶出行为。进一步验证了土壤中Cr(Ⅲ)能够与有机酸形成Cr-有机酸的络合物,而提高了Cr(Ⅲ)在土壤中的迁移能力。这是因为,Cr(Ⅲ)-有机酸形成的络合物通常带负电荷或以中性分子的形式存在,与土壤胶体(带负电)形成相互排斥作用,进而增强其在土壤中的迁移能力。

    • 图2所示,土壤中Cr的迁移与转化可以通过微生物或植物作用实现[43-44]。土壤中已被固化/稳定化的Cr可能受植物或微生物的影响而溶出;或在微生物或植物作用下,Cr(Ⅵ)被还原,进而被植物、生物吸收和利用[45]。通常,微生物对还原Cr(Ⅵ)主要发生在胞内、外以及细胞膜上。其中,细胞外还原主要是由胞外还原酶或者胞外多聚物(EPS)与Cr(Ⅵ)作用。WANG等[46]研究发现,Pannonibacter phragmitetus BB分泌的EPS能够有效地还原土壤中Cr(Ⅵ)。这是因为,EPS上含有大量的官能团和氧化还原蛋白,能够结合与还原Cr(Ⅵ)。另外,由于CrO42-与SO42-分子结构具有相似性,Cr(Ⅵ)可以从细胞膜上的硫酸盐转运通道进入到细胞体内,例如拟南芥根系可以通过硫酸盐转运蛋白吸收土壤中的Cr(Ⅵ),进而将其转运至细胞内还原[47]。细胞膜上Cr(Ⅵ)的还原主要由细胞膜上结合的还原酶完成。ZENG等[48]探究了Oceanobacillus oncorhynchi W4中还原Cr(Ⅵ)的关键部位。结果发现,细胞质部分对Cr(Ⅵ)的去除率占比仅为11.1%,而细胞膜部分占比高达82.9%。这表明,其细胞膜是Cr(Ⅵ)还原的主要位置。

      许多植物能够富集与稳定Cr(Ⅵ),降低其毒性和迁移性,如Dicoma niccolifera,Sutera fodina以及Leersia hexandra Swartz等植物通过特定的酶作用,促进Cr(Ⅵ)在植物根、茎及叶组织中的积累[49]。JAN等[50]利用番茄植株探究了24-油菜素内酯介导下的植物抗氧化体系对Cr(Ⅵ)的还原作用。结果表明,植物抗氧化过程主要与体内抗氧化剂(如MDHAR、GSH、GSSG和GST等)浓度提高以及部分抗氧化酶(如SOD、APX和GR等)的活性增强有关。VAMERALI等[51]通过调节植物根际的土壤环境(包括降低pH和氧化还原电位)和菌落结构(丛枝菌根和外生菌根),能够使Cr(Ⅵ)富集并被还原为Cr(Ⅲ)降低毒性,减小环境风险。SHI等[11]利用外生菌根真菌Hebeloma vinosophyllum(Cr(Ⅵ)敏感菌株)和Pisolithus sp1(Cr(Ⅵ)耐受菌株)分别探究了Cr对松树的影响。结果表明,Pisolithus sp1能够显著降低土壤中可交换态Cr的含量占比,同时能够改善松树幼苗的生长并增强它们对Cr的耐受性。

    • 在Cr污染场地修复中,主要关注毒性高、迁移性强的Cr(Ⅵ)。通常是先将高毒性的Cr(Ⅵ)还原为低毒性的Cr(Ⅲ),再进一步将其固化或稳定化,从而降低Cr在环境中的迁移性和生物可利用性。随着对Cr污染的重视,学者针对Cr污染土壤的治理与修复也新的见解和认识,如表1所示。

      目前,Cr(Ⅵ)还原体系包括以铁基(零价铁、Fe(II))、硫基(S2-)、碳基(生物炭,腐殖质)等材料为代表的还原体系、微生物参与的还原体系、以及材料与微生物构成的耦合还原体系3类。其中,铁基材料中的零价铁由于还原能力强、反应活性高和吸附性能优异等特点,被认为是修复Cr(Ⅵ)污染土壤最有前景的材料之一[52]。ZHOU等[53]应用零价铁颗粒和磁选技术来修复Cr(Ⅵ)污染的土壤。结果表明,污染土壤中有超过92%的Cr被吸附到零价铁表面,再通过磁选技术进行零价铁的回收,达到修复Cr(Ⅵ)污染土壤的目的。另外,用于Cr(Ⅵ)还原的硫基材料可分为:可溶性硫化物(如Na2S、多硫化钙(CPS)等)、单质硫、铁硫化物(FeSx)[25]。YUAN等[56]用CPS作为修复药剂,通过机械球磨混匀CPS和Cr(Ⅵ)污染的土壤。结果表明,仅添加土壤质量3%的CPS可显著降低土壤中Cr(Ⅵ)浸出浓度,由115 mg·L−1下降到0.51 mg·L−1。赖冬麟等[57]用FeSO4·7H2O、NaHSO3、CPS和葡萄糖作为还原剂,磷酸盐、CaO、水泥作为固化稳定化剂,对张家口市某机械厂原址电镀污染场地进行土壤修复。该场地修复前土壤中Cr(Ⅵ)的最高含量为37.3 mg·kg−1,经过固化/稳定化修复后,土壤中Cr(Ⅵ)含量下降到低于检出限值,浸出液中Cr(Ⅵ)浓度同样也低于检出限值。用于土壤修复的碳基材料不仅来源广泛、价格低廉,还可以作为改良土壤,改良土壤性质,提高作物产量[59],已被广泛应用。例如,生物炭具有大比表面积、高孔隙率以及丰富的官能团,使得生物炭具有良好的吸附能力和还原性能等[60]。BASHIR等[61]利用甘蔗制生物炭探究了制革厂土壤中Cr污染修复效果。结果表明,投加甘蔗制生物炭能够有效降低土壤中Cr(Ⅵ)的浓度,同时对场地中玉米植株的高度、生物量、叶绿素含量、蛋白质和淀粉含量均有所提高。

      利用微生物还原Cr(Ⅵ),具有广阔应用前景[63]。HUANG等[64]发现,环境中无处不在的微生物Aeromonas hydrophila能够有效减少土壤中Cr(Ⅵ)的含量。其还原过程主要包括细胞外和细胞内的还原。BALDIRIS等[65]发现,革兰氏阴性菌株Stenotrophomonas maltophilia不仅能够耐受高浓度Cr(Ⅵ),还能够对Cr(Ⅵ)进行还原。分析发现,该菌株中的铬酸还原酶基因(ChrR)起到了关键作用。

      微生物参与的耦合还原修复体系,在Cr污染场地修复方面具有很大的潜力[66-68]。TAN等[66]利用腐植酸负载羧甲基纤维素包裹纳米硫化亚铁协同污泥微生物修复Cr污染土壤。经过90 d修复后,土壤中Cr(Ⅵ)下降了99.16%。ZHANG等[68]利用次生矿物(施氏矿、黄钾铁矾)协同异化铁还原菌(Shewanella Oneidensis MR-1)对Cr(Ⅵ)还原机制进行研究。其还原机制包括:次生矿物对Cr(Ⅵ)的吸附、矿物中Fe(Ⅲ)/Fe(II)氧化还原循环过程中产生电子的间接电子转移,以及矿物中导带电子的间接电子转移。

    • 在实际修复中,由于水文地质变化等因素,场地可能溶出Cr(Ⅲ)甚至再生成Cr(Ⅵ),Cr污染发现反弹或迁移[42, 69]。为防范风险,截至2019年,美国环保署(EPA)超级基金项目对18个修复场地开展Cr长期监测,平均监测时间超过20年。如表2所示,在18个长期监测的场地中有11个场地再未发现Cr污染,3个场地(Town Garage/Radio Beacon、BFI Sanitary Landfill、Saco Tannery Waste Pits)存在Cr污染超标。其中,Town Garage/Radio Beacon地下水Cr的轻度超标与采样扰动有关,当采用低流速采样作业时,Cr浓度并未超标。在BFI Sanitary Landfill场地中,通过采取表面屏障、地下水拦截沟、气体收集及处理系统等修复措施,场地持续开展制度控制和长期监测,该场地污染物Cr地下水修复目标限值100 μg·L−1。截至2019年,共完成5轮次周期性的回顾分析。其中,MW-9地下水监测井(浅层基岩地下水)Cr的超标时有发生。自2004年至2019年,在该点位进行29次取样分析发现有18次超标,历史平均监测质量浓度142 μg·L−1,而在2019年春季监测地下水中Cr的质量浓度为267 μg·L−1。对比分析同区域附近点位MW-10(深层基岩地下水)无Cr的超标,推测MW-9中Cr质量浓度的波动是垃圾填埋场中污染物Cr在浅层基岩地下水中迁移的结果。在Saco Tannery Waste Pits场地中,通过对废物堆和排水区覆盖阻隔修复等措施,其地下水中Cr的修复目标限值100 μg·L−1。在1992—2013年,场地基岩水监测井的Cr质量浓度均未超过水修复限值;而在承压水监测井的MW-114B点位Cr质量浓度在2003年出现超标,为160 μg·L−1;同时,沉积物中监测发现靠近排水系统的SED-204和SED-103点位Cr质量浓度也超标,推测该场地Cr污染超标是由于废物堆污染源中Cr泄漏。

    • Cr污染场地固化/稳定化修复后,Cr同样会有氧化还原、吸附、沉淀等各种环境行为,发生如图3所示的迁移与转化。影响Cr污染固化/稳定化修复效果主要原因是,固化体的解体分化与Cr(Ⅲ)的再氧化。前者是污染物迁移的前提,后者是修复后污染风险形成的关键。修复场地环境条件发生变化时,如冻融、酸雨、水位波动、有机酸的形成以及矿物质的风化等,都会导致固化体的解体分化,而诱发Cr的重新溶出[71-74]。HE等[71]使用水泥生石灰固化/稳定化处理Cr(Ⅵ)污染的土壤,经过不同的冻融循环后,探究了固化的土壤抗压强度,毒性浸出等,并揭示了Cr(Ⅵ)污染固化土壤的工程特性的演化规律。结果表明,随着冻融循环次数的增加,固化土的强度会降低,土壤的孔隙会变大,Cr(Ⅵ)浸出浓度会增高。LIAO等[73]研究了在酸雨淋滤条件下改良土壤中Cr的释放特性。研究发现,用微生物(Pannonibacter phragmitetu)改良的土壤中总Cr和Cr(Ⅵ)的浸出量均比用硫酸亚铁改良的土壤浸出量低。其中,酸雨淋溶下碳酸盐结合态,可交换态和有机结合态的Cr是主要释放源。SLEJKO等[75]长期跟踪意大利北部Friuli Venezia Giulia的Cr污染场地。在1997年,发现污染场地地下水Cr(Ⅵ)质量浓度达4500 μg·L−1;在随后的几年中,由于场地修复与Cr污染自然减弱;到2003年时,地下水中Cr(Ⅵ)完全消失;而在2008年观察到地下Cr(Ⅵ)水污染复发,Cr(Ⅵ)质量浓度达到1560 μg·L−1。这是因为,地下水中的Cr(Ⅲ)通过含水层而被土壤中的Mn(Ⅳ)重新氧化形成Cr(Ⅵ)。ZHAO等[76]研究含泥炭土壤地下水位时发现,地下水的波动会形成缺氧-好氧界面,进而会产生羟基自由基(·OH),形成强氧化环境。同样地,JIA[77]等研究地下水时发现,由于地下水水位的波动会捕获土壤孔隙空气中的O2,捕获的O2溶解到孔隙水中与Fe(II)发生反应产生·OH,进而氧化Cr(Ⅲ),引发环境风险。

    • 由于固化/稳定化技术特点,无法实现场地土壤中Cr的减量化。而残留在修复后场地中的Cr又会受土壤介质和场地环境因素影响,发生沉淀溶解、吸附解吸,氧化还原、生物吸收等环境行为,而导致Cr在修复后场地中表现为不同的环境归趋[78]。根据文献资料和实际修复案例研究分析可知,修复后场地中Cr的环境归趋途径主要有植物吸收,随雨水下渗向下迁移进入地下水,及随地表径流而迁移形成沉积物等[79]。MOHANTY等[80]研究了禾本科植物巴拉草对Cr的吸收能力。结果表明,巴拉草对Cr的总累计效率为8.2 mg·(kg−1·d−1),其中,在巴拉草根部Cr的累积量为叶稍部位的1 000倍。RANIERI等[81]对比禾本科植物芦苇和落叶乔木臭椿对土壤中Cr的吸收效率。结果表明,在种植360 d后,土壤中Cr由70 mg·kg−1下降至36 mg·kg−1(芦苇)和41 mg·kg−1(臭椿)。其中,芦苇根部Cr的累积量最高达1 910 mg·kg−1(干重),而臭椿根部Cr累积量仅为358 mg·kg−1(干重)。YE等[78]通过批量和柱实验来阐明土壤中Cr(Ⅵ)的吸附和迁移行为。结果表明,在表层土壤中,Cr(Ⅵ)随降雨具有较高的迁移率,同时,在土壤迁移过程中有明显的滞留现象,这进一步说明了Cr(Ⅵ)能与土壤发生多种反应(如吸附与解吸、离子交换、沉淀与溶解)。另外,Cr(Ⅵ)在土壤中迁移符合对流-弥散方程。陈子方等[82]模拟雨水淋溶包气带中Cr(Ⅵ)的释放。结果表明,在粗砂包气带中Cr(Ⅵ)的迁移速率为0.4 cm·d−1,大于在细沙包气带中的迁移速率(0.36 cm·d−1);Cr(Ⅵ)在粗砂和细沙中的淋洗溶出率分别为62.33%和40.36%。童秀菊等[83]通过降雨模拟形成地表径流并探究土壤中Cr(Ⅵ)的迁移情况。结果表明,Cr(Ⅵ)溶解在地表径流溶液中的质量浓度随时间而减小;且在同时形成地下渗流和地表径流时,土壤中Cr(Ⅵ)大部分会向地下迁移。另外,修复后场地地下水形成波动带是Cr在非饱和土壤和饱和含水层之间迁移的主要界面。WEI等[84]通过模拟实验探索了地下水波动期间特定区域中Cr迁移作用。结果发现,Cr(Ⅵ)的浓度在较低的土壤层中减少明显。而Cr(Ⅲ)的浓度会随水位上升和波动幅度的增加而增加。这是由于非饱和土壤底层具有较低的氧化还原电位,能够还原Cr(Ⅵ),生成的Cr(Ⅲ)会随着饱和带向下运移,并在地下水中迁移。

    • 在实际修复后污染场地中土壤情况复杂多变,易受外界不确定性因素的影响,故导致Cr的环境行为复杂化。影响重金属Cr在土壤中环境行为诸多,如土壤pH、土壤氧化还原电位、土壤成分(O2、Fe、Mn、有机质、微生物等)、以及土壤类型等。目前,多数研究仅停留在单一因素上,缺乏多因素的耦合联动机制。因此,今后研究中应注重在实际场地中Cr与氧化组分(Mn(Ⅳ)、O2)、还原组分(Fe、S、有机质等)以及迁移和转化组分(微生物、植物)等构成的多元体系下的耦合机制;同时应关注重金属Cr在土壤中的时空、形态分布规律与迁移、转化特征的量化研究。

      由于我国修复工程的特点,对修复后场地缺乏长期的关注。当修复后场地的环境因素(冻融、酸雨、地下水等)变化、以及场地的再开发利用过程中的扰动等,会引发重金属Cr在场地内重新活化。因此,修复后场地在管理上需要建立长期跟踪监测机制、改进监管制度、强化风险预警机制、提升阻控水平。尤其是针对容易形成氧化氛围的区域加强监测与跟踪。同时,在物理阻控方面,加强Cr污染土壤的水平防渗,阻隔上层氧气和水分的渗透,防控Cr(Ⅲ)氧化。在化学阻控方面,研发添加固相有机物、铁铝矿物等低成本药剂的复合建材,阻断Cr的迁移与转化。

    参考文献 (84)

返回顶部

目录

/

返回文章
返回