-
随着电子产品迭代速度的持续加快,电子垃圾的产生量不断攀升。2019年全球共产生5.36×107 t电子垃圾,相比2014年增长了21.0%[1]。拆解是电子垃圾常用的回收处理方法之一,但在拆解过程中,大量有毒有害的重金属常未被有效回收,因而造成严重的土壤污染风险,从而给人群健康带来潜在威胁[2-3]。 因此,电子垃圾拆解区土壤重金属污染分布特征受到了众多学者的广泛研究。梁啸[4]的研究表明,电子垃圾拆解场周边农田土壤中重金属Cd和Cu质量分数均超过国家土壤环境质量标准限值[5];SHI等[6]的研究表明,温岭市电子垃圾拆解场周边水稻田土壤在2006—2016年重金属Cd、Cu、Ni和Zn的质量分数分别增加了0.110、11.8、1.01和6.82 mg·kg−1,这表明电子垃圾拆解会导致严重的重金属污染;张璐瑶等[7]发现,浙江某电子垃圾拆解区内农用地重金属Cd质量分数平均值是土壤背景值的6.3~10.0倍,且部分农作物Cd质量分数超过食品安全限值,这说明电子垃圾拆解不仅会造成土壤重金属污染,而且会严重威胁农产品质量安全。以上研究侧重于电子垃圾拆解区农田土壤重金属质量分数分布特征,但是,针对电子垃圾拆解区不同用地类型土壤重金属的空间分布特征及风险,报道较少。
本研究以广东省汕头市潮阳区贵屿镇的拆解区为研究对象,对拆解地以及周边菜地、稻田和荒地等不同深度土壤样品进行采集,研究Cu、Zn、Cd和Pb等重金属质量分数与形态的空间分布特征,并采用地累积指数法和潜在生态风险指数法分别评价不同用地类型土壤重金属潜在的生态风险,以期为土壤重金属污染防治与修复实践提供理论依据。
电子垃圾拆解区不同用地类型土壤重金属空间分布特征与风险评价
Spatial distribution characteristics and risk assessment of heavy metals for different land-use types in electronic waste disposal area
-
摘要: 为了探究电子垃圾拆解区不同用地类型土壤重金属的空间分布特征及潜在生态风险,对广东某电子垃圾拆解区稻田、菜地、荒地和拆解地土壤重金属Cu、Zn、Cd和Pb的质量分数及形态空间分布特征进行了研究,并采用地累积指数法和潜在生态风险指数法分别评价重金属潜在的生态风险。结果表明,4种用地类型土壤的Cd质量分数全部超标,超标倍数为1.42~94.2倍,Cd是4种用地类型土壤潜在危害最大的重金属。拆解地土壤的4种重金属质量分数远远超过土壤环境质量标准限值,Cu、Zn、Cd和Pb质量分数分别为标准限值的8.79、1.38、27.6和6.20倍。各用地类型土壤的潜在生态风险指数介于165(荒地)~2 587(拆解地),拆解地土壤达到极强风险水平,其它用地类型土壤为中等风险水平。本研究结果可为电子垃圾拆解区土壤重金属污染防治与修复实践提供理论参考。Abstract: In order to investigate the spatial distribution characteristics and potential ecological risks of soil heavy metals for different land-use types in the e-waste dismantling area, the spatial distribution characteristics of heavy metals, including Cu, Zn, Cd, and Pb, were studied for different land-use types in the e-waste disposal area located Guangdong province, such as paddy field, vegetable plot, barren land, and disposal site. The mass fraction and speciation of these heavy metals had been also examined for the four different land-use types, whose potential environmental risks were further assessed by geo-accumulation index (Igeo) and Hankanson potential ecological risk index (RI), respectively. The results showed that mass fraction of Cd in four land-use types have exceeded Soil Environmental Quality Standard, in which the exceed multiple ranged from 1.42 to 94.2, highlighting the Cd pollution was the most significant among these heavy metals. For disposal site, the content of four heavy metals far exceeded the standards, increasing about 8.79, 1.38, 27.6 and 6.20-fold of the standard values for Cu, Zn, Cd, and Pb, respectively. Furthermore, the ecological risk of different land-use types ranged from 165 (barren land) to 2 587 (disposal site), with the disposal site reaching a very strong risk and the others reaching at a medium risk, respectively. These results could provide scientific basis and theoretical reference for the prevention and remediation of heavy metal pollution in the soil, especially for the electronic waste disposal area.
-
表 1 土壤重金属背景值及毒性系数
Table 1. Background value and toxicity coefficient of soil heavy metals
重金属元素 背景值/(mg·kg-1) 毒性系数 Cu 11.5 5 Zn 63.3 1 Cd 0.106 30 Pb 43.3 5 表 2 地累积指数分级标准
Table 2. Criteria for index of geo-accumulation
地累积指数Igeo 分级 污染程度 Igeo≤0 0 无污染 0<Igeo≤1 1 轻度~中等污染 1<Igeo≤2 2 中等污染 2<Igeo≤3 3 中等~强污染 3<Igeo≤4 4 强污染 4<Igeo≤5 5 强污染~极严重污染 5<Igeo≤10 6 极严重污染 表 3 潜在生态风险系数及潜在生态风险指数分级标准
Table 3. Criteria for potential ecological risk coefficients and potential ecological risk indices
潜在生态风险系数Ei 潜在生态风险指数RI 污染程度 Ei<40 RI<150 轻度生态危害 40≤Ei<80 150≤RI<300 中等生态危害 80≤Ei<160 300≤RI<600 强度生态危害 160≤Ei<320 600≤RI<1 200 很强生态危害 320≤Ei 1 200≤RI 极强生态危害 表 4 不同用地类型土壤中重金属污染地累积指数评价(Igeo)
Table 4. Geo-accumulation index (Igeo) of heavy metals in different land-use types
用地类型 土层序号 Cu Zn Cd Pb Igeo均值 污染等级 Igeo均值 污染等级 Igeo均值 污染等级 Igeo均值 污染等级 菜地 1 0.93 1 0.42 1 2.17 3 −0.78 0 2 0.59 1 0.33 1 1.97 2 −0.54 0 3 −0.04 0 0.02 1 2.00 3 −1.53 0 4 −0.07 0 0.08 1 1.82 2 −1.36 0 5 −0.15 0 0.07 1 1.60 2 −1.21 0 6 0.19 1 0.11 1 1.56 2 −1.48 0 稻田 1 1.54 2 0.49 1 2.55 3 −0.27 0 2 1.25 2 0.39 1 2.47 3 −0.35 0 3 0.21 1 0.00 1 2.03 3 −1.31 0 4 −0.32 0 −0.05 0 2.31 3 −1.95 0 5 −0.75 0 −0.05 0 1.95 2 −2.38 0 6 −0.58 0 −0.28 0 1.71 2 −2.06 0 荒地 1 1.82 2 0.17 1 2.18 3 −0.12 0 2 0.22 1 0.26 1 2.19 3 0.16 1 3 −0.50 0 0.22 1 1.88 2 −0.80 0 4 −0.25 0 0.25 1 1.68 2 −0.63 0 5 −0.53 0 −0.28 0 1.61 2 −1.89 0 6 −0.53 0 −0.41 0 1.42 2 −1.64 0 拆解地 1 2.80 3 1.00 2 3.22 4 0.68 1 2 3.84 4 1.44 2 3.83 4 1.73 2 3 0.64 1 0.18 1 1.80 2 −1.56 0 4 0.97 1 0.24 1 1.92 2 −2.00 0 5 4.83 5 2.06 3 6.70 6 3.82 4 6 6.64 6 2.64 3 7.47 6 4.36 5 -
[1] FORTI V, BALDE C P, KUEHR R, et al. The global e-waste monitor 2020: Quantities, flows and the circular economy potential[M]. United Nations: International Telecommunication Union and International Solid Waste Association, 2020: 1-2. [2] ONGONDO F O, WILLIAMS I D, CHERRETT T J. How are WEEE doing? A global review of the management of electrical and electronic wastes[J]. Waste Management, 2011, 31(4): 714-730. doi: 10.1016/j.wasman.2010.10.023 [3] 刘非凡, 白建峰, 顾卫华, 等. 烟曲霉f4对黑麦草修复电子废物拆解场地土壤重金属的影响[J]. 环境工程学报, 2020, 14(7): 1886-1893. doi: 10.12030/j.cjee.201912062 [4] 梁啸. 电子废物拆解区典型污染农田的重金属空间分布特征及风险分析[D]. 兰州: 兰州交通大学, 2016. [5] 中华人民共和国国家环境保护局, 中国国家技术监督局. 土壤环境质量标准: GB 15618-1995[S]. 北京: 中国标准出版社, 1995. [6] SHI A, SHAO Y F, ZHAO K L, et al. Long-term effect of E-waste dismantling activities on the heavy metals pollution in paddy soils of southeastern China[J]. Science of the Total Environment, 2020, 705: 135971. doi: 10.1016/j.scitotenv.2019.135971 [7] 张璐瑶, 赵科理, 傅伟军. 电子垃圾拆解区土壤-农作物系统中镉元素的空间分布特征及其风险评价[J]. 环境科学, 2021: 1-15. [8] 赖伟豪. 普宁市农村土地流转存在问题及对策研究[D]. 广州: 华南理工大学, 2019. [9] 张明亮. 汕头市潮阳区崩塌、滑坡地质灾害发育特征分析[J]. 西部资源, 2020(6): 88-90. doi: 10.3969/j.issn.1672-562X.2020.06.030 [10] 罗杰, 方楚凝, 游远航, 等. 电子废物堆场表层土壤重金属元素的生态地球化学预警——以广东贵屿为例[J]. 地球与环境, 2012, 40(1): 108-114. [11] 尹伊梦, 赵委托, 黄庭, 等. 电子垃圾拆解区土壤-水稻系统重金属分布特征及健康风险评价[J]. 环境科学, 2018, 39(2): 916-926. [12] 陈振波. 当前环境下土地重金属含量污染评价——广东区域为例[J]. 化工管理, 2018(24): 138-139. doi: 10.3969/j.issn.1008-4800.2018.24.102 [13] 杨进. 土壤中金属元素分析的不同消解方法比较[J]. 环境科学与技术, 2018, 41(S2): 184-188. [14] YAHYA M, KESEKLER S, DURUKAN İ, et al. Determination of prohibited lead and cadmium traces in hair dyes and henna samples using ultrasound assisted-deep eutectic solvent-based liquid phase microextraction followed by microsampling-flame atomic absorption spectrometry[J]. Analytical Methods, 2021, 13(8): 1058-1068. doi: 10.1039/D0AY02235G [15] MOLINA L, LAPIS J R, SREENIVASULU N, et al. Determination of cadmium concentration in milled and brown rice grains using graphite furnace atomic absorption spectrometry[J]. Methods in Molecular Biology, 2019, 1892: 265-275. [16] 张含, 李伟, 王佳伟, 等. 城市污泥重金属在高级厌氧消化工艺系统中的迁移转化及风险评价[J]. 环境工程学报, 2021, 15(1): 289-297. doi: 10.12030/j.cjee.202004108 [17] 陈城, 鲁潇, 于坤, 等. 安徽迪沟采煤沉陷区土壤和沉积物重金属特征及潜在生态风险评价[J]. 农业环境科学学报, 2021, 40(3): 570-579. doi: 10.11654/jaes.2020-1076 [18] 罗杰. 广东省韩江三角洲土壤污染物源辨析及其环境承载力[D]. 武汉: 中国地质大学, 2016. [19] YUAN X H, XUE N D, HAN Z G. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years[J]. Journal of Environmental Sciences, 2021, 101: 217-226. doi: 10.1016/j.jes.2020.08.013 [20] WANG N N, WANG A H, Kong L H, et al. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment[J]. Science of the Total Environment, 2018: 610-611. [21] SAEED N, MARZIEH M. Potential Ecological Risk Assessment of Ni, Cu, Zn, Cd, and Pb in Roadside Soils[J]. Earth and Space Science, 2021, 8(4): 1120. [22] 王丽霞, 杜子文, 封莉, 等. 连续施用城市污泥后林地土壤中重金属的含量变化及生态风险[J]. 环境工程学报, 2021, 15(3): 1092-1102. doi: 10.12030/j.cjee.202001001 [23] DONG H M, ZHAO J B, XIE M P. Heavy metal concentrations in orchard soils with different cultivation durations and their potential ecological risks in Shaanxi province, northwest China[J]. Sustainability, 2021, 13(9): 4741. doi: 10.3390/su13094741 [24] 杨伟光, 陈卫平, 杨阳, 等. 新疆某矿冶区周边土壤重金属生物有效性与生态风险评价[J]. 环境工程学报, 2019, 13(8): 1930-1939. doi: 10.12030/j.cjee.201901186 [25] 于敏, 牛晓君, 魏玉芹, 等. 电子垃圾拆卸区域重金属污染的空间分布特征[J]. 环境化学, 2010, 29(3): 553-554. [26] 柴艳芳. 电子电器废弃物拆解区土壤重金属迁移特征与机理探讨[D]. 北京: 中国地质大学(北京), 2015. [27] 李科, 丁晴晴, 蒙丽娜, 等. 电子垃圾拆解区不同深度土壤重金属污染特征[J]. 环境科学与技术, 2015, 38(6): 204-209. [28] 邓建才, 陈效民, 卢信, 等. 封丘地区主要土壤中硝态氮运移规律研究[J]. 农业环境科学学报, 2005, 24(1): 128-133. doi: 10.3321/j.issn:1672-2043.2005.01.028 [29] 黄华伟, 朱崇岭, 任源. 龙塘镇电子垃圾拆解区土壤和河流底泥重金属赋存形态及生态风险[J]. 环境化学, 2015, 34(2): 254-261. doi: 10.7524/j.issn.0254-6108.2015.02.2014060601 [30] 牛小云, 高卓田, 周健, 等. 种植杞柳对根际土壤中重金属镉形态、养分质量分数及微生物数量的影响[J]. 东北林业大学学报, 2019, 47(7): 84-89. doi: 10.3969/j.issn.1000-5382.2019.07.015 [31] 刘白林, 马新旺, 朱赛勇, 等. 白银黄灌农业区不同土层重金属赋存形态及其风险评价[J]. 兰州大学学报(自然科学版), 2014, 50(3): 431-436. [32] 林娜娜, 任源, 周卓为. 硫酸盐对电子垃圾拆解地底泥中重金属形态的影响[J]. 环境工程学报, 2017, 11(1): 503-508. doi: 10.12030/j.cjee.201508224 [33] 邹富桢, 龙新宪, 余光伟, 等. 混合改良剂钝化修复酸性多金属污染土壤的效应——基于重金属形态和植物有效性的评价[J]. 农业环境科学学报, 2017, 36(9): 1787-1795. doi: 10.11654/jaes.2016-1660 [34] 刘华. 改良剂对锰矿土壤重金属形态及短毛蓼修复效率的影响[D]. 桂林: 广西师范大学, 2014. [35] 毛彦青. 河道污染底泥生物和化学修复对重金属形态分布影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [36] 李定龙, 杨洁, 杨彦, 等. 电子废弃物拆解场地土壤重金属健康风险评价[J]. 环境与健康杂志, 2012, 29(6): 547-549. [37] 徐航. 中国电子垃圾处理出路在何方?[J]. 生态经济, 2018, 34(7): 10-13. [38] 顾顺斌. 电子垃圾拆解周边区域土壤-蔬菜系统重金属污染特征、风险评价及安全利用研究[D]. 杭州: 浙江大学, 2021. [39] 李依微, 罗千里, 周华, 等. 练江干流底质污染及水质响应关系研究[J]. 给水排水, 2021, 57(10): 67-72. [40] 尹芳华, 杨洁, 杨彦. 电子废弃物拆解旧场地土壤重金属污染特征及生态风险评价初探[J]. 安徽农业科学, 2013, 41(5): 2218-2221. doi: 10.3969/j.issn.0517-6611.2013.05.117 [41] 陈江, 张海燕, 何小峰, 等. 湖州市土壤重金属元素分布及潜在生态风险评价[J]. 土壤, 2010, 42(4): 595-599. [42] ISLAM S, AHMED K, MASUNAGA S. Potential ecological risk of hazardous elements in different land–use urban soils of Bangladesh[J]. Science of the Total Environment, 2015, 512-513: 94-102. doi: 10.1016/j.scitotenv.2014.12.100