-
赤泥是铝土矿生产氧化铝过程中排放的固体废物。根据生产工艺不同,可划分为拜耳法赤泥、烧结法赤泥、联合法赤泥等。其中,因拜耳法生产氧化铝工艺应用最为广泛,从而造成拜耳法赤泥产生量巨大。据统计,拜耳法每生产1 t氧化铝约产生1.0~1.8 t赤泥,我国氧化铝年产量约为6.9×107 t;相应地,赤泥年产生量约1.0×108 t,此外还有超过7.9×108 t的历史堆存量[1-4]。然而,由于赤泥具有粒度细弥、组分复杂、强碱性等特点,造成其资源化利用困难,目前我国赤泥的综合利用率仅为5%左右。赤泥的大量产生、堆存,且得不到有效利用,不仅侵占土地,而且会造成环境污染和生态破坏[5-6]。因此,开展赤泥的资源化综合利用对制铝工业的可持续发展和生态环境保护具有重要意义。
赤泥是典型的铝硅酸盐固体废物,富含Fe、Al、Si等有价元素,回收有价元素是其资源化高值利用的重要途径之一[7]。目前,从赤泥中回收有价元素的方法主要包括火法、湿法以及联合法。其中,联合法是指对赤泥采用还原焙烧-磁选分离-湿法浸取方式回收Fe、Al等有价元素的过程,因其可实现Fe、Al分步回收、且回收效率较高,故得到了广泛关注[8-9]。在赤泥联合法回收有价元素过程中,选择适宜的碳或氢还原剂(如粉煤、焦炭、高炉煤气等)进行还原焙烧是关键所在,决定着后续磁选分离效率和湿法浸取效率。煤矸石是一种富含碳质的铝硅酸盐固体废物,年产生量超过7.0×108 t,是我国产生量最大的工业固体废物[10-11]。若能以煤矸石为还原剂,协同处理赤泥,使2种固体废物在高温条件下进行还原焙烧,不仅有助于利用煤矸石中的碳质还原赤泥中含铁物相,实现煤矸石与赤泥协同还原焙烧回收Fe的目的,而且在还原焙烧过程中可同步实现煤矸石、赤泥中含铝矿物的热活化,使其在后续浸取过程中明显提高Al回收率[12]。
本研究以赤泥和煤矸石为原料,通过热力学分析和实验方法,考察了赤泥-煤矸石协同还原焙烧过程中,焙烧温度、焙烧时间、赤泥-煤矸石质量比对还原焙烧产物物相组成及其所含Fe、Al等有价元素回收效率的影响;并在此基础上,建立了“赤泥-煤矸石协同还原焙烧-磁选-酸浸”工艺,以期为赤泥、煤矸石协同利用回收有价元素提供参考。
赤泥-煤矸石协同还原焙烧回收Fe、Al有价元素
Valuable element recovery of Fe and Al by reduction roasting of red mud and coal gangue
-
摘要: 赤泥和煤矸石是典型的铝硅酸类固体废物,两者协同还原焙烧有助于实现其所含Fe、Al等有价元素的回收。采用热力学计算、热重分析、X射线衍射分析、电感耦合等离子体发射光谱分析等方法,考察了赤泥-煤矸石协同还原焙烧过程中,焙烧温度、焙烧时间、赤泥-煤矸石质量比对还原焙烧产物物相组成及其所含Fe、Al等有价元素回收效率的影响。结果表明,混合物料中铝硅酸盐物相和含铁物相随焙烧温度的升高呈现规律性变化,如高岭石相转变规律为,高岭石→偏高岭石;钙霞石相转变规律为,钙霞石→钙黄长石;水化石榴石相转变规律为,水化石榴石→铝酸钙;赤铁矿依次转变为,Fe2O3(非磁性)→Fe3O4(磁性)→FeO(非磁性)→Fe(磁性)。当焙烧温度为600 ℃、焙烧时间为60 min、赤泥-煤矸石质量比为7:3时,铁精矿产出率为15.6%、铁品位达55.6%、Al溶出率为73.6%。在此基础上,建立了“赤泥-煤矸石协同还原焙烧-磁选-酸浸”的工艺,可实现煤矸石、赤泥中Fe、Al等有价元素的同步回收。Abstract: Red mud (RM) and coal gangue (CG) are typical aluminosilicate wastes. The synergistic reduction roasting of RM and CG has a wide application foreground in the recovery of Fe, Al and other valuable elements. In this paper, the effects of roasting temperature, roasting time and the mass ratio of RM and CG on the phase composition and the recovery of Fe, Al and other valuable elements were investigated by thermodynamic analysis, thermogravimetric analysis, x-ray diffraction and inductively coupled plasma optical emission spectrometry. The results showed that aluminosilicate and iron-containing phases change regularly with the increasing roasting temperature. The phase transformation rule of kaolinite was “kaolinite - metakaolinite”; cancrinite is “cancrinite - gehlenite”, hydrogarnet was “hydrogarnet - calcium aluminum oxide”; and hematite changes in the order of “Fe2O3 (non-magnetic) - Fe3O4 (magnetic) - FeO (non-magnetic) - Fe (magnetic)”. The yield and the grade of iron concentrate were 15.6% and 55.6%, respectively, and the dissolution percentage of Al reached 73.5%, when the roasting temperature was 600 ℃ and the roasting time was 60 min at the RM/CG mass ratio of 7:3. Based on this, a process of “RM-CG reduction roasting-magnetic separation-acid leaching” was established to recovery Fe, Al and other valuable elements from RM and CG.
-
Key words:
- aluminosilicate wastes /
- red mud /
- coal gangue /
- reduction roasting /
- phase transformation /
- element recovery
-
表 1 赤泥和煤矸石的化学组成(质量分数)
Table 1. Chemical composition of red mud and coal gangue (mass fraction)
% 供试原料 Al2O3 SiO2 Fe2O3 CaO TiO2 Cr2O3 MnO CeO2 其他 赤泥 20.72 16.22 24.25 10.93 3.91 0.09 0.06 0.05 23.77 煤矸石 34.36 36.35 3.09 0.49 0.98 ND 0.03 ND 24.71 注:“ND”表示未检测到。 -
[1] 李俊峰, 史玉娟, 王宁. 浅谈轻金属氧化铝生产工艺的应用与发展[J]. 世界有色金属, 2019(19): 223-224. doi: 10.3969/j.issn.1002-5065.2019.19.129 [2] 刘晓明, 唐彬文, 尹海峰, 等. 赤泥-煤矸石基公路路面基层材料的耐久与环境性能[J]. 工程科学学报, 2018, 40(4): 438-445. [3] 廖仕臻, 杨金林, 马少健, 等. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019, 39(3): 21-27. [4] WANG S H, JIN H X, DENG Y, et al. Comprehensive utilization status of red mud in China: A critical review[J]. Journal of Cleaner Production, 2021, 289: 125-136. [5] PIETRZYK S E, KULCZYCKA J. Impact of landfilling of red mud waste on local environment: The case of Górka[J]. Gospodarkas Surowcami Mineralnymi, 2015, 31(2): 137-156. doi: 10.1515/gospo-2015-0013 [6] 张迪, 于海燕, 潘晓林, 等. 氧化铝赋存形式对低钙烧结熟料矿相转化的影响[J]. 中国有色金属学报, 2015, 25(12): 3497-3504. [7] BORRA C R, BLANPAIN B, PONTIKES Y, et al. Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review[J]. Journal of Sustainable Metallurgy, 2016(4): 365-386. [8] 李艳军, 张浩, 韩跃新, 等. 赤泥资源化回收利用研究进展[J]. 金属矿山, 2021(4): 1-19. [9] 滕春英, 周康根, 宁凌峰, 等. 盐酸分级浸出赤泥中有价金属元素[J]. 环境工程学报, 2018, 12(1): 310-315. doi: 10.12030/j.cjee.201703078 [10] 田秀青, 杨凤玲, 马志斌, 等. 气氛对煤矸石中矿物质高温碳热还原反应的影响[J]. 硅酸盐通报, 2018, 37(4): 1370-1376. [11] 冉景煜, 牛奔, 张力, 等. 煤矸石综合燃烧性能及其燃烧动力学特性研究[J]. 中国电机工程学报, 2006, 26(15): 58-62. doi: 10.3321/j.issn:0258-8013.2006.15.011 [12] 郭玉梅, 曹丽琼, 郭彦霞, 等. 煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J]. 化工学报, 2019, 70(4): 1542-1549. [13] 陈升, 刘少文. 氢气还原分解硫酸钙的热力学研究[J]. 化学工业与工程技术, 2012, 33(5): 8-11. [14] YUAN S, ZHOU W T, HAN Y X, et al. Selective enrichment of iron particles from complex refractory hematite-goethite ore by coal-based reduction and magnetic separation[J]. Powder Technology, 2020, 367: 305-316. doi: 10.1016/j.powtec.2020.04.004 [15] VAN WYLEN G J, SONNTAG R E, WYLEN G J. Fundamentals of classical thermodynamics[J]. New York:John Wiley and Sons Incorporation, 1973, 39(2): 561-617. [16] 闫琨, 刘万超, 和心忠, 等. 水化石榴石对赤泥基地聚物形成过程的影响研究[J]. 硅酸盐通报, 1973, 39(2): 561-617. [17] 赵志曼, 李帅, 郜峰, 等. 高岭石脱水分子动力学及密度泛函研究[J]. 建筑材料学报, 2016, 19(5): 837-843. doi: 10.3969/j.issn.1007-9629.2016.05.009 [18] 翟中媛, 金晶, 王永贞, 等. 准东煤灰中的钙镁黄长石生成机理研究[J]. 化工学报, 2018, 69(12): 5266-5275.