-
膜处理技术与混凝沉淀、过滤、活性炭吸附等污水深度处理常规技术相比,具有处理效率高、出水水质稳定、占地面积小、便于自动化操作等优点,因而近年来在污水处理及回用领域得到越来越广泛的应用。而在诸多膜材料中,陶瓷膜以其强度高、耐高温、耐酸碱、易清洗、寿命长等优点成为当前最具发展潜力的新型膜分离材料,基于陶瓷膜应用的膜法废水处理技术亦成为国内外相关研究的热点[1-5]。膜污染是膜法水处理技术共同面临的技术难题,如何在阐明陶瓷膜膜污染机理的基础上,充分发挥陶瓷膜废水处理技术优势,开发陶瓷膜膜污染高效控制技术方法,已成为陶瓷膜废水处理技术理论研究与推广应用领域亟待解决的问题[6]。
国内外学者针对膜污染机理和控制开展了大量研究工作,常见的膜污染控制方法主要有强化预处理、膜材料改性、运行优化控制等[7-14]。其中,运行优化控制是减缓膜污染最为经济有效的手段,一般是通过合理调控初始膜通量、过滤时间、间歇时间、反冲洗时间、反冲洗强度、反冲洗频率等运行参数,实现膜污染过程的有效减缓,延长膜单元稳定运行周期。
为进一步挖掘陶瓷膜废水处理技术潜力,提高陶瓷膜运行稳定性,本研究以驻济某高校中水站二级出水为处理对象,开发陶瓷膜小试反应器,在测定陶瓷膜自身水处理特性的基础上,以初始膜通量、过滤时间、间歇时间、反冲洗时间作为陶瓷膜反应器关键运行控制参数,设计四因素三水平正交实验,优选陶瓷膜处理二级出水工况,考察了最优运行工况下陶瓷膜对二级出水中各污染物去除效能,结合对原水、膜污染层的表征与膜污染阻力分析,揭示了陶瓷膜膜污染机理,进而形成具有针对性的陶瓷膜运行优化控制技术,为陶瓷膜在废水处理及回用领域的进一步推广应用提供参考。
陶瓷膜处理二级出水运行优化控制与膜污染机制分析
Operational optimization control and membrane fouling mechanism analysis of ceramic membrane treating secondary treated effluent
-
摘要: 实现膜污染有效控制是充分发挥陶瓷膜在废水处理及回用领域适用性的关键。为此,构建了平板陶瓷膜反应器,针对性地开展了平板陶瓷膜处理市政污水二级出水运行优化控制与膜污染机制分析研究。结果表明,通过四因素三水平正交实验,得出本实验条件下最佳运行控制工况为:蠕动泵转速200 r·min−1(对应初始膜通量200 L·(m2·h)−1)、过滤时间10 min、水力反冲时间30 s、间歇运行时间2 min;在此运行工况下,平板陶瓷膜可保持平均膜通量43.08 L·(m2·h)−1以上稳定运行16 d(384 h),期间系统出水浊度、色度、COD等水质指标稳定满足《城市污水再生利用 城市杂用水水质》(GB/T 18920-2002)标准要求;原水和膜污染层元素及官能团对比表征结果表明,脂肪族类、酰胺类、无机硅化物类以及无机金属离子是造成膜污染的主要污染物,而凝胶层阻力则对平板陶瓷膜膜污染形成起主导作用。Abstract: Achieving effective control of membrane fouling was the key to giving full play to the applicability of ceramic membrane in the field of wastewater treatment and reuse. In this study, a flat sheet ceramic membrane reactor was constructed, and the operational optimization control and membrane fouling mechanism analysis of flat sheet ceramic membrane treating secondary effluent from municipal sewage treatment plant were carried out. Through a four-factor three-level orthogonal test, the optimal operating control condition of flat sheet ceramic membrane treating secondary effluent was determined as follows: peristaltic pump speed was 200 r·min−1 corresponding to the initial membrane flux of 200 L·(m2·h)−1, filtration time was 10 minutes, hydraulic backwashing time was 30 seconds, and intermittent running time was 2 minutes. Under this optimal operating condition, the flux of flat sheet ceramic membrane could maintain stable running for 16 d (384 h) over the average membrane flux of 43.08 L·(m2·h)−1. During this period, turbidity, chroma, COD and other water quality indicators of the effluent could stably meet the standard requirements of The Reuse of Urban Recycling Water — Water Quality Standard for Urban Miscellaneous Water Consumption (GB/T 18920-2002). The comparative characterization results of elements and functional groups of the raw water and the membrane fouling layer showed that aliphatics, amides, inorganic silicides and inorganic metal ions were the main pollutants that caused membrane fouling. And the resistance of the gel layer played the leading role in the fouling formation of flat sheet ceramic membrane.
-
表 1 L9(34)正交实验设计
Table 1. Orthogonal experiment design of four-factor three-level
工况 蠕动泵转速/
(r·min−1)过滤时间/
min水力反冲
时间/s间歇时间/
minS1 50 10 20 1 S2 50 20 40 2 S3 50 30 30 4 S4 100 10 40 4 S5 100 20 30 1 S6 100 30 20 2 S7 200 10 30 2 S8 200 20 20 4 S9 200 30 40 1 表 2 各运行控制因素方差分析
Table 2. Variance analysis of operating control factors
源 Ⅲ型平方和 df 均方 F Sig 校正模型 1 170.29* 8 146.286 78.423 2.053×10-7 截距 16 759.609 1 16 759.609 8 984.691 8.210×10-15 蠕动泵转速 654.734 2 327.267 175.499 6.176×10−8 过滤时间 184.064 2 92.031 49.337 1.411×10−5 水力反冲时间 79.321 2 39.660 21.262 3.891×10−4 间歇时间 252.172 2 126.086 67.594 3.792×10−6 误差 16.788 9 1.865 总计 17 946.688 18 校正的总计 1 187.079 17 注:R2=0.986(调整R2=0.973);*表示此正交实验中显著水平为0.05。 表 3 各运行控制因素对应平均膜通量统计分析
Table 3. Statistical analysis of average membrane fluxes corresponding to operating control factors
运行控制因素及其水平设定 各因素水平对应的平均膜通量统计值 因素 因素水平 算术平均值/(L·(m2·h)−1) 标准误差 95%置信区间下限 95%置信区间上限 蠕动泵转速 50.00 r·min−1 22.022 0.558 20.761 23.284 100.00 r·min−1 34.064 0.558 32.802 35.325 200.00 r·min−1 35.455 0.558 34.194 36.717 过滤时间 10.00 min 32.276 0.558 31.014 33.537 20.00 min 26.026 0.558 24.764 27.287 30.00 min 31.240 0.558 30.978 32.501 水力反冲时间 20.00 s 27.704 0.558 26.443 28.965 30.00 s 31.089 0.558 29.827 32.350 40.00 s 28.749 0.558 27.487 30.010 间歇时间 1.00 min 27.716 0.558 26.454 28.977 2.00 min 35.804 0.558 34.543 37.065 4.00 min 28.022 0.558 26.760 29.283 表 4 各部分过滤阻力及占总阻力比例
Table 4. Each filtration resistance and its proportion to the total resistance
实验次数 Rt/(1011m−1) Rt占比/% Rm/(1011m−1) Rm占比/% Ri/(1011m−1) Ri占比/% Rc/(1011m−1) Rc/占比/% Rg/(1011m−1) R g占比/% 1 38.03 100 5.55 14.6 3.28 8.6 3.53 9.3 25.67 67.5 2 39.66 100 5.51 13.9 3.45 8.7 4.44 11.2 26.26 66.2 3 38.83 100 5.51 14.2 3.69 9.5 5.13 13.2 24.50 63.1 均值 38.84 100 5.52 14.2 3.47 8.9 4.37 11.2 25.48 65.6 -
[1] ASIF M B, ZHANG Z H. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects[J]. Chemical Engineering Journal, 2021, 418: 18. [2] LI C, SUN W J, LU Z D, et al. Ceramic nanocomposite membranes and membrane fouling: A review[J]. Water Research, 2020, 175: 21. [3] SAMAEI S M, GATO-TRINIDAD S, ALTAEE A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: A review[J]. Separation and Purification Technology, 2018, 200: 198-220. doi: 10.1016/j.seppur.2018.02.041 [4] 成小翔, 梁恒. 陶瓷膜饮用水处理技术发展与展望[J]. 哈尔滨工业大学学报, 2016, 48(8): 1-10. doi: 10.11918/j.issn.0367-6234.2016.08.001 [5] 万昱堃, 夏圣骥. 陶瓷膜制备及在水处理中的应用[J]. 净水技术, 2016, 35(2): 102-104. doi: 10.3969/j.issn.1009-0177.2016.02.021 [6] 张诗洋, 单历元, 廖松义, 等. 陶瓷膜在废水处理领域中的研究进展[J]. 工业水处理, 2021, 41(4): 31-36. [7] 何林娟, 邹康兵, 盛云鸽, 等. 预处理对东江原水超滤过程中膜污染的控制作用[J]. 中国给水排水, 2021, 37(1): 16-21. [8] HALLE C, HUCK P M, PELDSZUS S, et al. Assessing the performance of biological filtration as pretreatment to low pressure membranes for drinking water[J]. Environmental Science & Technology, 2009, 43(10): 3878-3884. [9] JEGATHEESAN V, SENARATNE N, STEICKE C, et al. Powdered activated carbon for fouling reduction of a membrane in a pilot-scale recirculating aquaculture system[J]. Desalination and Water Treatment, 2009, 5(1/2/3): 1-5. [10] WAN Y, XIE P C, WANG Z P, et al. Application of UV/chlorine pretreatment for controlling ultrafiltration (UF) membrane fouling caused by different natural organic fractions[J]. Chemosphere, 2021, 263: 14. [11] 李宁. 基于原子层沉积的PVDF微滤膜表面亲水改性及膜污染控制机制[D]. 哈尔滨: 哈尔滨工业大学, 2019. [12] 汪婧, 张翔, 黄乐, 等. 曝气冲刷对膜生物反应器膜污染的控制机理研究进展[J]. 环境污染与防治, 2020, 42(5): 619-623. [13] 丁慧, 彭兆洋, 李毅, 等. 无机陶瓷膜处理油田采出水[J]. 环境工程学报, 2013, 7(4): 1399-1404. [14] 陈叶, 宋玉栋, 常福成, 等. 混凝沉淀前处理对丙烯酸丁酯废水陶瓷膜过滤膜污染的影响[J]. 环境工程学报, 2014, 8(7): 2772-2778. [15] ZHANG X M, YUE X P, LIU Z Q, et al. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged anaerobic-oxic membrane bioreactor[J]. Applied Microbiology and Biotechnology, 2015, 99(11): 4893-4903. doi: 10.1007/s00253-015-6383-x [16] ASLAM M, LEE P H, KIM J. Analysis of membrane fouling with porous membrane filters by microbial suspensions for autotrophic nitrogen transformations[J]. Separation and Purification Technology, 2015, 146: 284-293. doi: 10.1016/j.seppur.2015.03.042 [17] SHEN L G, LEI Q, CHEN J R, et al. Membrane fouling in a submerged membrane bioreactor: Impacts of floc size[J]. Chemical Engineering Journal, 2015, 269: 328-334. doi: 10.1016/j.cej.2015.02.002 [18] BANI-MELHEM K, AL-QODAH Z, AL-SHANNAG M, et al. On the performance of real grey water treatment using a submerged membrane bioreactor system[J]. Journal of Membrane Science, 2015, 476: 40-49. doi: 10.1016/j.memsci.2014.11.010 [19] 仵海燕, 李开明, 陈中颖, 等. MBR中胞外聚合物对膜污染影响的研究进展[J]. 环境工程, 2012, 30(6): 47-51. [20] KIMURA K, NISHIMURA S I, MIYOSHI R, et al. Application of glyco-blotting for identification of structures of polysaccharides causing membrane fouling in a pilot-scale membrane bioreactor treating municipal wastewater[J]. Bioresource Technology, 2015, 179: 180-186. doi: 10.1016/j.biortech.2014.12.017 [21] 李晨, 张大帅, 张小朋, 等. 间歇时间对超滤膜处理污水膜通量的影响[C]//中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集. 厦门, 2017: 4. [22] 王明明. 弱电场作用下陶瓷膜MBR运行效果及膜污染控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [23] 王旭亮, 李宗雨, 董泽亮, 等. 超滤过程的膜污染和运行条件优化[J]. 工业用水与废水, 2019, 50(1): 1-4. doi: 10.3969/j.issn.1009-2455.2019.01.001 [24] 敖漉, 刘文君, 方振东, 等. 超滤膜污染的主要成因与控制膜污染的预处理技术[J]. 后勤工程学院学报, 2017, 33(4): 41-47. doi: 10.3969/j.issn.1672-7843.2017.04.008 [25] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [26] 田岳林, 刘桂中, 袁栋栋, 等. 陶瓷膜污染阻力构成试验及膜污染机理研究[C]//中国环境科学学会. 2012中国环境科学学会学术年会论文集. 南宁, 2012: 7. [27] 张金斌, 曾坚贤, 张学俊, 等. 陶瓷膜处理含镍电镀废水[J]. 环境工程学报, 2016, 10(4): 1699-1705. doi: 10.12030/j.cjee.20160419 [28] LI M, ZHAO Y, ZHOU S, et al. Resistance analysis for ceramic membrane microfiltration of raw soy sauce[J]. Journal of Membrane Science, 2007, 299(1): 122-129. [29] 周振, 姚吉伦, 庞治邦, 等. 电絮凝延缓陶瓷微滤膜污染[J]. 环境工程学报, 2016, 10(5): 2279-2283. doi: 10.12030/j.cjee.201510020 [30] 吕玉正, 方涛, 师杰, 等. 多孔陶瓷膜双向过滤阻力试验分析[J]. 后勤工程学院学报, 2013, 29(1): 34-39. [31] 裴亮. 不同运行条件对超滤膜通量阻力的影响研究[J]. 过滤与分离, 2017, 27(4): 6-9. doi: 10.3969/j.issn.1005-8265.2017.04.002 [32] 田岳林, 袁栋栋, 李汝琪. 陶瓷膜污染过程分析与膜清洗方法优化[J]. 环境工程学报, 2013, 7(1): 253-257.