ANAMMOX-UASB反应器启动过程中的生物特性

季军远, 林久淑, 朱晓桐, 张倩, 樊玉清. ANAMMOX-UASB反应器启动过程中的生物特性[J]. 环境工程学报, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067
引用本文: 季军远, 林久淑, 朱晓桐, 张倩, 樊玉清. ANAMMOX-UASB反应器启动过程中的生物特性[J]. 环境工程学报, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067
JI Junyuan, LIN Jiushu, ZHU Xiaotong, ZHANG Qian, FAN Yuqing. Biological characteristics of ANAMMOX-UASB reactor during startup process[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067
Citation: JI Junyuan, LIN Jiushu, ZHU Xiaotong, ZHANG Qian, FAN Yuqing. Biological characteristics of ANAMMOX-UASB reactor during startup process[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067

ANAMMOX-UASB反应器启动过程中的生物特性

    作者简介: 季军远(1980—),男,博士,副教授。研究方向:废水生物处理,E-mail:tengfei_945@163.com
    通讯作者: 樊玉清(1973—),女,硕士,高级实验师。研究方向:废水生物处理技术,E-mail:yuqing@ouc.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(51978636);国家自然科学基金青年科学基金项目(51408570);中央高校基本科研业务费专项(201964005)
  • 中图分类号: X703.1

Biological characteristics of ANAMMOX-UASB reactor during startup process

    Corresponding author: FAN Yuqing, yuqing@ouc.edu.cn
  • 摘要: 以絮状厌氧消化污泥为接种污泥,经过250 d运行后成功启动了ANAMMOX-UASB反应器。结果表明:在启动过程中,絮体污泥逐渐颗粒化并以不规则状的红色颗粒污泥和褐色絮状污泥为主;脱氢酶活性由启动前的3 909.51 μg·(h·g)−1最终降至72.13 μg·(h·g)−1;EPS含量在启动过程中先降后升,EPS组成中主要为TB-EPS,占比由54.4%升至75.7%;启动过程中LB-EPS和TB-EPS中均以PN为主,且PN占比逐步增大,分别由初始的88.7%和89.5%增至99.6%和94.7%;启动过程中EPS的结构与组成均发生变化。ANAMMOX-UASB启动过程中微生物Chao1、ACE、Shannon和Simpson指数均先升后降,启动成功后微生物多样性和丰富度均降低。污泥中微生物的优势菌门为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)。浮霉菌门中Candidatus Anammoximicrobium丰度逐渐降低直至消失,而Candidatus Brocadia丰度最终增至12.15%。
  • 抗生素应用于多个领域,主要涉及医药和畜牧饲料行业。由于抗生素的滥用,导致环境中抗生素污染问题普遍存在[1-3],目前,在水环境[4-6]、土壤[7-9]、水产动物[10]和植物[11]中均检测到了多种抗生素。青霉素G(PCN)是由青霉菌产生的一种β-内酰胺类水溶性抗生素[12],其可阻止肽聚糖的产生从而破坏细菌细胞壁的合成[13],是最具抗菌活性的抗生素,现已被广泛用于治疗人类和动物的疾病中[14]。PCN具有难以降解且含有生物毒性的特性,传统水处理方法难以完全对其产生作用,如果直接将其排放到水环境中,将会对生态环境以及人类构成较大威胁[15-16],因此,探索去除水环境中PCN的新方法十分必要。

    O3氧化是一种清洁的水处理技术,且具有无二次污染和经济可行等特点[17],可作为强氧化剂,对污水中的难降解有机物进行降解[18]。有学者用O3氧化降解垃圾渗滤液[19]、有机氯农药[20]和布洛芬[21]等难降解有机物,结果表明,降解效果均十分明显。有研究[22-24]表明,将H2O2与O3联合时,H2O2会促进HO·的产生,从而使O3的利用率以及降解效果均可得到显著提升。陈炜鸣等[23]在采用O3降解垃圾渗滤液浓缩液的过程中,发现添加0.13 mol·L−1 H2O2能显著提升有机物的去除效果,且O3利用率提升了22.29%,同时废水可生化性得到了明显改善,BOD5/COD值由0.01提高到0.43。LI等[25]采用O3预处理氢化可的松制药废水,在H2O2/O3的摩尔比为0.3的条件下,反应15 min后,COD去除率可达67%,COD去除率相对于单一O3氧化体系提升了23%,证明添加适量H2O2可显著提高降解效果。虽然众多研究已经证明了O3和O3/H2O2法对难降解有机物的降解效果显著,但目前许多研究倾向于对工艺条件的优化,而对降解过程中的中间产物分析和降解规律的研究却相对较少。

    基于此,本研究以难降解有机物PCN为目标,对其在O3/H2O2体系中的降解规律及其相关的机理进行研究,对降解过程中的中间产物及可能的降解路径进行探讨,并根据实验数据对降解动力学过程进行分析,为该法处理水中PCN的工程应用提供参考。

    实验试剂包括PCN(1 650 U·mg−1,阿拉丁)、H2O2(分析纯)、淀粉(分析纯)、甲酸(色谱级)、乙腈(色谱级)、NaOH(分析纯)、Na2S2O3(分析纯)、KI(分析纯)。

    自制反应器、微波快速消解COD测定仪(GZ-WXJ-Ⅲ)、pH计(pHS-3C)、液相色谱仪(Agilent-1200,美国Agilent公司)、液质联用色谱仪(WATERS TQD,美国waters公司)、精密分析天平(FA1004)、傅里叶红外光谱仪器(Nicolet Nexus 410,美国Nicolet公司)、真空冷冻干燥机(LFD-56D10S)等。

    自制有机玻璃材质反应器高度为200 mm,内径为90 mm,O3由臭氧发生器(JZ110B-SJG)供给,采用微孔石英砂芯底层曝气,通过转子流量计控制流量,同时O3产量使用碘量法进行测量。利用2个串联的吸收瓶组成尾气收集装置,对溢出尾气进行收集,定时在反应器中部取样。

    将PCN溶液加入反应器中均匀混合,在通入O3前,加入适量H2O2并控制反应温度和pH,待臭氧发生器稳定工作后,调节气体流量为1.2 L·min−1(臭氧产量为492 mg·h−1),反应开始后按时取样,然后用Na2S2O3终止反应。样品经0.22 μm滤膜过滤后,测定其COD和ρ(PCN)。每次均设计重复实验,每个样品都进行平行测定,然后取其均值。

    使用HPLC对PCN的降解产物进行检测。具体实验条件为:Hypersil BDS C18色谱柱;流动相为超纯水(含0.1%甲酸)∶乙腈=50∶50(体积比);流速为1.0 mL·min−1;柱温为30 ℃;进样量为20 μL[26]。质谱检测采用电喷雾电离源,在负离子模式下进行检测,扫描的质荷比m/z为100~700。O3气相浓度采用碘量法(CJ/T 3028.2-1994)测定,COD采用重铬酸钾快速消解法进行测定。

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、O3气体流量为1.2 L·min−1、H2O2投加量为7.84 mmol·L−1的反应条件下,考察pH对PCN和COD去除效果的影响,结果如图1所示。由图1可知,在不同pH下,COD和PCN的去除效果差异明显,在酸性和中性条件下,COD去除效果相对较差,PCN去除速率缓慢,当pH升高时,反应去除速率也相应加快;在碱性反应环境下,去除效果显著提升,在反应5 min后,PCN去除率为92.5%,在反应3 h后,COD去除率为71.9%。这是因为pH会影响O3/H2O2体系中HO·的产生效率,在酸性条件下,主要是O3分子的氧化,而在碱性情况下,溶液中OH-会促进HO·的生成,此时主要以HO·氧化为主,反应速率得到了提升,具体反应如式(1)~式(3)所示。

    图 1  pH对PCN、COD去除率的影响
    Figure 1.  Effect of pH on the removal rates of PCN and COD
    O3+OHHO2+O2 (1)
    H2O2HO2+H+ (2)
    O3+HO2HO+O2+O2 (3)

    此外,在碱性环境中,H2O2更容易离解生成HO2,而HO2又是HO·的诱发剂,所以可促进HO·的生成,进而加快氧化速率[23]

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、pH=10,H2O2投加量为7.84 mmol·L−1的反应条件下,考察O3投加量对PCN和COD去除效果的影响,结果如图2示。由图2可知,O3投加量对去除PCN和COD的影响较大,当流量由0.3 L·min−1(O3产量为123 mg·h−1)升至1.5L·min−1(O3产量为615 mg·h−1)时,随着O3投加量的不断增加,PCN和COD的去除率也不断提升,当O3流量为1.5 L·min−1时,PCN和COD去除效果达到最佳。在反应5 min后,PCN去除率为95.83%,在反应3 h后,COD去除率为72.8%。由图2还可看出,在1.2 L·min−1(O3产量为492 mg·h−1)和1.5 L·min−1反应条件下,PCN和COD的去除效果无明显差异,PCN和COD的去除率增幅明显降低,原因可能是,当水中O3溶解度达到最大时,O3的利用率将会降低,未参加反应的O3分子将会直接从液相转移至气相中,故导致无法继续提高降解效能。所以本实验最佳O3流量设定为1.2 L·min−1,以避免造成O3的浪费。

    图 2  O3投加量对PCN、COD去除率的影响
    Figure 2.  Effect of O3 on the removal rates of PCN and COD

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、pH=10、O3气体流量为1.2 L·min−1的条件下,考察H2O2投加量对PCN和COD去除效果的影响,结果如图3所示。由图3可知,在O3/H2O2体系氧化PCN的过程中,PCN能在较短时间内快速被氧化成中间产物,而中间产物的氧化速率则较为缓慢,但H2O2的促进效果明显。当H2O2的投加量由0升至7.84 mmol·L−1时,PCN和COD的去除率也相应随之升高。在反应5 min后,PCN去除率为100%,增幅为37.4%;在反应3 h后,COD去除率为71.9%,增幅为26.3%。相比于单独的O3体系,添加双氧水能显著提升COD和PCN的去除率,这是由于O3和H2O2之间存在协同机制,适量双氧水可促进氧化过程中HO·的生成,从而提升反应效果[3]。具体反应如式(4)所示。

    图 3  H2O2投加量对PCN、COD去除率的影响
    Figure 3.  Effect of H2O2 dosage on the removal rates of PCN and COD
    O3+2H2O22HO+2O2 (4)

    图3可看出,当H2O2投加量大于7.84 mmol·L−1时,COD去除率略微下降。这可能是由于反应体系中多余的H2O2成为了HO·的捕获剂,从而降低了HO·氧化有机物的效率[22-23]。具体反应机理如式(5)所示。

    H2O2+2HO2H2O+O2 (5)

    ρ(PCN)为25 mg·L−1、pH为10、H2O2投加量为7.84 mmol·L−1、O3气体流量为1.2 L·min−1的条件下,考察温度对PCN去除效果的影响,结果如图4所示。由图4可知:在10~30 ℃时,随着温度的上升,PCN去除速率也逐渐加快,去除速率由8.11 mg·(L·min)−1增至17.34 mg·(L·min)−1;但当温度为40 ℃时,PCN去除速率明显降低。原因可能是:当反应温度升高时,加快了分子之间的运动,加速了HO·的生成和O3在水中的扩散速率,从而提升了PCN去除速率。但当温度继续升高时,H2O2的自分解效果加剧,且O3在溶液中的溶解度也有所降低,导致去除速率明显减缓。

    图 4  不同温度对PCN去除率的影响
    Figure 4.  Effect of different temperature on the removal rate of PCN

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、pH为10,O3气体流量为1.2 L·min−1、H2O2投加量为7.84 mmol·L−1的条件下,考察O3/H2O2反应体系中pH的变化趋势,结果如图5所示。由图5可知,在O3氧化PCN的过程中,反应体系pH随反应时间的延长呈下降趋势,在反应3 h后,pH由10下降至6.8,最终反应溶液呈弱酸性,这可能是由于在降解过程中产生了酸性中间产物,从而导致pH的下降。这与红外光谱和LC-MS的分析结论相一致。体系pH的降低不利于反应的进行,这可能也是反应过程中反应速率均呈先快后慢的变化趋势的原因。

    图 5  反应体系中pH的变化
    Figure 5.  Changes of pH in the reaction system

    通过大量的实验得出最优pH和温度,研究O3、H2O2和PCN初始浓度对氧化过程中PCN浓度衰减的影响,结果如表1所示,降解动力学方程见式(6)。

    表 1  不同反应物的初始浓度对反应速率的影响
    Table 1.  Effect of initial concentration of different reactants on reaction rate
    序号反应物初始浓度/(mg·L−1)T/K初始速率/(mg·(L·min)−1)拟合方程
    PCNO3H2O2
    1258.2266.4303.1513.87y=0.358 9x−2.901 9R2=0.996 1
    2508.2266.4303.1517.76
    3758.2266.4303.1520.22
    41008.2266.4303.1523.29
    5252.05266.4303.155.31y=0.697 9x−1.756 4R2=0.997 6
    6254.1266.4303.158.25
    7256.15266.4303.1511.4
    8258.2266.4303.1513.87
    9258.266.6303.158.84y=0.323 3x−3.701 1R2=0.999 8
    10258.2133.2303.1511.12
    11258.2199.8303.1512.6
    12258.2266.4303.1513.87
    13258.2266.4283.158.11
    14258.2266.4293.1513.87
    15258.2266.4303.1517.34
     | Show Table
    DownLoad: CSV
    dCPCN/dt=k0exp(Ea/RT)CαPCNCβO3CγH2O2 (6)

    式中:αβγ分别为PCN、O3、H2O2的反应级数;CPCNCO3CH2O2分别为PCN、O3、H2O2的初始浓度,mol·L−1Ea为反应活化能,kJ·mol−1k0为指前因子,mol·(L·s)−1R为气体常数,取值8.314 J·(mol·K)−1T为反应温度,℃。

    根据表1的数据并结合表观动力学计算原理,可计算出PCN、O3和H2O2反应物的反应级数,其数值分别为α=0.367、β=0.697 3、γ=0.323 3。

    由于总反应速率常数k=k0exp(-Ea/RT),两侧一起取对数可得式(7)。据Tk相应值可得图6。计算得到Ea=27.59 kJ·mol−1k0=0.052 mol·(L·s)−1,因此,得出总动力学方程,见式(8)。

    图 6  反应速率常数与温度的关系
    Figure 6.  Relationship between the rate constant and temperature
    lnk=(Ea/R)(1/T)+lnk0 (7)
    dCPCN/dt=0.052exp(27594.9/RT)C0.367PCNC0.6973O3C0.3233H2O2 (8)

    本动力学模型是依据反应物初始浓度对降解速率的影响而建立的,对于整个降解过程而言,模型可能会高估反应速率。由式(8)可知,O3的反应级数为0.697 9,高于PCN (0.358 9)和H2O2 (0.335 4)的反应级数,说明降解过程中O3初始浓度对反应速率的影响最大。原因可能是,在O3氧化降解PCN的过程中,存在O3分子直接氧化和HO·氧化2种氧化方式,反应过程中只要有O3就能氧化有机物,而H2O2与O3反应只能加快HO·的生成。此外,反应活化能 (Ea=27.59 kJ·mol−1)较低,说明该反应容易发生。

    将PCN溶液及其氧化降解的最终产物进行冷冻干燥后进行红外光谱检测,结果如图7所示。在PCN红外光谱图中,1 773.7 cm−1为—COOH中的C=O的伸缩振动峰,3 353.6 cm−1为—COOH中的O—H的伸缩振动峰;1 495.5、1 617.9和2 959.7 cm−1为苯环结构对应的吸收峰,650~1 000 cm−1为苯环上的C—H取代伸缩振动峰;而1 697.5 cm−1为酰胺结构的C=O的伸缩振动;1 307 cm−1处为—(CH3)2的吸收峰。

    图 7  PCN及其降解产物的红外光谱图
    Figure 7.  Infrared spectra of PCN and its degradation products

    图7可知,PCN在氧化前后的谱图有着明显差异,在1 450~1 620 cm−1和3 000 cm−1处苯环骨架吸收峰消失,这说明氧化破坏了PCN的苯环结构。在2 421 cm−1处出现了新的吸收峰,这说明在氧化过程中可能有含叁键或者累积双键的物质产生。在1 697.5 cm−1处的酰胺结构吸收峰消失不见,说明氧化反应破坏了PCN的抑菌结构β-内酰胺环,从而使PCN的抑菌性减弱[27-28]。在1 385.7 cm−1处的峰强度有明显增大,这说明原—(CH3)2结构仍存在,吸收峰在3 449.5 cm−1处出现,有可能是伯胺官能团的不对称伸缩振动与—COOH上O—H的伸缩振动,说明最终产物中可能含有胺类化合物。在1 789.5 cm−1和833.2 cm−1处分别出现羧酸的C=O的伸缩振动和O—H的弯曲振动,这表明最终产物中可能含有酸类化合物,这是导致反应中pH下降的原因。

    对PCN的降解产物进行LC-MS检测,PCN及其降解产物的总离子流图如图8图9所示。结果表明,PCN及其降解产物得到了较好的分离,降解后没有检测到PCN的出峰,说明PCN已被完全降解,离子流图显示了PCN降解产物的变化;综合FT-IR的表征结果,对降解产物进行了质谱分析,推测出PCN降解产物可能的分子结构(表2)。

    表 2  PCN及其降解产物的质谱数据
    Table 2.  Mass spectrometry data of PCN and its degradation products
    物质分子式保留时间/min离子质荷比
    青霉噻唑酸C16H21N2O5S0.841352
    青霉素钠C16H18N2O4S1.753334
    去羧青霉素噻唑酸C15H20N2O3S0.505308
    6-氨基青霉噻唑酸C8H14N2O4S0.407234
    青霉胺C5H11NO2S0.488149
    化合物1C10H11NO30.515193
    化合物2C8H16N2O6S0.488267
    化合物3C7H15NO5S0.339225
     | Show Table
    DownLoad: CSV
    图 8  PCN的离子流图
    Figure 8.  PCN ion flow diagram
    图 9  PCN降解产物离子流图
    Figure 9.  Ion flow diagram of PCN degradation products

    在O3降解PCN的过程中,可能有HO·氧化以及水解等非常复杂的反应存在。在碱性条件下,PCN的β-内酰胺环容易水解打开生成青霉噻唑酸;经脱酸反应后,可能生成去羧青霉噻唑酸;同时在HO·的强氧化能力下,青霉噻唑酸可能进一步被氧化降解成6-氨基青霉噻唑酸、青霉胺和其他未知产物;中间产物也可能最终矿化成为CO2和H2O。根据中间产物分析,推测PCN可能的降解路径如图10所示。

    图 10  PCN可能的降解路径图
    Figure 10.  Possible degradation path of PCN

    根据LC-MS对产物的分析结果,并结合红外光谱表征结果可知,PCN降解前后的官能团结构发生了较大的变化,氧化使PCN的β-酰胺环被破坏,这也解释了PCN及其降解产物的抑菌性消失或者减弱的原因。

    1) O3和H2O2有显著的协同作用,能明显加快反应速率,显著提升COD和PCN的去除率。在初始ρ(PCN):25 mg·L−1,pH=10、O3投加量为1.48 g·L−1、H2O2投加量为7.84 mmol·L−1、温度为20 ℃的条件下,反应10 min后,PCN被完全去除,反应3 h后,COD去除率为71.9%。这说明O3/H2O2体系能有效氧化降解PCN和降解过程中产生的中间产物。

    2)通过数据的拟合,得到了O3/H2O2降解PCN的反应动力学方程,O3的反应级数为0.697 3,高于PCN(0.367)和H2O2(0.323 3)的反应级数,说明在降解过程中,O3初始浓度对反应速率的影响最大;此反应的活化能(Ea=27.59 kJ·mol−1)较低,说明此反应容易发生。

    3)根据LC-MS和红外光谱检测结果得出,PCN分子结构在降解前后发生了明显变化,PCN的抑菌结构β-内酰胺环被破坏。此外,降解产物中含有酸性物质,这会导致反应体系pH下降,从而不利于O3反应的进行。

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of experimental equipment

    图 2  ANAMMOX-UASB启动过程的污泥表观形态

    Figure 2.  Sludge apparent morphology during ANAMMOX-UASB startup process

    图 3  ANAMMOX-UASB启动过程中的脱氢酶变化

    Figure 3.  Change in DHA activity during ANAMMOX-UASB startup process

    图 4  ANAMMOX-UASB启动过程中的EPS含量及组分变化

    Figure 4.  Changes of EPS contents and components during startup process of ANAMMOX-UASB

    图 5  启动过程中LB-EPS和TB-EPS的三维荧光光谱

    Figure 5.  Three-dimensional fluorescence spectra of LB-EPS and TB-EPS during startup

    图 6  ANAMMOX-UASB启动过程中微生物门水平组成

    Figure 6.  Composition of microorganisms at the phylum level during startup process of ANAMMOX-UASB

    图 7  ANAMMOX-UASB启动过程中浮霉菌门属水平组成

    Figure 7.  Composition of microorganisms of Planctomycetes at the genus level during startup process of ANAMMOX-UASB

    表 1  ANAMMOX-UASB启动过程中各阶段运行情况

    Table 1.  Performance of each stage during ANAMMOX-UASB startup process

    阶段运行时间/dHRT/h进水N质量浓度/(mg·L−1)出水N质量浓度/(mg·L−1)TN去除率/%
    NH+4-NNO2-NNH+4-NNO2-NNO3-N
    1~13245050152.36±85.151.22±1.164.07±1.76−57.65±84.85
    14~532450504.68±7.927.91±6.313.4±1.7384.19±10.6
    54~1232450~30050~3000.17±0.400.37±0.4214.71±18.296.6±2.75
    124~16024~123003001.86±2.620.83±0.7756.21±0.7790.18±2.49
    161~25012~63003008.55±7.243.22±2.0267.54±6.986.78±1.72
    阶段运行时间/dHRT/h进水N质量浓度/(mg·L−1)出水N质量浓度/(mg·L−1)TN去除率/%
    NH+4-NNO2-NNH+4-NNO2-NNO3-N
    1~13245050152.36±85.151.22±1.164.07±1.76−57.65±84.85
    14~532450504.68±7.927.91±6.313.4±1.7384.19±10.6
    54~1232450~30050~3000.17±0.400.37±0.4214.71±18.296.6±2.75
    124~16024~123003001.86±2.620.83±0.7756.21±0.7790.18±2.49
    161~25012~63003008.55±7.243.22±2.0267.54±6.986.78±1.72
    下载: 导出CSV

    表 2  ANAMMOX-UASB启动过程中LB-EPS和TB-EPS的荧光光谱参数

    Table 2.  Fluorescence spectral parameters of LB-EPS and TB-EPS during startup process of ANAMMOX-UASB

    样品时间/d峰A峰B峰C峰D峰E
    Ex/Em强度Ex/Em强度Ex/Em强度Ex/Em强度Ex/Em强度
    LB0225/330274.5275/335175.1
    53225/330193.4275/335136.2
    123220/33551.0260/34065.3
    TB0220/330176.5275/335109.0
    53220/340296.4275/340210.0220/310260.0
    123220/33047.7270/30048.0220/31047.8270/42515.3
    样品时间/d峰A峰B峰C峰D峰E
    Ex/Em强度Ex/Em强度Ex/Em强度Ex/Em强度Ex/Em强度
    LB0225/330274.5275/335175.1
    53225/330193.4275/335136.2
    123220/33551.0260/34065.3
    TB0220/330176.5275/335109.0
    53220/340296.4275/340210.0220/310260.0
    123220/33047.7270/30048.0220/31047.8270/42515.3
    下载: 导出CSV

    表 3  ANAMMOX-UASB启动过程中微生物多样性和丰富度

    Table 3.  Microbial diversity and abundance during startup process of ANAMMOX-UASB

    时间/dChao1ACEShannonSimpson覆盖率/%
    0594.16583.745.190.9299.5
    53695.08682.316.060.9699.5
    123343.23328.194.780.9099.8
    250351.00312.344.430.8799.7
    时间/dChao1ACEShannonSimpson覆盖率/%
    0594.16583.745.190.9299.5
    53695.08682.316.060.9699.5
    123343.23328.194.780.9099.8
    250351.00312.344.430.8799.7
    下载: 导出CSV
  • [1] MENG F, SU G, HU Y, et al. Improving nitrogen removal in an ANAMMOX reactor using a permeable reactive biobarrier[J]. Water Research, 2014, 58: 82-91. doi: 10.1016/j.watres.2014.03.049
    [2] ABMA W R, SCHULTZ C E, MULDER J W, et al. Full-scale granular sludge ANAMMOX process[J]. Water Science and Technology, 2007, 55(8/9): 27-33.
    [3] 沈耀, 陈重军, 张海芹, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学, 2016, 37(7): 2652-2658.
    [4] 陈文静, 陈圣东, 梁佳茵, 等. Anammox脱氮工艺启动研究进展[J]. 环境科学与技术, 2019, 42(11): 130-140.
    [5] 徐师, 张大超, 肖隆文, 等. 厌氧氨氧化反应快速启动方法的研究进展[J]. 环境工程, 2018, 36(6): 18-21.
    [6] 吕玮, 张立秋, 黄奕亮, 等. 常温低基质下两种厌氧氨氧化反应器启动特性比较[J]. 中国给水排水, 2019, 35(3): 31-37.
    [7] GAO F, ZHANG H, YANG F, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49(11): 1970-1978. doi: 10.1016/j.procbio.2014.07.019
    [8] WANG Y, HU X, JIANG B, et al. Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor[J]. Environmental Science and Pollution Research, 2016, 23(8): 7615-7626. doi: 10.1007/s11356-015-6016-z
    [9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [10] 朱南文, 闺航, 陈美慈, 等. TTC-脱氢酶测定方法的探讨[J]. 中国沼气, 1996, 14(2): 3-5.
    [11] WANG Z, GAO M, WANG Z, et al. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J]. Chemosphere, 2013, 93(11): 2789-2795. doi: 10.1016/j.chemosphere.2013.09.038
    [12] HOU J, MIAO L, WANG C, et al. Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs[J]. Bioresource Technology, 2015, 176: 65-70. doi: 10.1016/j.biortech.2014.11.020
    [13] FRØLUND B B K. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 8(30): 1749-1758.
    [14] 杨明明, 刘子涵, 周杨, 等. 厌氧氨氧化颗粒污泥EPS及其对污泥表面特性的影响[J]. 环境科学, 2019, 40(5): 2341-2348.
    [15] 彭广生, 陆燕青, 曾鸿鹄, 等. 人工湿地β-六六六去除效果及细菌群落特征分析[J]. 水处理技术, 2020, 46(8): 34-38.
    [16] 朱晓桐, 于冰洁, 林久淑, 等. ANAMMOX-UASB反应器启动特性[J]. 环境科学与技术, 2020, 43(12): 143-150.
    [17] 郑平, 许冬冬, 康达, 等. 厌氧氨氧化颗粒污泥研究进展[J]. 微生物学通报, 2019, 46(8): 1988-1995.
    [18] BORAN K, JAN T K. Anammox biochemistry: A tale of heme c proteins[J]. Trends in Biochemical Science, 2016, 41(12): 998-1011. doi: 10.1016/j.tibs.2016.08.015
    [19] LIN Q, KANG D, ZHANG M, et al. The performance of anammox reactor during start-up: Enzymes tell the story[J]. Process Safety and Environmental Protection, 2019, 121: 247-253. doi: 10.1016/j.psep.2018.10.029
    [20] KIM S, PARK J, CHO Y, et al. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions[J]. Bioresource Technology, 2013, 144: 8-13. doi: 10.1016/j.biortech.2013.06.068
    [21] CHEN H, HU H, CHEN Q, et al. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology, 2016, 211: 594-602. doi: 10.1016/j.biortech.2016.03.139
    [22] 杨敏, 胡学伟, 宁平, 等. 废水生物处理中胞外聚合物(EPS)的研究进展[J]. 工业水处理, 2011, 31(7): 7-12. doi: 10.3969/j.issn.1005-829X.2011.07.002
    [23] GUO J, WANG S, LIAN J, et al. Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria[J]. Bioresource Technology, 2016, 220: 641-646. doi: 10.1016/j.biortech.2016.08.084
    [24] MA B, LI Z, WANG S, et al. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge[J]. Environmental Pollution, 2019, 251: 81-89. doi: 10.1016/j.envpol.2019.04.094
    [25] DONG J, ZHANG Z, YU Z, et al. Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater[J]. Chemical Engineering Journal, 2017, 330: 596-604. doi: 10.1016/j.cej.2017.07.174
    [26] ZHU L, QI H, LV M, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059
    [27] 王子超. 盐度和重金属对序批式生物反应器性能及微生物群落结构影响的研究[D]. 青岛: 中国海洋大学, 2014.
    [28] 何承兴, 储昭瑞, 谭炳琰, 等. 厌氧氨氧化SBBR启动过程中菌群演替分析[J]. 水处理技术, 2019, 45(7): 93-96.
    [29] 杨瑞丽, 王晓君, 吴俊斌, 等. 厌氧氨氧化工艺快速启动策略及其微生物特性[J]. 环境工程学报, 2018, 12(12): 3341-3350.
    [30] 宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057-5065.
    [31] 曹雁, 王桐屿, 秦玉洁, 等. 厌氧氨氧化反应器脱氮性能及细菌群落多样性分析[J]. 环境科学, 2017, 38(4): 1544-1550.
    [32] 杨开亮, 廖德祥, 王莹, 等. 厌氧氨氧化快速启动及微生物群落演替研究[J]. 水处理技术, 2020, 46(5): 65-70.
    [33] 沈耀良, 张海芹, 王翻翻, 等. 不同接种污泥ABR厌氧氨氧化的启动特征[J]. 环境科学, 2015, 36(6): 2216-2221.
    [34] CHEN C, HUANG X, LEI C, et al. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment[J]. Bioresource Technology, 2013, 148: 172-179. doi: 10.1016/j.biortech.2013.08.132
    [35] MIAO Y, LIAO R, ZHANG X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042
    [36] 朱彤, 贾若坦, 梁启煜, 等. 厌氧氨氧化反应器运行过程微生物群落演替分析[J]. 东北大学学报(自然科学版), 2018, 39(5): 693-698. doi: 10.12068/j.issn.1005-3026.2018.05.018
    [37] VAN DER STAR W R L, MICLEA A I, VAN DONGEN U G J M, et al. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering, 2008, 101(2): 286-294. doi: 10.1002/bit.21891
    [38] VAN DE VOSSENBERG J, RATTRAY J E, GEERTS W, et al. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production[J]. Environmental Microbiology, 2008, 10(11): 3120-3129. doi: 10.1111/j.1462-2920.2008.01643.x
  • 期刊类型引用(1)

    1. 彭智昊,郭兴强,于双,黄光群,史苏安,何雪琴. 规模化好氧堆肥底部曝气系统管道内流场仿真与试验. 农业工程学报. 2024(08): 198-206 . 百度学术

    其他类型引用(3)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.5 %DOWNLOAD: 3.5 %HTML全文: 80.7 %HTML全文: 80.7 %摘要: 15.8 %摘要: 15.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 84.9 %其他: 84.9 %Ashburn: 0.2 %Ashburn: 0.2 %Beijing: 4.0 %Beijing: 4.0 %Brooklyn: 0.1 %Brooklyn: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Chanshan: 0.1 %Chanshan: 0.1 %Cincinnati: 0.1 %Cincinnati: 0.1 %Gaocheng: 0.2 %Gaocheng: 0.2 %Guiyang: 0.2 %Guiyang: 0.2 %Hangzhou: 0.9 %Hangzhou: 0.9 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Mountain View: 0.1 %Mountain View: 0.1 %Nanjing: 0.2 %Nanjing: 0.2 %Newark: 0.2 %Newark: 0.2 %Qinnan: 0.1 %Qinnan: 0.1 %Shanghai: 1.4 %Shanghai: 1.4 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Suzhou: 0.1 %Suzhou: 0.1 %Taiyuan: 0.2 %Taiyuan: 0.2 %Tianjin: 0.1 %Tianjin: 0.1 %Xi'an: 0.2 %Xi'an: 0.2 %Xinzhuang: 0.1 %Xinzhuang: 0.1 %XX: 4.4 %XX: 4.4 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %上海: 0.1 %上海: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.6 %北京: 0.6 %博伊西: 0.1 %博伊西: 0.1 %成都: 0.1 %成都: 0.1 %杭州: 0.1 %杭州: 0.1 %汕尾: 0.1 %汕尾: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %连云港: 0.1 %连云港: 0.1 %郑州: 0.2 %郑州: 0.2 %银川: 0.1 %银川: 0.1 %其他AshburnBeijingBrooklynChang'anChanshanCincinnatiGaochengGuiyangHangzhouHyderabadJinrongjieMountain ViewNanjingNewarkQinnanShanghaiShenyangShenzhenSuzhouTaiyuanTianjinXi'anXinzhuangXXYunchengZhengzhou上海内网IP北京博伊西成都杭州汕尾济南深圳连云港郑州银川Highcharts.com
图( 7) 表( 3)
计量
  • 文章访问数:  4276
  • HTML全文浏览数:  4276
  • PDF下载数:  47
  • 施引文献:  4
出版历程
  • 收稿日期:  2021-06-14
  • 录用日期:  2021-09-13
  • 刊出日期:  2021-10-10
季军远, 林久淑, 朱晓桐, 张倩, 樊玉清. ANAMMOX-UASB反应器启动过程中的生物特性[J]. 环境工程学报, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067
引用本文: 季军远, 林久淑, 朱晓桐, 张倩, 樊玉清. ANAMMOX-UASB反应器启动过程中的生物特性[J]. 环境工程学报, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067
JI Junyuan, LIN Jiushu, ZHU Xiaotong, ZHANG Qian, FAN Yuqing. Biological characteristics of ANAMMOX-UASB reactor during startup process[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067
Citation: JI Junyuan, LIN Jiushu, ZHU Xiaotong, ZHANG Qian, FAN Yuqing. Biological characteristics of ANAMMOX-UASB reactor during startup process[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3358-3367. doi: 10.12030/j.cjee.202106067

ANAMMOX-UASB反应器启动过程中的生物特性

    通讯作者: 樊玉清(1973—),女,硕士,高级实验师。研究方向:废水生物处理技术,E-mail:yuqing@ouc.edu.cn
    作者简介: 季军远(1980—),男,博士,副教授。研究方向:废水生物处理,E-mail:tengfei_945@163.com
  • 1. 中国海洋大学,海洋环境与生态教育部重点实验室,青岛 266000
  • 2. 中国海洋大学,山东省海洋环境地质工程重点实验室,青岛 266000
  • 3. 南京万德斯环保科技股份有限公司,南京 211100
基金项目:
国家自然科学基金资助项目(51978636);国家自然科学基金青年科学基金项目(51408570);中央高校基本科研业务费专项(201964005)

摘要: 以絮状厌氧消化污泥为接种污泥,经过250 d运行后成功启动了ANAMMOX-UASB反应器。结果表明:在启动过程中,絮体污泥逐渐颗粒化并以不规则状的红色颗粒污泥和褐色絮状污泥为主;脱氢酶活性由启动前的3 909.51 μg·(h·g)−1最终降至72.13 μg·(h·g)−1;EPS含量在启动过程中先降后升,EPS组成中主要为TB-EPS,占比由54.4%升至75.7%;启动过程中LB-EPS和TB-EPS中均以PN为主,且PN占比逐步增大,分别由初始的88.7%和89.5%增至99.6%和94.7%;启动过程中EPS的结构与组成均发生变化。ANAMMOX-UASB启动过程中微生物Chao1、ACE、Shannon和Simpson指数均先升后降,启动成功后微生物多样性和丰富度均降低。污泥中微生物的优势菌门为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)。浮霉菌门中Candidatus Anammoximicrobium丰度逐渐降低直至消失,而Candidatus Brocadia丰度最终增至12.15%。

English Abstract

  • 厌氧氨氧化工艺氮去除负荷高、无需外加有机碳源、污泥产量低、运行成本低,但因厌氧氨氧化菌生长速度慢、倍增时间长,且对环境条件变化较为敏感,使得厌氧氨氧化工艺启动耗时较长,这极大地限制了厌氧氨氧化技术的工程应用[1]。Dokhaven污水厂的厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)工艺耗时3.5 a成功启动[2]。因此,厌氧氨氧化菌(anaerobic ammonia oxidizing bacteria,AnAOB)的高效富集、ANAMMOX工艺的快速启动及稳定运行引起研究者的广泛关注。

    ANAMMOX工艺的快速启动与接种污泥性质、反应器类型密切相关[3]。不同类型的好氧、厌氧污泥均可用于ANAMMOX工艺启动。好氧污泥虽菌群丰富,但其所含厌氧菌属较少,启动期会相应较长;厌氧反硝化污泥中含有的反硝化菌与AnAOB同属厌氧菌,可省去好氧转向厌氧环境时的污泥适应阶段,完成AnAOB的富集,可缩短工艺启动市场,但其沉降性能较差,启动过程中易出现污泥流失[4];而经厌氧消化后的剩余污泥具有良好沉降性能,且来源广泛、易于获取,污泥碳氮比含量低、高氨氮适应性强、厌氧菌含量高且与AnAOB的代谢基质相近,较适合作为ANAMMOX工艺启动的接种污泥。反应器类型直接影响污泥固体停留时间(solid retention time,SRT)、水流上升流速等,进而影响AnAOB富集、工艺启动速度、工艺运行稳定性等;序批式反应器(sequencing batch reactor,SBR)、序批式生物膜反应器(sequencing batch biofilm reactor,SBBR)、膜生物反应器(membrane bioreactor,MBR)、生物滤池均可成功启动ANAMMOX工艺[5-7]。上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)反应器作为第2代厌氧反应器的杰出代表,具有较好的污泥持留能力和基质传质效果,可为AnAOB的生长提供良好的环境,其在ANAMMOX工艺运行中的优势已逐步显现。WANG等[8]将厌氧氨氧化颗粒污泥接种于UASB反应器(22 L),经过178 d启动及稳定运行,氮容积负荷(nitrogen loading rate,NLR)和氮去除负荷(nitrogen removal rate,NRR)可高达8.25 kg ·(m3·d)−1(以N计)和6.93 kg·(m3·d)−1(以N计)。

    因此,本研究以厌氧消化污泥为接种污泥,以UASB反应器为反应装置启动ANAMMMOX工艺,研究了ANAMMOX-UASB反应器启动过程的生物特性,考察了ANAMMOX- UASB启动运行过程中的污泥表观形态、脱氢酶及胞外聚合物的变化,分析了启动过程中胞外聚合物结构、组成的特征,解析了功能菌群动态演替规律,以期探明ANAMMOX-UASB启动过程中的生物特性,为厌氧氨氧化工艺的快速启动与工程应用提供参考。

    • 所采用的实验装置如图1所示,UASB反应器呈圆柱结构,由有机玻璃制成,总容积为3.5 L,有效容积为1.4 L,其中反应区内径6 cm,高度50 cm。模拟废水由蠕动泵从UASB反应器底部连续泵入,从下至上依次经反应区、沉淀区后,最后经出水口排出;产生的气体经顶部排气孔排出。反应区部分采用黑布包裹以避免光照对AnAOB产生的不利影响。反应器工作温度为(35±1) ℃。

    • 实验中所用接种污泥取自青岛市某污水处理厂厌氧消化罐,污泥形态呈黑褐色絮状。混合液悬浮固体质量浓度(mixed liquid suspended solids,MLSS)约为47.39 g·L−1,混合液挥发性悬浮固体质量浓度(mixed liquor volatile suspended solids,MLVSS)约为22.77 g·L−1,MLVSS/MLSS为0.48。接种污泥量为1.2 L。

    • 实验废水采用人工模拟废水,NH+4-N和NO2-N分别由NH4Cl和NaNO2按需配置,其他主要成分为27 mg·L−1 KH2PO4、500 mg·L−1 NaHCO3、180 mg·L−1 CaCl2·2H2O、300 mg·L−1 MgSO4·7H2O。微量元素Ⅰ、Ⅱ添加量均为1 mL·L−1。微量元素Ⅰ的组成成分及含量为5 mg·L−1 EDTA、5 mg·L−1 FeSO4·7H2O、微量元素Ⅱ为15 mg·L−1 EDTA、0.99 mg·L−1 MnCl2·4H2O、0.25 mg·L−1 CuSO4·5H2O、0.43 mg·L−1 ZnSO4·7H2O、0.014 mg·L−1 H3BO4、0.19 mg·L−1 NiCl2·6H2O、0.22 mg·L−1 Na2MoO4·2H2O。废水pH为7.5~7.8。

    • NH+4-N采用纳氏试剂分光光度法测定;NO2-N采用N-(1-萘基)乙二胺分光光度法测定;NO3-N采用紫外分光光度法测定;pH采用玻璃电极法测定;SS和VSS采用重量法[9]测定。脱氢酶(dehydrogenase activity,DHA)的提取与测定采用TTC还原法[10]。胞外聚合物(extracellular polymeric substance,EPS)提取与测定参照WANG等[11]的方法分层提取松散型胞外聚合物(loosely bound EPS,LB-EPS)与紧密型胞外聚合物(tightly bound EPS,TB-EPS)。采用硫酸-蒽酮比色法[12]测定多糖(polysaccharide,PS)含量,采用改进的Folin-酚试剂法[13]测定蛋白质(protein,PN)的含量。

      三维荧光光谱(three-dimensional excitation-emission matrix fluorescence spectroscopy,3D-EEM)采用荧光光度计(F-4 600, Hitachi, Japan)测定样品中LB-EPS和TB-EPS的三维荧光光谱[14]。激发波长(Ex)和发射波长(Em)分别为200~450 nm和240~550 nm,扫描间隔为5 nm,扫描速度采用1 200 nm·min−1。用超纯水作为空白样品校正水的拉曼散射。实验数据采用Origin绘图分析。

      聚合酶链式反应(polymerase chain reaction,PCR)及高通量测序:采用Power Soil DNA Isolation Kit按照操作步骤提取样品中DNA,使用1%(质量分数)的琼脂糖凝胶电泳检测DNA浓度和质量。采用细菌16S rRNA基因V3+V4扩增区域,引物为341F(CCTACGGGNGGCWGCAG)和805R(GACTACHVGGGTATCTAATCC),对DNA进行PCR扩增,扩增体系及扩增条件按彭广生等[15]方法进行。PCR扩增产物使用OMEGA胶回收纯化试剂盒纯化后4 ℃保存。样本交由北京诺禾致源生物信息科技有限公司进行DNA提取和测序。利用Illumina HiSeq高通量测序技术在HiSeq 2500系统进行测序。

    • ANAMMOX-UASB反应器启动过程共持续250 d,整个过程分为菌体水解期(阶段Ⅰ)、活性迟滞期(阶段Ⅱ)、活性提高期(阶段Ⅲ)和稳定运行期(阶段Ⅳ和阶段Ⅴ)[16]。启动过程运行情况见表1

    • ANAMMOX-UASB反应器接种污泥为絮状黑褐色厌氧消化污泥(图2(a))。随着启动运行,污泥内有机物不断消耗、异养菌逐渐死亡,导致反应器污泥层高度逐渐下降。第53天,絮状污泥颜色逐渐转变为黄褐色,且部分区域污泥呈现团聚体状。自第100天起,反应器内出现小颗粒状污泥,且部分已呈现浅红色(图2(b)),结合此过程反应器脱氮性能可断定厌氧氨氧化反应已明显显现。此时,反应器内的污泥与郑平等[17]报导的厌氧氨氧化颗粒污泥形状一致,说明絮状污泥逐渐颗粒化,厌氧氨氧化污泥初步形成。颗粒污泥呈现红色是由于厌氧氨氧化菌体内含有丰富的细胞色素c,污泥发红程度可以反映厌氧氨氧化菌的富集程度,可以作为肉眼判断厌氧氨氧化活性的依据[18]。随着ANAMMOX-UASB反应器继续运行,絮状污泥颗粒化进一步加强,至第250天时,反应器内以不规则状的红色颗粒污泥和褐色絮状污泥为主(图2(c)),此时NRR维持在2 kg·(m3·d)−1左右,厌氧氨氧化菌已成功富集。

    • 脱氢酶主要参与微生物降解有机物的过程[10],也可以参与某些细胞的合成。一氧化碳脱氢酶是乙酰辅酶A途径的关键酶。尽管厌氧氨氧化菌不以有机物为碳源,但仍有脱氢酶活性。ANAMMOX-UASB反应器启动过程中脱氢酶活性变化,可以反映出厌氧氨氧化工艺启动过程中污泥中异养菌的消长情况,结果见图3。由图3可知,因接种污泥为厌氧消化污泥,其异养微生物丰度较高,脱氢酶活性为3 909.51 μg·(h·g)−1(以TF计)。在第53天,污泥的脱氢酶活性降低至2 788.809 μg·(h·g)−1,这主要是由内源有机物量降低,异养微生物逐步衰亡、自溶等造成。随着启动过程的继续(53~250 d),厌氧氨氧化菌丰度逐步增加,异养菌含量进一步降低,脱氢酶活性大幅度降低,最终降至72.13 μg·(h·g)−1。LIN等[19]利用厌氧氨氧化污泥作为接种污泥启动厌氧氨氧化工艺时,启动前脱氢酶活性为684 μg·(h·g)−1,成功启动后脱氢酶活性降为252 μg·(h·g)−1。KIM等[20]的研究表明,异养菌脱氢酶参与了有机化合物的同化和异化反应,自养菌的脱氢酶主要参与有机化合物的同化,异养菌的脱氢酶活性远高于自养菌脱氢酶。在厌氧氨氧化工艺启动中,因进水基质无有机物,污泥中异养菌大量裂解死亡,导致脱氢酶活性大幅下降;厌氧氨氧化菌虽然不利用有机物进行分解代谢,但仍以CO2作为无机碳源,通过乙酰辅酶A途径合成自身细胞物质,故工艺在成功启动后仍具有一定的脱氢酶活性。

    • 1) EPS含量。EPS是厌氧氨氧化污泥的重要组成部分,厌氧氨氧化细菌会嵌入到由细胞和EPS组成的聚集体中[21]。EPS具有流动性的双层结构,是由松散附着的外层(LB)和紧密黏附的内层(TB)组成,EPS的主要成分是蛋白质(PN)和多糖(PS)[22]。ANAMMOX-UASB反应器启动过程中EPS含量及组成见图4。由图4可知,第0~53天,EPS含量快速降低,由初期的34.91 mg·g−1(以VSS计)(0 d)下降为14.48 mg·g−1(53 d),PN/PS由7.88(0 d)升至11.58(53 d);EPS中TB/LB由1.19变为1.07。第53~123天,EPS含量略降至14.19 mg·g−1,PN/PS由11.58升至14.25;EPS中TB/LB为6.21。第123~160天,EPS含量逐渐上升至28.02 mg·g−1,PN/PS进一步升至18.59;EPS中TB/LB为4.15。第160~250天,EPS含量继续升至39.21 mg·g−1,PN/PS升至23.20;EPS中TB/LB变为3.12。EPS中PN含量变化大,PS含量变化相对较小,且在启动过程中PN/PS持续上升。启动过程中EPS均以TB-EPS为主;LB-EPS中LB-PN/LB平均值93.8%,TB-EPS中TB-PN/TB平均值为93.1%,各分层EPS中均以PN为主,表明EPS中蛋白质在ANAMMOX-UASB启动过程中起关键作用,这与GUO等[23]报道的研究结果一致。大量的PN产生可能来源于细胞死亡后的释放、细胞的分泌以及EPS中含有大量胞外酶所致。PN是疏水性基团,PS是亲水性基团,MA等[24]的研究表明,EPS中PN的含量与污泥的絮凝和沉降能力成正相关,较高的PN含量可以增强微生物聚集体的凝聚性。DONG等[25]的研究表明,PN中带正电荷的氨基可以中和羧基的负电荷,从而加剧污泥的絮凝。CHEN等[21]发现,PN/PS越大,污泥的沉降性能越好。在ANAMMOX-UASB启动过程中,PN/PS由启动前的7.88增至23.20,与絮状污泥逐渐颗粒化及其沉降性能逐渐增强的变化趋势一致。

      2) EPS组分的荧光特性。污泥EPS中含有大量荧光特性的物质,可利用三维荧光分光光度法分析EPS组成特征。启动过程中第0、53、123天的LB-EPS和TB-EPS三维荧光光谱如图5所示。由图5可知,ANAMMOX-UASB在启动过程中共观察到5个荧光峰(A~E)。其中,荧光峰A(220~225 nm/330~340 nm)为芳香族蛋白类物质;荧光峰B(260~275 nm/335~340 nm)为色氨酸蛋白类物质;荧光峰C(270~275 nm/300~305 nm)与酪氨酸蛋白类物质有关;荧光峰D(220 nm/310~320 nm)与简单芳环蛋白类物质有关,荧光峰E(270 nm/425 nm)为富里酸类物质[26]

      荧光峰A、B在污泥启动过程的LB-EPS和TB-EPS中均存在,说明在启动过程中的EPS均以蛋白质为主;虽然LB-EPS和TB-EPS所处位置不同,但其组分和结构基本相同。在LB-EPS中仅存在荧光峰A和B,无其他荧光峰,且启动过程中LB-EPS的结构与组成并未发生较大变化。在第53天时TB-EPS中,除存在荧光峰A和B,还出现荧光峰D,说明此阶段有简单芳环蛋白类物质产生;第123天时,出现荧光峰C和E,荧光峰B消失,说明部分色氨酸蛋白类物质转化为酪氨酸蛋白类物质[27]。三维荧光结果表明,在ANAMMOX-UASB启动过程中污泥EPS中的TB-EPS的结构和组成均会发生变化。

      ANAMMOX-UASB启动过程中LB-EPS和TB-EPS中各峰光谱参数见表2。由表2可知,荧光峰会向更长的波长移动(称为红移),或向更短的波长移动(称为蓝移)。在LB-EPS中,第123天荧光峰A沿Ex方向蓝移5 nm,沿Em方向红移5 nm;荧光峰B沿Ex方向蓝移15 nm,沿Em方向红移5 nm。在TB-EPS中,第53天时荧光峰A沿Em方向红移10 nm,但至第123天时沿Em方向蓝移10 nm,与启动前相同;荧光峰B沿Em方向红移5 nm。上述研究结果表明,波长移动与EPS中各成分的结构变化密切相关,其中波长红移与含羰基取代基、羟基、烷氧基、氨基和羧基含量增加相关联,而波长蓝移则与芳香酯基减少,芳香环数下降,共轭键数的降低和羰基、羟基和氨基的减少直接相关。荧光峰波长及峰强度的变化说明ANAMMOX-UASB启动过程中污泥EPS中的组分、结构均发生变化。

    • 1)微生物多样性和丰富度分析。ANAMMOX-UASB启动过程中的微生物多样性和丰富度如表3所示。由表3可知,所有样品的覆盖率均大于99%。这表明样品数据涵盖的物种充足,微生物群落丰富度和多样性结果具有较高的可靠性和真实性[28]。ACE和Chao1指数可以表征物种的丰富度,其值越大,所含物种越丰富。Shannon指数常用来评价生物群落组成复杂程度,其值越大,表明群落复杂程度越高[29]。Simpson指数更倾向于反应群落的均匀性,其值越大,表示优势菌群占总体生物菌群比例越大[30]。由表3可知,接种污泥的Chao1和ACE指数分别为594.16和583.74,第53天的Chao1和ACE指数分别上升至最大值,为695.08和682.31。这表明此时的群落中所含物种最丰富,结合启动中出水指标可得,此时反硝化菌、氨化菌、厌氧氨氧化菌共存。第250天分别下降到351.00和312.34,表明工艺启动成功后,微生物以自养厌氧氨氧化菌为主,群落丰富度有所下降。接种污泥的Shannon指数为5.19,第53天上升至最大值为6.06,表明此时群落复杂度最大;第250天降低至4.43,其原因是反应器成功启动后,厌氧氨氧化菌的丰度不断升高,其他微生物的丰度逐渐降低,导致微生物群落复杂度有所下降。接种污泥的Simpson指数为0.92,第53天上升至最大值0.96,表明此时反应器内优势菌群所占的比例也最大;第250天下降为0.87,较接种污泥略有降低,表明反应器启动成功后,优势菌群所占的比例有所下降。

      2)微生物门水平物种丰度分析。将微生物在门水平上丰度前10的物种绘制成物种相对丰度柱形累加图(图6)。主要为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、Latescibacteria菌门、Cloacimonetes菌门、浮霉菌门(Planctomycetes)、放线菌门(Actinobacteria)和疣微菌门(Verrucomicrobia)。其中浮霉菌门和变形菌门为脱氮功能菌。变形菌门在各个样品中占最大比例,在启动过程中丰度逐渐上升,由7.22%上升到54.40%。曹雁等[31]利用上流式厌氧过滤床(upflow blanket filter,UBF)反应器启动厌氧氨氧化工艺,启动成功后变形菌门增加了12%。杨开亮等[32]利用SBR接种活性污泥启动厌氧氨氧化工艺时,变形菌门在启动过程中丰度逐渐下降。上述研究结果不同,可能与反应器类型、接种污泥类型、运行参数及环境条件等不同有关。沈耀良等[33]在厌氧折流板(anaerobic baffled reactor,ABR)反应器中发现各隔室中变形菌门为主要菌种,其在脱氮方面占有重要地位。绿弯菌门是厌氧氨氧化系统中常见的伴生菌门,接种污泥的丰度为31.23%,第53天下降为20.32%,第123天反应器启动成功时丰度上升为28.52%。CHEN等[34]研究发现,绿弯菌门是兼性厌氧菌,在厌氧氨氧化污泥中起到支撑和骨架作用,可作为形成小颗粒污泥的框架粒子,也可作为颗粒污泥的载体,从而有利于厌氧氨氧化颗粒污泥的形成。MIAO等[35]的研究表明,厚壁菌门对反硝化有重要作用,厚壁菌门丰度由28.27%下降为5.55%,说明ANAMMOX-UASB启动过程中异养反硝化菌因环境条件改变大量裂解死亡。浮霉菌门为主要的自养脱氮功能菌群,厌氧氨氧化菌归属此菌门;接种污泥浮霉菌门丰度仅为0.34%,第123天启动成功时其丰度增至1.89%,表明反应器内富集了一定量的厌氧氨氧化菌。其他研究者也发现,厌氧氨氧化工艺启动过程中变形菌门丰度始终高于浮霉菌门丰度。如朱彤等[36]发现,在厌氧氨氧化反应器启动成功后,虽然变形菌门丰度有所下降,但仍高于浮霉菌门。

      3)微生物属水平物种丰度分析。由于厌氧氨氧化菌属于浮霉菌门,因此,对浮霉菌门进行属水平的分析(图7)。浮霉菌门有unidentified_PhycisphaeraeCandidatus_AnammoximicrobiumCandidatus_BrocadiaThermoguttaPirellulaRhodopirellula。在已知的6种厌氧氨氧化菌属中,启动过程中存在2种厌氧氨氧化菌属,分别为Candidatus AnammoximicrobiumCandidatus Brocadia。接种污泥中Candidatus Anammoximicrobium的丰度为40.94%,第53天下降到30.77%,第123天下降为0。杨瑞丽等[29]进行厌氧氨氧化工艺启动时,观察到Candidatus Anammoximicrobium丰度随NLR增大而逐渐降低,第172天下降到0,其可能的原因是Candidatus Anammoximicrobium生长速率较慢、亚硝酸盐亲和力较低以及对水质变化的抵抗力较弱。第123天,Candidatus Brocadia是反应器内唯一的厌氧氨氧化菌,其丰度为12.15%,第250天,下降到11.63%。曹雁等[31]利用UBF反应器培养厌氧氨氧化细菌时,Candidatus Brocadia的丰度由0.01%增加到1.00%。VAN DER STAR等[37]发现Candidatus Brocadia适合存在于高含氮浓度废水中。本实验中,进水氨氮质量浓度由50 mg·L−1提高到300 mg·L−1,属于高含氮废水,更适合Candidatus Brocadia生长,故Candidatus Brocadia启动过程中可得到有效富集,成为优势菌属。有研究[38]表明,由于生存环境的不同,厌氧氨氧化菌的群落结构存在差异,在稳定的生长环境中,通常只有1个属种的厌氧氨氧化菌占优势,这与本研究结果类似。

    • 1) ANAMMOX-UASB启动过程中絮状污泥逐渐颗粒化,最终以不规则状的红色颗粒污泥和褐色絮状污泥为主。微生物的脱氢酶活性由3 909.51 μg·(h·g)−1持续降至72.13 μg·(h·g)−1。EPS主要以TB-EPS为主,占比为75.7%;且LB-EPS和TB-EPS中PN占比稳步增大,分别增至99.6%和94.7%,PN在厌氧氨氧化工艺启动过程中起关键作用。

      2)在ANAMMOX-UASB启动过程中,Chao1、ACE、Shannon和Simpson指数均呈现先升后降的趋势,启动过程中污泥的优势菌门为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)。浮霉菌门中Candidatus Anammoximicrobium丰度逐渐降低直至消失,而Candidatus Brocadia丰度最终增至12.15%。

    参考文献 (38)

返回顶部

目录

/

返回文章
返回