-
厌氧氨氧化工艺氮去除负荷高、无需外加有机碳源、污泥产量低、运行成本低,但因厌氧氨氧化菌生长速度慢、倍增时间长,且对环境条件变化较为敏感,使得厌氧氨氧化工艺启动耗时较长,这极大地限制了厌氧氨氧化技术的工程应用[1]。Dokhaven污水厂的厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)工艺耗时3.5 a成功启动[2]。因此,厌氧氨氧化菌(anaerobic ammonia oxidizing bacteria,AnAOB)的高效富集、ANAMMOX工艺的快速启动及稳定运行引起研究者的广泛关注。
ANAMMOX工艺的快速启动与接种污泥性质、反应器类型密切相关[3]。不同类型的好氧、厌氧污泥均可用于ANAMMOX工艺启动。好氧污泥虽菌群丰富,但其所含厌氧菌属较少,启动期会相应较长;厌氧反硝化污泥中含有的反硝化菌与AnAOB同属厌氧菌,可省去好氧转向厌氧环境时的污泥适应阶段,完成AnAOB的富集,可缩短工艺启动市场,但其沉降性能较差,启动过程中易出现污泥流失[4];而经厌氧消化后的剩余污泥具有良好沉降性能,且来源广泛、易于获取,污泥碳氮比含量低、高氨氮适应性强、厌氧菌含量高且与AnAOB的代谢基质相近,较适合作为ANAMMOX工艺启动的接种污泥。反应器类型直接影响污泥固体停留时间(solid retention time,SRT)、水流上升流速等,进而影响AnAOB富集、工艺启动速度、工艺运行稳定性等;序批式反应器(sequencing batch reactor,SBR)、序批式生物膜反应器(sequencing batch biofilm reactor,SBBR)、膜生物反应器(membrane bioreactor,MBR)、生物滤池均可成功启动ANAMMOX工艺[5-7]。上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)反应器作为第2代厌氧反应器的杰出代表,具有较好的污泥持留能力和基质传质效果,可为AnAOB的生长提供良好的环境,其在ANAMMOX工艺运行中的优势已逐步显现。WANG等[8]将厌氧氨氧化颗粒污泥接种于UASB反应器(22 L),经过178 d启动及稳定运行,氮容积负荷(nitrogen loading rate,NLR)和氮去除负荷(nitrogen removal rate,NRR)可高达8.25 kg ·(m3·d)−1(以N计)和6.93 kg·(m3·d)−1(以N计)。
因此,本研究以厌氧消化污泥为接种污泥,以UASB反应器为反应装置启动ANAMMMOX工艺,研究了ANAMMOX-UASB反应器启动过程的生物特性,考察了ANAMMOX- UASB启动运行过程中的污泥表观形态、脱氢酶及胞外聚合物的变化,分析了启动过程中胞外聚合物结构、组成的特征,解析了功能菌群动态演替规律,以期探明ANAMMOX-UASB启动过程中的生物特性,为厌氧氨氧化工艺的快速启动与工程应用提供参考。
ANAMMOX-UASB反应器启动过程中的生物特性
Biological characteristics of ANAMMOX-UASB reactor during startup process
-
摘要: 以絮状厌氧消化污泥为接种污泥,经过250 d运行后成功启动了ANAMMOX-UASB反应器。结果表明:在启动过程中,絮体污泥逐渐颗粒化并以不规则状的红色颗粒污泥和褐色絮状污泥为主;脱氢酶活性由启动前的3 909.51 μg·(h·g)−1最终降至72.13 μg·(h·g)−1;EPS含量在启动过程中先降后升,EPS组成中主要为TB-EPS,占比由54.4%升至75.7%;启动过程中LB-EPS和TB-EPS中均以PN为主,且PN占比逐步增大,分别由初始的88.7%和89.5%增至99.6%和94.7%;启动过程中EPS的结构与组成均发生变化。ANAMMOX-UASB启动过程中微生物Chao1、ACE、Shannon和Simpson指数均先升后降,启动成功后微生物多样性和丰富度均降低。污泥中微生物的优势菌门为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)。浮霉菌门中Candidatus Anammoximicrobium丰度逐渐降低直至消失,而Candidatus Brocadia丰度最终增至12.15%。Abstract: The ANAMMOX-UASB reactor inoculated with flocculent anaerobic digestion sludge was successfully started up after 250 days operation. During the full startup process, floc sludge was gradually granulated, and mainly consists of irregular red granular sludge and brown flocculent sludge. The activity of dehydrogenase decreased from 3 909.51 μg·(h·g)−1 to 72.13 μg·(h·g)−1 during the entire startup process. Furthermore, the EPS content declined initially and then increased, and TB-EPS proportion increased from 54.4% to 75.7%, which was the main constituent of EPS. Meanwhile, PN was also the main component in both LB-EPS and TB-EPS, and the proportion of PN increased gradually from 88.7% and 89.5% to 99.6% and 94.7%, respectively. During the startup of ANAMMOX-UASB, both the composition and structure of EPS changed, the indexes of Chao1, ACE, Shannon and Simpson increased firstly and then declined, and the microbial diversity and richness decreased after successful startup. The dominant phyla of microorganisms were Proteobacteria, Chloroflexi, Firmicutes, Bacteroidetes and Planctomycetes. The abundance of Candidatus anammoximicrobium decreased gradually and vanished eventually, while the abundance of Candidatus brocadia increased ultimately to 12.15%.
-
Key words:
- anammox /
- UASB /
- dehydrogenase /
- extracellular polymeric substance /
- microbial community
-
表 1 ANAMMOX-UASB启动过程中各阶段运行情况
Table 1. Performance of each stage during ANAMMOX-UASB startup process
阶段 运行时间/d HRT/h 进水N质量浓度/(mg·L−1) 出水N质量浓度/(mg·L−1) TN去除率/% $ {\rm{N}}{{\rm{H}}_4^ +}{\text{-N}} $ $ {\rm{N}}{{\rm{O}}_2^ -} {\text{-N}}$ $ {\rm{N}}{{\rm{H}}_4^ +} {\text{-N}}$ $ {\rm{N}}{{\rm{O}}_2^ -}{\text{-N}}$ $ {\rm{N}}{{\rm{O}}_3^ -}{\text{-N}}$ Ⅰ 1~13 24 50 50 152.36±85.15 1.22±1.16 4.07±1.76 −57.65±84.85 Ⅱ 14~53 24 50 50 4.68±7.92 7.91±6.31 3.4±1.73 84.19±10.6 Ⅲ 54~123 24 50~300 50~300 0.17±0.40 0.37±0.42 14.71±18.2 96.6±2.75 Ⅳ 124~160 24~12 300 300 1.86±2.62 0.83±0.77 56.21±0.77 90.18±2.49 Ⅴ 161~250 12~6 300 300 8.55±7.24 3.22±2.02 67.54±6.9 86.78±1.72 表 2 ANAMMOX-UASB启动过程中LB-EPS和TB-EPS的荧光光谱参数
Table 2. Fluorescence spectral parameters of LB-EPS and TB-EPS during startup process of ANAMMOX-UASB
样品 时间/d 峰A 峰B 峰C 峰D 峰E Ex/Em 强度 Ex/Em 强度 Ex/Em 强度 Ex/Em 强度 Ex/Em 强度 LB 0 225/330 274.5 275/335 175.1 — — — — — — 53 225/330 193.4 275/335 136.2 — — — — — — 123 220/335 51.0 260/340 65.3 — — — — — — TB 0 220/330 176.5 275/335 109.0 — — — — — — 53 220/340 296.4 275/340 210.0 — — 220/310 260.0 — — 123 220/330 47.7 — — 270/300 48.0 220/310 47.8 270/425 15.3 表 3 ANAMMOX-UASB启动过程中微生物多样性和丰富度
Table 3. Microbial diversity and abundance during startup process of ANAMMOX-UASB
时间/d Chao1 ACE Shannon Simpson 覆盖率/% 0 594.16 583.74 5.19 0.92 99.5 53 695.08 682.31 6.06 0.96 99.5 123 343.23 328.19 4.78 0.90 99.8 250 351.00 312.34 4.43 0.87 99.7 -
[1] MENG F, SU G, HU Y, et al. Improving nitrogen removal in an ANAMMOX reactor using a permeable reactive biobarrier[J]. Water Research, 2014, 58: 82-91. doi: 10.1016/j.watres.2014.03.049 [2] ABMA W R, SCHULTZ C E, MULDER J W, et al. Full-scale granular sludge ANAMMOX process[J]. Water Science and Technology, 2007, 55(8/9): 27-33. [3] 沈耀, 陈重军, 张海芹, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学, 2016, 37(7): 2652-2658. [4] 陈文静, 陈圣东, 梁佳茵, 等. Anammox脱氮工艺启动研究进展[J]. 环境科学与技术, 2019, 42(11): 130-140. [5] 徐师, 张大超, 肖隆文, 等. 厌氧氨氧化反应快速启动方法的研究进展[J]. 环境工程, 2018, 36(6): 18-21. [6] 吕玮, 张立秋, 黄奕亮, 等. 常温低基质下两种厌氧氨氧化反应器启动特性比较[J]. 中国给水排水, 2019, 35(3): 31-37. [7] GAO F, ZHANG H, YANG F, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49(11): 1970-1978. doi: 10.1016/j.procbio.2014.07.019 [8] WANG Y, HU X, JIANG B, et al. Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor[J]. Environmental Science and Pollution Research, 2016, 23(8): 7615-7626. doi: 10.1007/s11356-015-6016-z [9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [10] 朱南文, 闺航, 陈美慈, 等. TTC-脱氢酶测定方法的探讨[J]. 中国沼气, 1996, 14(2): 3-5. [11] WANG Z, GAO M, WANG Z, et al. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J]. Chemosphere, 2013, 93(11): 2789-2795. doi: 10.1016/j.chemosphere.2013.09.038 [12] HOU J, MIAO L, WANG C, et al. Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs[J]. Bioresource Technology, 2015, 176: 65-70. doi: 10.1016/j.biortech.2014.11.020 [13] FRØLUND B B K. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 8(30): 1749-1758. [14] 杨明明, 刘子涵, 周杨, 等. 厌氧氨氧化颗粒污泥EPS及其对污泥表面特性的影响[J]. 环境科学, 2019, 40(5): 2341-2348. [15] 彭广生, 陆燕青, 曾鸿鹄, 等. 人工湿地β-六六六去除效果及细菌群落特征分析[J]. 水处理技术, 2020, 46(8): 34-38. [16] 朱晓桐, 于冰洁, 林久淑, 等. ANAMMOX-UASB反应器启动特性[J]. 环境科学与技术, 2020, 43(12): 143-150. [17] 郑平, 许冬冬, 康达, 等. 厌氧氨氧化颗粒污泥研究进展[J]. 微生物学通报, 2019, 46(8): 1988-1995. [18] BORAN K, JAN T K. Anammox biochemistry: A tale of heme c proteins[J]. Trends in Biochemical Science, 2016, 41(12): 998-1011. doi: 10.1016/j.tibs.2016.08.015 [19] LIN Q, KANG D, ZHANG M, et al. The performance of anammox reactor during start-up: Enzymes tell the story[J]. Process Safety and Environmental Protection, 2019, 121: 247-253. doi: 10.1016/j.psep.2018.10.029 [20] KIM S, PARK J, CHO Y, et al. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions[J]. Bioresource Technology, 2013, 144: 8-13. doi: 10.1016/j.biortech.2013.06.068 [21] CHEN H, HU H, CHEN Q, et al. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology, 2016, 211: 594-602. doi: 10.1016/j.biortech.2016.03.139 [22] 杨敏, 胡学伟, 宁平, 等. 废水生物处理中胞外聚合物(EPS)的研究进展[J]. 工业水处理, 2011, 31(7): 7-12. doi: 10.3969/j.issn.1005-829X.2011.07.002 [23] GUO J, WANG S, LIAN J, et al. Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria[J]. Bioresource Technology, 2016, 220: 641-646. doi: 10.1016/j.biortech.2016.08.084 [24] MA B, LI Z, WANG S, et al. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge[J]. Environmental Pollution, 2019, 251: 81-89. doi: 10.1016/j.envpol.2019.04.094 [25] DONG J, ZHANG Z, YU Z, et al. Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater[J]. Chemical Engineering Journal, 2017, 330: 596-604. doi: 10.1016/j.cej.2017.07.174 [26] ZHU L, QI H, LV M, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059 [27] 王子超. 盐度和重金属对序批式生物反应器性能及微生物群落结构影响的研究[D]. 青岛: 中国海洋大学, 2014. [28] 何承兴, 储昭瑞, 谭炳琰, 等. 厌氧氨氧化SBBR启动过程中菌群演替分析[J]. 水处理技术, 2019, 45(7): 93-96. [29] 杨瑞丽, 王晓君, 吴俊斌, 等. 厌氧氨氧化工艺快速启动策略及其微生物特性[J]. 环境工程学报, 2018, 12(12): 3341-3350. [30] 宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057-5065. [31] 曹雁, 王桐屿, 秦玉洁, 等. 厌氧氨氧化反应器脱氮性能及细菌群落多样性分析[J]. 环境科学, 2017, 38(4): 1544-1550. [32] 杨开亮, 廖德祥, 王莹, 等. 厌氧氨氧化快速启动及微生物群落演替研究[J]. 水处理技术, 2020, 46(5): 65-70. [33] 沈耀良, 张海芹, 王翻翻, 等. 不同接种污泥ABR厌氧氨氧化的启动特征[J]. 环境科学, 2015, 36(6): 2216-2221. [34] CHEN C, HUANG X, LEI C, et al. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment[J]. Bioresource Technology, 2013, 148: 172-179. doi: 10.1016/j.biortech.2013.08.132 [35] MIAO Y, LIAO R, ZHANG X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042 [36] 朱彤, 贾若坦, 梁启煜, 等. 厌氧氨氧化反应器运行过程微生物群落演替分析[J]. 东北大学学报(自然科学版), 2018, 39(5): 693-698. doi: 10.12068/j.issn.1005-3026.2018.05.018 [37] VAN DER STAR W R L, MICLEA A I, VAN DONGEN U G J M, et al. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering, 2008, 101(2): 286-294. doi: 10.1002/bit.21891 [38] VAN DE VOSSENBERG J, RATTRAY J E, GEERTS W, et al. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production[J]. Environmental Microbiology, 2008, 10(11): 3120-3129. doi: 10.1111/j.1462-2920.2008.01643.x