垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展

蒋旭光, 段茵, 吕国钧, 龙凌, 邱琪丽, 赵奕萌. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098
引用本文: 蒋旭光, 段茵, 吕国钧, 龙凌, 邱琪丽, 赵奕萌. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098
JIANG Xuguang, DUAN Yin, LYU Guojun, LONG Ling, QIU Qili, ZHAO Yimeng. Research progress on the mechanism and systematic evaluation methods of solidification and stabilization of heavy metals in municipal solid waste incineration fly ash[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098
Citation: JIANG Xuguang, DUAN Yin, LYU Guojun, LONG Ling, QIU Qili, ZHAO Yimeng. Research progress on the mechanism and systematic evaluation methods of solidification and stabilization of heavy metals in municipal solid waste incineration fly ash[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098

垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展

    作者简介: 蒋旭光(1965—),男,博士,教授,jiangxg@zju.edu.cn
    通讯作者: 蒋旭光(1965—),男,博士,教授,jiangxg@zju.edu.cn
  • 基金项目:
    国家重点研发计划(2018YFC1901302,2018YFF0215001);国家自然科学基金创新群体(51621005);江苏省自然科学基金资助项目(BK20201032);中国电力建设集团有限公司科技项目(DJ-PTZX-2018-01)
  • 中图分类号: X705

Research progress on the mechanism and systematic evaluation methods of solidification and stabilization of heavy metals in municipal solid waste incineration fly ash

    Corresponding author: JIANG Xuguang, jiangxg@zju.edu.cn
  • 摘要: 垃圾焚烧飞灰中的重金属是必须处理的环境污染物。目前,对于垃圾焚烧飞灰的固化稳定化处理已经有了大量的实验研究。但是,不同地区垃圾焚烧厂产生的飞灰中,重金属含量和形态大不相同,故相应的飞灰仍然难以实现大规模、普适性的处理。在查阅文献及实际调研的基础上,系统总结了垃圾焚烧飞灰中重金属的存在形态与浸出特性;通过对重金属固化稳定机理的分析,指出了垃圾焚烧飞灰固化材料和稳定剂选择的方向。此外,还计算了不同的固化剂与稳定剂对不同重金属的固化率,发现材料复配的方式对多种重金属的稳定效果较好。最后,比较了不同评价方法在垃圾焚烧飞灰固化系统选择中的应用效果,指出综合评价方法是目前相对较完善、系统的方法,在工程实际中具有广阔的应用前景。
  • 石油开采、运输、炼制及含油污水处理过程中会产生大量的含油固废。根据国务院发布的《全国土壤污染状况调查公报》[1],在已调查的13个采油区的494个土壤点位中,超标点位占23.6%,主要污染物为石油烃和多环芳烃。据统计,我国每年新增含油污泥约5×106 t,但含油污泥的实际处置率却不到20%;同时,存量含油污泥规模已超1.59×108 t [2]。大量的含油固体废物未能及时处理而随意堆放或掩埋,不仅会占用大量土地资源,而且会对周围的土壤、水体和空气都造成污染。因此,对含油固废进行无害化处置十分必要和迫切。

    传统的含油固废处理技术主要包括溶剂萃取法、调质分离法、热洗涤法、焚烧法、热脱附法以及生物处理法等[3-7]。其中,溶剂萃取法萃取剂用量大,处理成本高,存在溶剂损耗问题;调质分离法占地面积大、处理效果受含油固废来源影响大;热洗涤法主要适用于砂石为主的含油固废处理,且污水、污泥量大;焚烧法、热脱附法能耗高、设备投资高;而生物处理法处理周期长、菌种难以培养,对石油烃重度污染土壤/油泥适用性差,实际应用较少。以上技术中,处理后油泥只能用于油田井场内铺路等用途,普遍无法将污染介质处置到第一类建设用地标准。因此,迫切需要一种绿色节能、处理效果彻底的石油烃重度污染土壤/油泥处置技术。

    阴燃是自然界中广泛存在的缓慢无焰自持燃烧现象。爱丁堡大学的学者于2005年最先提出将其工程化应用于有机污染介质的治理[8];其技术原理是,利用热值较高的有机污染物为能源,通过向污染物料中注入空气,在低能状态下点燃引起污染物的自持燃烧,然后利用污染物自身的燃烧热能引发周边污染区域的持续燃烧,从而实现污染物的去除。与传统的含油固废处理技术相比,工程化阴燃技术具有处理能耗低、应用范围广、安全高效、处理灵活、可模块化设计等优点。

    根据处置场所的不同,工程化阴燃技术可分为原位和异位应用。目前,国外在实验室研究[9-14]的基础上已就原位和异位[15-17]阴燃分别开展了中试甚至大规模污染场地修复实验;而国内对工程化阴燃技术的研究大多还处于对技术可行性、影响因素及燃烧过程探究的实验室研究阶段[18-22],鲜有中试规模的实验研究报道。本研究采用异位阴燃设备分别对石油烃重度污染土壤和含油污泥进行了中试实验,以研究该技术应用于含油固废处理领域的适用性;同时,探索该技术用于大规模修复工程的运行效果和运行参数。

    中试实验1在代号为T1的基础油和润滑油调配厂进行,该厂自2015年起已停止运营。实验对象为场地内3处不同区域的石油烃污染土壤,具体特性见表1

    表 1  中试实验1石油烃污染土壤特性
    Table 1.  Characteristics of petroleum hydrocarbon-contaminated soil of pilot study 1
    污染土壤来源土壤质地污染土壤与地下水位埋深情况石油烃质量分数/( mg·kg−1)污染的石油类型
    基础油厂区粉砂污染土壤位于地表以下5.5~6.0 m(地下水位以下)6 880~12 844Ⅰ类基础油
    油罐区砾砂地面堆土2 759成品润滑油
    润滑油调配厂区粉土污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m)4 146基础油及成品润滑油
     | Show Table
    DownLoad: CSV

    中试实验2在代号为T2的油田油泥处置场进行。实验对象为场地内4处不同区域的油泥,油泥特性如表2所示。实验中加入介质对油泥进行掺混预处理,介质特性见表3

    表 2  中试实验2油泥特性
    Table 2.  Characteristics of oil sludge of pilot study 2
    供试物料含水率/%石油烃质量分数/(mg·kg−1)
    #1罐底泥20.9159 660
    #2罐底泥21.0123 583
    #1池底泥35.0138 500
    #2池底泥32.880 340
     | Show Table
    DownLoad: CSV
    表 3  中试实验2掺混介质特性
    Table 3.  Characteristics of blending medium of pilot study 2
    供试介质性状含水率/%石油烃质量分数/(mg·kg−1)
    石英砂 0.8~2 mm颗粒 0 0
    粉土 粉状 20~50 0
    修复土 粉状 0~0.2 7~99
     | Show Table
    DownLoad: CSV

    阴燃中试装置由预处理系统、阴燃反应器、空气注入系统、尾气处理系统以及电气控制系统5部分组成(图1图2)。阴燃反应在阴燃反应器中进行,反应器共2台,每台长1.6 m、宽1.6 m、高1.4 m。反应器主要由底部的气室、气室与堆料室之间的支撑格栅、中部的堆料室和顶部的集气罩构成。气室中部设有DN50空气注入管,其两侧分别均布3支U型电加热管。鼓风机连接空气注入管同时给2台反应器供气,同时,2台反应器的集气罩都与气液分离器、活性炭(GAC)罐、引风机、排气筒组成的尾气处理系统相连,以便当其中1套设备装卸料时,另1套设备仍能运行。

    图 1  阴燃中试工艺流程图
    Figure 1.  Process diagram of smoldering pilot study
    图 2  阴燃中试设备图
    Figure 2.  Pilot smoldering equipment

    鼓风机和集气罩出气管路上均设置在线流量计、压力表,用于监测每个反应器的进、出气风量和压力。活性炭罐前后设取样口,用于尾气中CO、VOCs、H2S体积分数和尾气成分的检测。阴燃反应前后分别对实验物料采样,送第三方实验室检测石油烃质量分数。

    阴燃实验前,先对原料进行预处理,将原料与掺混介质按设计比例在搅拌机中搅拌至目测均匀后,从反应器上部投加到堆料室中,至物料堆高达40 cm,再在上面覆盖20 cm干净土壤用于抑制表面明火。加料完成后,在距离反应器四角30 cm×30 cm的4点及反应器正中点位(编号A、B、C、D、E)各安装1支集束热电偶(每支对自下而上0、5、15、30、50 cm料层处点位进行测温),将信号接入温场采集器。盖上集气罩,启动鼓、引风机并调节风量,开启电加热器;当数据显示阴燃启动后,关闭电加热器,保持空气持续输入以维持阴燃继续进行,反应过程产生的尾气经尾气处理系统处理后排放;反应结束并冷却后打开集气罩进行卸料。

    中试实验1以T1场地内石油烃污染土壤为对象,研究不同来源石油烃污染土壤、达西空气通量对阴燃启动、燃烧锋面推进,以及污染土壤中石油烃去除率的的影响。针对部分未能实现自持阴燃的污染土壤添加辅助燃料-芥花油(化学成分主要为不饱和脂肪酸),以研究添加植物油对于此类物料维持阴燃反应的可行性。具体实验方案见表4

    表 4  中试实验1实验方案
    Table 4.  Experimental plan of pilot study 1
    编号污染土来源土壤质地污染土添加量/m3芥花油添加量/L预热阶段达西空气通量*/(cm·s−1)阴燃阶段达西空气通量/(cm·s−1)
    T1-1基础油厂区粉砂1.0200.87~1.090.98~1.09
    T1-2基础油厂区粉砂1.0200.18~0.220.43~1.09
    T1-3基础油厂区粉砂1.02200.18~0.220.33~0.65
    T1-4油罐区砾砂1.0200.18~0.220.38~0.43
    T1-5润滑油调配厂区粉土1.0200.18~0.370.18~0.65
      注:*达西空气通量是指垂直于气流方向的单位横截面积上的空气量,cm·s−1
     | Show Table
    DownLoad: CSV

    中试实验2以T2场地内不同来源油泥为对象,研究不同掺混介质(石英砂、粉土、修复土)、掺混比,以及达西空气通量对阴燃启动、燃烧锋面推进速度,以及油泥中石油烃去除率的影响。具体实验方案见表5

    表 5  中试实验2实验方案
    Table 5.  Experimental plan of pilot study 2
    编号油泥来源掺混介质油泥∶掺混介质(体积比)预热阶段达西空气通量/(cm·s−1)阴燃阶段达西空气通量*/(cm·s−1)
    T2−1#1池底泥石英砂1∶130.18~0.540.54~0.98
    T2−2#1池底泥粉土1∶130.18~0.330.65
    T2−3#1池底泥修复土**1∶60.18~0.270.22~0.43
    T2−4#1罐底泥修复土1∶80.180.49~0.81
    T2−5#2池底泥修复土1∶40.180.22~1.09
    T2−6#2罐底泥修复土3∶40.18~0.330.43~1.30
    T2−7#2池底泥修复土1∶20.18~0.380.45~1.30
      注∶*达西空气通量是指垂直于气流方向的单位横截面积上的空气量(单位∶cm·s−1);**修复土是指阴燃治理后的实验物料(掺混石英砂批次的除外),用于后一批次阴燃反应掺料。
     | Show Table
    DownLoad: CSV

    1)尾气分析。CO体积分数监测采用便携式CO检测仪(DX80,南京百世安安全设备有限公司);VOCs体积分数监测采用Mini RAE3000 VOC检测仪(PGM-7320,南京凯辉荣电子科技有限公司);H2S体积分数监测采用便携式四合一气体检测仪(PGM-2400,南京硕控自动化科技有限公司)。

    2)含油固废中石油烃质量分数分析。中试实验1依据《土壤中总石油烃碳氢化合物检测方法-气相层析仪/火焰离子化侦测器法》(NIEA S703.62B)[23];中试实验2依据《城市污水处理厂污泥检验方法》(CJ/T 221-2005)[24]

    3)阴燃推进速度表征。阴燃推进速度的快慢采用燃烧锋面自持蔓延速率表征,计算方法见式(1);含油固废中石油烃去除率计算方法见式(2)。

    燃烧锋面自持蔓延速率(md1)=相邻热电偶间距相邻热电偶到达燃烧封面所用时间差 (1)
    石油烃去除率(%)=(阴燃处理前物料石油烃质量分数-阴燃处理后物料石油烃质量分数)阴燃处理前石油烃质量分数×100% (2)

    以处理含油污泥的中试2第1批次实验T2−1为例,对阴燃启动的界定及燃烧锋面自持推进过程进行了分析。阴燃启动与否可结合料层温升及尾气浓度两方面综合判断,而判断燃烧锋面是否自持推进,则应观察外部供能停止后,沿阴燃推进方向的后续料层的温度是否相继出现相近的峰值。由实验T2−1阴燃温度曲线(图3)可看出,当电加热300 min时,热电偶数据显示,0 cm 料层越过峰值温度,5 cm料层温度快速上升至400 ℃[25]。结合尾气中CO、CO2浓度增加,判断阴燃已启动,此时关闭电加热器。在继续通入空气情况下,观察到3、4层阴燃峰值温度相继出现,反应最高温度达520 ℃,证明此时阴燃反应已实现自持推进。经计算,T2−1的燃烧锋面自持蔓延速率为2.67 m·d−1

    图 3  T2−1实验阴燃温度曲线图
    Figure 3.  Temperature profile of T2−1

    为直观体现燃烧锋面的推进过程,对实验T2−1阴燃过程中集束热电偶A、B、C、D、E的温度场分别进行了表征。由图4可看出,各热电偶自0 cm推进至最高料层的过程中均经历了预热升温、阴燃反应和降温3个阶段,但各点位的阴燃时长和燃烧锋面自持蔓延速率不一。这主要应与各热电偶处的污染物种类、浓度、空气流量和压力以及渗透性等因素有关[10,12]。此外,可观察到,阴燃反应主要发生在0~40 cm料层,50 cm料层并未发生阴燃(<400 ℃)。这是因为,50 cm料层为覆盖净土,无有机污染物,当燃烧锋面从40 cm扩散至50 cm时,阴燃反应逐渐终止。50 cm料层温升主要是由下部料层阴燃放热通过热传导、热辐射和热对流作用导致的。

    图 4  T2-1实验各热电偶温场分布图
    Figure 4.  Temperature distribution of thermometers of T2−1

    表6为中试实验2的阴燃结果。7次实验均成功启动及自持推进。其中,阴燃启动用时最短为3 h,峰值温度最高达990 ℃,石英砂预处理组阴燃自持蔓延速率最高,为2.67 m·d−1,掺料为土的其余各批次阴燃平均自持蔓延速率为0.60 m·d−1

    表 6  中试实验2阴燃结果
    Table 6.  Smoldering results of pilot study 2
    编号油泥掺混介质油泥∶掺混介质(体积比)阴燃前(混合后)石油烃质量分数/(mg·kg−1)阴燃残渣中石油烃质量分数/(mg·kg−1)启动/自持时长/h峰值温度/℃燃烧锋面自持蔓延速率/(m·d−1)
    T2−1 #1池底泥 石英砂 1∶13 3 360 7 5/21 520 2.67
    T2−2 #1池底泥 粉土 1∶13 7 830 7 7/26 549 0.99
    T2−3 #1池底泥 修复土 1∶6 13 000 32 7/72 814 0.51
    T2−4 #1罐底泥 修复土 1∶8 5 510 22 11/43 520 0.68
    T2−5 #2池底泥 修复土 1∶4 16 800 11 3/61 726 0.24
    T2−6 #2罐底泥 修复土 3∶4 30 600 93 4/86 858 0.6
    T2−7 #2池底泥 修复土 1∶2 25 300 99 6/60 900 0.64
      注∶为排除电加热及上部干净土层传热影响,燃烧锋面自持蔓延速率按5~30 cm料层温度数据计算。
     | Show Table
    DownLoad: CSV

    在中试1中,T1−1实验比对了不同达西空气通量对石油烃污染土壤阴燃反应的影响。如图5(a)所示,当初始达西空气通量维持在0.87~1.09 cm·s−1时,阴燃一直未启动;而将达西空气通量降低至0.25 cm·s−1后,反应温度短时快速上升达到峰值温度,阴燃迅速启动。由此可见,在阴燃启动阶段,空气通量不宜过高,否则会导致污染物燃烧所产生的热量被迅速带走,阴燃反应所释放的热量与热损失传热之间难以实现能量平衡[26-27]。在T1−1实验基础上,中试实验1后续批次及中试实验2各批次实验将初始达西空气通量维持在0.18 cm·s−1,适用的石油烃土壤及油泥均成功启动阴燃。与文献[16, 26]中提出的阴燃所需最低达西空气通量0.5 cm·s−1相比,本实验验证在更低的初始达西空气通量(0.18 cm·s−1)条件下也可成功启动阴燃。

    图 5  达西空气流量与阴燃反应温度曲线图
    Figure 5.  Temperature profile under different Darcy air flux

    T2−1实验中,当阴燃成功启动后,提高达西空气通量至0.97 cm·s−1,15、30 cm料层温升速率陡增,快速达到阴燃峰值温度(图5(b))。这说明,在一定污染物浓度下,阴燃启动后的燃烧锋面自持蔓延速率随达西空气通量的增大而增大。在该阶段,氧气的传输速率成为反应的决速步骤,增大达西空气通量将使氧含量增加,继而加快氧化反应,提升阴燃锋面的推进速率[26]。因此,通过调节空气通量可对反应进程进行有效控制。

    1)掺混介质物性对阴燃处理油泥的影响。中试2的T2−1、T2−2实验以#1池底泥为原料,在油泥与介质的体积比为1∶13、初始达西空气通量0.18 cm·s−1的条件下,分别对比了石英砂、粉土为掺混介质的阴燃处理效果。根据表6中所列T2−1、T2−2实验结果,采用石英砂作为掺混介质比采用粉土作为掺混介质阴燃启动用时更短(5 h<7 h),燃烧锋面自持蔓延速率更快(2.67 m·d−1>0.99 m·d−1)。这可能与石英砂2个方面的性质有关∶1)石英砂的导热性能更好(石英砂导热率10 W·m−1K−1>粉土导热率 1.67 W·m−1K−1),有利于在阴燃自持蔓延方向混合物料的传热;2)石英砂的加入有利于分散油泥,改善混合物料的渗透性,有利于阴燃反应所需氧气与油泥的更好接触。此外,添加的粉土具有一定含水率,预热阶段粉土中的水分蒸发,可带走阴燃反应部分能量,导致掺混粉土的T2−2实验温升较慢,达到阴燃启动所需温度用时更长,阴燃速率更慢[28]

    值得注意的是,T2−1实验物料的石油烃质量分数和阴燃峰值温度均较T2−2实验低,但仍能实现阴燃更快启动和推进。在对阴燃启动和推进的影响上,掺混介质本身的导热性及对物料渗透性的改善作用似乎比石油烃质量分数更重要。

    2)介质掺混比例对阴燃处理油泥的影响。中试2的T2−5、T2−7实验分别以#2池底泥为实验对象,以修复土为掺混介质,考察了油泥与介质不同掺混比下的阴燃处理效果。根据表6,实验T2−7(油泥与介质的体积比为1∶2)比T2−5(油泥与介质的体积比为1∶4)阴燃自持蔓延速率更快(0.64 m·d−1 >0.24 m·d−1)。这是因为,对于修复土这类自身渗透性一般的掺混介质,随着掺混比例的提高,混合物料中石油烃质量分数下降,阴燃自持蔓延速率也随之降低。

    以石英砂为掺混介质的阴燃启动和燃烧锋面自持蔓延速率最快,但石英砂成本相对较高。综合上述各实验结果,从降低运行成本和提高阴燃处理效率的角度考虑,1∶2的油泥与修复土体积比更适于工程化应用。

    采用石油烃去除率对含油固废的阴燃处理效果进行了表征。由表7可看出,中试实验1中成功阴燃的各批次实验(含添加芥花油批次),阴燃前污染土壤石油烃质量分数在2 759~8 301 mg·kg−1,阴燃后残渣石油烃质量分数均未检出;以检出限32.7 mg·kg−1计算,阴燃处理后石油烃去除率大于99.6%。由图6 (石油烃质量分数以对数形式表示)可看出,中试实验2中,不同污染来源、反应前石油烃质量分数在3 360~30 600 mg·kg−1的油泥,阴燃后石油烃去除率均在99.5%以上。阴燃残渣的石油烃质量分数最低达7 mg·kg−1,远低于《含油污泥处理利用控制限值》(DB61/T 1025-2016)[29]中的利用控制限值(≤10 000 mg·kg−1)及《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)[30]中第一类用地筛选值(826 mg·kg−1)。图7是T1−3实验阴燃处理前后物料图,可看出,阴燃处理后实验物料明显比实验前干燥和分散。

    表 7  中试实验1阴燃结果
    Table 7.  Smoldering results of pilot study 1
    编号污染土来源污染土壤与地下水位埋深情况芥花油添加量/L阴燃前石油烃质量分数(掺混后)/( mg·kg−1)阴燃残渣中石油烃质量分数/( mg·kg−1)启动/自持时长/h峰值温度/℃自持阴燃
    T1−1基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)012 84456.8/0
    T1−2基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)09 62125.2/0
    T1−3基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)208 301ND*22.5/10.7665
    T1−4油罐区地面堆土02 759ND7.9/23.5528
    T1−5润滑油调配厂区污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m)04 146ND15.8/10.7551
      注:*ND表示未检出。
     | Show Table
    DownLoad: CSV
    图 6  中试2阴燃前后物料石油烃质量分数及去除率图
    Figure 6.  Petroleum hydrocarbon concentration and removal rate of pilot study 2 before and after smoldering
    图 7  T1−3实验阴燃反应前(左)、后(右)物料图
    Figure 7.  Material of T1−3 before and after smoldering

    尾气监测及分析结果显示,阴燃尾气中主要存在CO2、H2O等典型氧化反应气体,NOx、VOCs、SO2、H2S等有害气体组分以及CO、CH4等轻烃组分。尾气中CO、VOCs组分浓度随阴燃反应进程存在较大波动性,但总体表现出随阴燃反应温度升高而浓度增大的特性。由图8可看出,在前期料层接近阴燃峰值温度时,CO、VOCs组分浓度也达到最大值,CO组分甚至会短时超出《危险废物焚烧污染控制标准》(GB 18484-2020)[31]排放限值。这是因为,在阴燃启动初期,物料整体渗透性较低,且进风量较小,导致局部燃烧不完全[28],生成这类气体。尽管如此,峰值温度时CO/CO2比值普遍在0.10~0.35,这表明阴燃仍然以燃烧更为彻底的氧化反应为主。

    图 8  T2−3实验中CO、VOCs浓度与达西空气通量、反应温度对照图
    Figure 8.  CO &VOCs concentrations versus air flux & reaction temperature of T2−3

    对比活性炭(GAC)罐吸附前后的CO、VOCs体积分数可知,GAC对CO无明显处理效果,对VOCs的处理效果则不尽相同,中试实验1中VOCs经吸附处理后体积分数降低,但中试实验2中VOCs经吸附后体积分数降幅不明显。这应与尾气中的VOCs组分差异及GAC的吸附特性有关。一般来说,分子量较大的非极性或低极性分子能更容易被GAC吸附。因此,基于阴燃尾气特性,尾气处理措施还有待完善。

    中试1 研究了阴燃技术对于T1场地内3类不同来源(基础油厂区、油罐区、润滑油调配厂区)石油烃污染土壤的适用性。由表7可看出,T1−1、T1−2实验均以基础油厂区石油烃污染土壤实验对象,物料石油烃质量分数较高,分别为12 844、9 621 mg·kg−1,但阴燃均未自持进行;而T1−4和T1−5 实验分别以油罐区、润滑油调配厂区污染土壤为实验对象,物料石油烃质量分数较低,分别为2 759、4 146 mg·kg−1,却均成功自持阴燃,峰值温度分别达528、551 ℃,平均燃烧锋面自持蔓延速率分别为0.98、1.07 m·d−1。这是因为,基础油厂区污染土壤位于地下水位以下,含水率较高,因此,在阴燃最初的点火预热阶段水分蒸发用时较长,污染物I类基础油的蒸发损失大,在燃烧锋面到达之前挥发比例高[26],最终导致无法支持阴燃启动和/或自持蔓延。而油罐区污染土壤为地面堆土,润滑油调配厂区污染土壤大部分位于地下水位之上,两者含水率均不高,且污染组分主要为成品润滑油,挥发性较低,因此,阴燃能够启动及自持。

    对于未能阴燃自持的基础油区厂区污染土壤,T1−3实验添加辅助燃料-芥花油对阴燃过程进行了重新考察。加入20 L芥花油后,石油烃质量分数为8 301 mg·kg−1,低于未添加芥花油的T1−1、T1−2实验,但阴燃却得以自持,自持蔓延速率为1.07 m·d−1。这是因为,加入芥花油后,芥花油燃烧产热成为主要热源,可支持阴燃反应的自持推进[26]。使用辅助燃料的目的就是使工程化阴燃技术也可以应用到自身无法自持阴燃的固废物料上,使物料中的目标污染物得到协同去除。有研究者指出,自持阴燃反应适用于如煤焦油、木馏油等低挥发性污染物的处理[32];对于汽油类有机物和氯代溶剂类挥发性污染物,也有加入植物油成功维持阴燃的报道[33]。这些与本实验观测到的现象都是一致的。

    1)含油固废的含水率及挥发性可影响阴燃启动及自持推进。高含水率、挥发性高的含油固废难以启动及维持自持阴燃修复,但通过添加辅助燃料可实现工程化阴燃技术的成功应用。阴燃启动阶段宜采用较低空气通量,启动后增大达西空气通量有助于提升燃烧锋面推进速度。

    2)工程化阴燃技术治理含油固废,石油烃去除率可达99.5%以上,含油量最低为7 mg·kg−1或未检出,远低于第一类建设用地标准。

    3)不同的掺混介质及掺混比例对阴燃反应的启动用时和阴燃自持蔓延速率有较大影响。以石英砂为掺料,阴燃启动用时最短,阴燃蔓延速率最快;1∶2的油泥/修复土掺比更利于工程化应用需求。

  • 图 1  近10年中国飞灰产生量

    Figure 1.  China’s fly ash production in the past ten years

    图 2  不同重金属的浸出浓度与浸出液pH的关系

    Figure 2.  Relationship between the leaching concentration of different heavy metals and the pH of the leaching solution

    图 3  飞灰固化系统的层次分析法结构模型

    Figure 3.  Structural model of fly ash solidification system based on Analytic Hierarchy Process

    表 1  MSWI飞灰中主要重金属的化合物分布

    Table 1.  Distribution of major heavy metals in MSWI fly ash

    重金属赋存形态
    PbPbPbSO4PbCO3PbSiO3PbOPbCl2
    CrCr2O3CrO3CrCl3Cr2SO4CrO2Cl2ZnCr2O4
    NiNiNiO
    CdCdCdCl2CdOCd(OH)2CdSO4
    ZnZnCl2ZnO2ZnCO33Zn(OH)2ZnSO47H2OZnCr2O4
    CuCuCl2CuClCuOCuCO3Cu(OH)2
    重金属赋存形态
    PbPbPbSO4PbCO3PbSiO3PbOPbCl2
    CrCr2O3CrO3CrCl3Cr2SO4CrO2Cl2ZnCr2O4
    NiNiNiO
    CdCdCdCl2CdOCd(OH)2CdSO4
    ZnZnCl2ZnO2ZnCO33Zn(OH)2ZnSO47H2OZnCr2O4
    CuCuCl2CuClCuOCuCO3Cu(OH)2
    下载: 导出CSV

    表 2  不同固化剂对不同重金属的固化率

    Table 2.  Ratios of heavy metals stabilized by different curing materials

    固化剂飞灰质量分数/%固化率/%来源
    ZnPbCuCdCrHg
    硅酸盐水泥4368.485.257.557.889.4[40]
    粉煤灰3299.996.299.999.763.3[41]
    偏高岭土4099.899.982.9065.285.0[24]
    赤泥5087.69997.40[42]
    赤泥、煤矸石5096.310097.594.3[43]
    脱硫石膏、矿渣2099.9399.985.999.593.196.0[44]
    硅酸盐水泥、硅灰9097.698.410071.7[45]
    氧化镁、硅灰7098.799.897.5[46]
      注: “—”表示因该文章所用飞灰的某种重金属满足标准,所以未给出固化后的数据。
    固化剂飞灰质量分数/%固化率/%来源
    ZnPbCuCdCrHg
    硅酸盐水泥4368.485.257.557.889.4[40]
    粉煤灰3299.996.299.999.763.3[41]
    偏高岭土4099.899.982.9065.285.0[24]
    赤泥5087.69997.40[42]
    赤泥、煤矸石5096.310097.594.3[43]
    脱硫石膏、矿渣2099.9399.985.999.593.196.0[44]
    硅酸盐水泥、硅灰9097.698.410071.7[45]
    氧化镁、硅灰7098.799.897.5[46]
      注: “—”表示因该文章所用飞灰的某种重金属满足标准,所以未给出固化后的数据。
    下载: 导出CSV

    表 3  不同稳定剂对不同重金属的固化率

    Table 3.  Ratios of heavy metals stabilized by different agents

    稳定剂类型稳定剂名称药剂质量分数/%固化率/%来源
    PbCdNiCr
    无机稳定剂磷酸二氢钠481.534.711.8[47]
    磷酸氢二钠455.927.42.9[47]
    磷酸三钠452.147.40[47]
    重过磷酸钙559.142.953.2[37]
    磷酸5813377[48]
    有机稳定剂DTC(二乙基二硫代氨基甲酸盐)35286.8[30]
    (TATEL)木质素基三氨基三乙胺盐类289.690.7[30]
    哌嗪二硫代氨基甲酸酯492.998.9100[47]
    DDTC(N,N-二乙基二硫代氨基甲酸钠)11009799[48]
    二硫代酸官能化聚氨基酰胺树枝状聚合物399.298.5[49]
    XD-31有机螯合剂190.995.3[50]
    二硫代氨基甲酸酯291.610080[51]
    复合稳定剂磷酸氢二钠+DTC盐7+2.589.969.8[30]
    磷酸二氢钠+哌嗪二硫代氨基甲酸酯2+18991.6100[47]
    重过磷酸钙+二硫代氨基甲酸型有机螯合剂1+391.893.697.4[37]
      注: “—”表示因该文章所用飞灰的某种重金属满足标准,所以未给出固化后的数据。
    稳定剂类型稳定剂名称药剂质量分数/%固化率/%来源
    PbCdNiCr
    无机稳定剂磷酸二氢钠481.534.711.8[47]
    磷酸氢二钠455.927.42.9[47]
    磷酸三钠452.147.40[47]
    重过磷酸钙559.142.953.2[37]
    磷酸5813377[48]
    有机稳定剂DTC(二乙基二硫代氨基甲酸盐)35286.8[30]
    (TATEL)木质素基三氨基三乙胺盐类289.690.7[30]
    哌嗪二硫代氨基甲酸酯492.998.9100[47]
    DDTC(N,N-二乙基二硫代氨基甲酸钠)11009799[48]
    二硫代酸官能化聚氨基酰胺树枝状聚合物399.298.5[49]
    XD-31有机螯合剂190.995.3[50]
    二硫代氨基甲酸酯291.610080[51]
    复合稳定剂磷酸氢二钠+DTC盐7+2.589.969.8[30]
    磷酸二氢钠+哌嗪二硫代氨基甲酸酯2+18991.6100[47]
    重过磷酸钙+二硫代氨基甲酸型有机螯合剂1+391.893.697.4[37]
      注: “—”表示因该文章所用飞灰的某种重金属满足标准,所以未给出固化后的数据。
    下载: 导出CSV

    表 4  危险废物允许填埋的控制限值

    Table 4.  Limits of pollutants in hazardous wastes in landfill

    项目稳定化控制限值/(mg·L−1)项目稳定化控制限值/(mg·L−1)
    烷基汞不得检出总锌120
    总汞0.12总铍0.2
    总铅1.2总钡85
    总镉0.6总镍2
    总铬15总砷1.2
    六价铬6无机氟化物(不包括氟化钙)120
    总铜120氰化物(以CN计)6
    项目稳定化控制限值/(mg·L−1)项目稳定化控制限值/(mg·L−1)
    烷基汞不得检出总锌120
    总汞0.12总铍0.2
    总铅1.2总钡85
    总镉0.6总镍2
    总铬15总砷1.2
    六价铬6无机氟化物(不包括氟化钙)120
    总铜120氰化物(以CN计)6
    下载: 导出CSV

    表 5  生活垃圾填埋场中生活垃圾焚烧飞灰浸出液污染物浓度限值

    Table 5.  Concentration limits of pollutants in the leachate of domestic waste incineration fly ash in domestic waste landfills

    污染物项目浓度限值/(mg·L−1)污染物项目浓度限值/(mg·L−1)
    0.0525
    400.5
    1000.3
    0.25总铬4.5
    0.15六价铬1.5
    0.020.1
    污染物项目浓度限值/(mg·L−1)污染物项目浓度限值/(mg·L−1)
    0.0525
    400.5
    1000.3
    0.25总铬4.5
    0.15六价铬1.5
    0.020.1
    下载: 导出CSV
  • [1] 庞俊峰, 张建平, 秦淼, 等. 生活垃圾焚烧飞灰处置及资源化利用研究[J]. 节能与环保, 2020(10): 84-85. doi: 10.3969/j.issn.1009-539X.2020.10.035
    [2] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2010-2020.
    [3] 邱琪丽. 垃圾焚烧飞灰的微波水热法无害化处置及产物吸附性能研究[D]. 杭州: 浙江大学, 2019.
    [4] 傅垣洪. 重金属危废的固化处置工艺[J]. 山西化工, 2019, 39(3): 192-194.
    [5] 韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素的迁移转化规律及其影响因素[J]. 矿产综合利用, 2017(6): 5-9. doi: 10.3969/j.issn.1000-6532.2017.06.002
    [6] 刘元鹏. 垃圾焚烧飞灰重金属浸出特性及稳定化研究[D]. 泰安: 山东农业大学, 2012.
    [7] 陈清, 汪屈峰, 李艳, 等. 华南某垃圾焚烧厂焚烧飞灰理化特性及重金属形态研究[J]. 环境卫生工程, 2019, 27(4): 13-18. doi: 10.3969/j.issn.1005-8206.2019.04.003
    [8] 李朝辉. 垃圾焚烧飞灰中重金属的浸出特性及化学稳定研究[D]. 重庆: 重庆大学, 2017.
    [9] 李卫华. 固化/稳定化飞灰中重金属溶出行为及环境风险评估研究[D]. 青岛: 青岛理工大学, 2019.
    [10] 张帆. 垃圾焚烧飞灰中重金属的固化性能研究[D]. 南京: 南京师范大学, 2014.
    [11] 裘娜. 不同粒径城市垃圾焚烧飞灰中重金属形态分析[J]. 广州化工, 2012, 40(8): 143-145. doi: 10.3969/j.issn.1001-9677.2012.08.053
    [12] 孙杨雨, 焦春磊, 谭笑, 等. 生活垃圾焚烧飞灰中重金属的稳定化及其机理研究[J]. 中国科学:化学, 2016, 46(7): 716-724.
    [13] 刘国威. 垃圾焚烧飞灰的重金属化学稳定化研究[D]. 北京: 中国科学院大学(中国科学院广州地球化学研究所), 2018.
    [14] 常威. 生活垃圾焚烧飞灰的水洗及资源化研究[D]. 杭州: 浙江大学, 2016.
    [15] XIA Y, HE P, SHAO L, et al. Metal distribution characteristic of MSWI bottom ash in view of metal recovery[J]. Journal of Environmental Sciences, 2017, 52: 178-189. doi: 10.1016/j.jes.2016.04.016
    [16] 牟陈亚, 何亮, 李清毅, 等. 固化飞灰形状及填埋方式对重金属浸出的影响[J]. 中国环境科学, 2020, 40(4): 1601-1608. doi: 10.3969/j.issn.1000-6923.2020.04.027
    [17] LUO H, CHENG Y, HE D, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash[J]. Science of the Total Environment, 2019, 668: 90-103. doi: 10.1016/j.scitotenv.2019.03.004
    [18] ALLEGRINI E, BUTERA S, KOSSON D S, et al. Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection[J]. Waste Management, 2015, 38: 474-485. doi: 10.1016/j.wasman.2014.12.018
    [19] MIZUTANI S, YOSHIDA T, SAKAI S, et al. Release of metals from MSWI fly ash and availability in alkali condition[J]. Waste Management, 1996, 16(5): 537-544.
    [20] 赵友杰, 孙英杰, 范新秀, 等. 渗滤液浸沥下稳定化飞灰中重金属的浸出行为[J]. 中国环境科学, 2018, 38(4): 1411-1416.
    [21] JIAO F, ZHANG L, DONG Z, et al. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152: 108-115. doi: 10.1016/j.fuproc.2016.06.013
    [22] ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel, 2016, 184: 815-825. doi: 10.1016/j.fuel.2016.07.089
    [23] LONG L, JIANG X, LV G, et al. Characteristics of fly ash from waste-to-energy plants adopting grate-type or circulating fluidized bed incinerators: A comparative study[EB/OL]. Energy Sources: Part A, Recovery, Utilization, and Environmental Effects, 2020, 1-17 [2021-05-08].https://doi.org/10.1080/15567036.2020.1796851.
    [24] 金漫彤. 地聚合物固化生活垃圾焚烧飞灰中重金属的研究[D]. 南京: 南京理工大学, 2011.
    [25] 王晴, 王新锐, 游旭佳, 等. 飞灰基地聚合物固化重金属的研究现状与发展趋势[J]. 硅酸盐通报, 2020, 39(9): 2849-2857.
    [26] 蒋旭光, 陈钱, 赵晓利, 等. 水热法稳定垃圾焚烧飞灰中重金属研究进展[J]. 化工进展, 2021, 40(8): 4473-4485.
    [27] 刘文莉, 孙伟, 熊辉, 等. 针铁矿对垃圾焚烧飞灰中重金属离子的固化作用及机理分析[J]. 矿产保护与利用, 2018(6): 87-93.
    [28] 崔素萍, 兰明章, 张江, 等. 废弃物中重金属元素在水泥熟料形成过程中的作用及其固化机理[J]. 硅酸盐学报, 2004(10): 1264-1270. doi: 10.3321/j.issn:0454-5648.2004.10.016
    [29] 邵雁. 矿渣基胶凝材料固化稳定化垃圾焚烧飞灰机理研究[D]. 武汉: 武汉大学, 2014.
    [30] 谷忠伟. 稳定剂对垃圾焚烧飞灰中重金属的稳定化效果研究[D]. 杭州: 浙江大学, 2020.
    [31] 郭燕妮, 方增坤, 胡杰华, 等. 化学沉淀法处理含重金属废水的研究进展[J]. 工业水处理, 2011, 31(12): 9-13. doi: 10.11894/1005-829x.2011.31(12).9
    [32] 范庆玲, 郭小甫, 袁俊生. 化学沉淀法去除飞灰浸取液中重金属的研究[J]. 河北工业大学学报, 2019, 48(3): 21-26.
    [33] 何茂. 磷酸盐固定重金属污染土壤中Pb和Cd的研究[D]. 西安: 西安建筑科技大学, 2013.
    [34] 刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014, 36(4): 54-59. doi: 10.3969/j.issn.1001-3865.2014.04.011
    [35] 刘辉, 孟菁华, 史学峰. 生活垃圾焚烧飞灰重金属稳定化技术综述[J]. 环境科学与管理, 2016, 41(5): 69-71. doi: 10.3969/j.issn.1673-1212.2016.05.017
    [36] 李建陶, 曾鸣, 杜兵, 等. 垃圾焚烧飞灰药剂稳定化矿物学特性[J]. 中国环境科学, 2017, 37(11): 4188-4194. doi: 10.3969/j.issn.1000-6923.2017.11.023
    [37] 杨光, 包兵, 丁文川, 等. 有机螯合剂与磷酸盐联合稳定垃圾焚烧飞灰中重金属的作用机理[J]. 环境工程学报, 2019, 13(8): 1967-1976. doi: 10.12030/j.cjee.201811158
    [38] 王彩萍. 水泥对生活垃圾焚烧飞灰的固化作用与Pb、Cd的浸出机理研究[D]. 武汉: 武汉理工大学, 2016.
    [39] 蒋旭光, 龙凌, 赵晓利, 等. 固化材料在生活垃圾焚烧飞灰处置中的应用概况及前景[J]. 化工进展, 2019, 38(S1): 216-225.
    [40] 朱华兰, 杨兰, 赵秀兰. 水泥对垃圾焚烧飞灰中重金属的固化研究[J]. 环境污染与防治, 2011, 33(7): 58-61. doi: 10.3969/j.issn.1001-3865.2011.07.015
    [41] 齐一谨, 徐中慧, 徐亚红, 等. 粉煤灰固化处理生活垃圾焚烧飞灰效果研究[J]. 环境科学与技术, 2017, 40(6): 98-103.
    [42] YE N, CHEN Y, YANG J, et al. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system[J]. Journal of Hazardous Materials, 2016, 318: 70-78. doi: 10.1016/j.jhazmat.2016.06.042
    [43] ZHOU X, ZHANG T, WAN S, et al. Immobilizatiaon of heavy metals in municipal solid waste incineration fly ash with red mud-coal gangue[J]. Journal of Material Cycles and Waste Management, 2020, 22(6): 1953-1964. doi: 10.1007/s10163-020-01082-7
    [44] 王一杰, 李克庆, 倪文, 等. 矿渣基胶凝材料固化垃圾焚烧飞灰中重金属的研究[J]. 金属矿山, 2019(7): 194-198.
    [45] CHEN L, WANG L, CHO D, et al. Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials[J]. Journal of Cleaner Production, 2019, 222: 335-343. doi: 10.1016/j.jclepro.2019.03.057
    [46] WANG B, FAN C. Hydration behavior and immobilization mechanism of MgO-SiO2-H2O cementitious system blended with MSWI fly ash[J]. Chemosphere, 2020, 250: 126269. doi: 10.1016/j.chemosphere.2020.126269
    [47] ZHANG M, GUO M, ZHANG B, et al. Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer[J]. Waste Management, 2020, 105: 289-298. doi: 10.1016/j.wasman.2020.02.004
    [48] 刘国威, 陈繁忠. 几种药剂对垃圾焚烧飞灰重金属稳定化的性能影响[J]. 环境工程, 2018, 36(9): 139-143.
    [49] SUN Y, XU C, YANG W, et al. Evaluation of a mixed chelator as heavy metal stabilizer for municipal solid-waste incineration fly ash: Behaviors and mechanisms[J]. Journal of the Chinese Chemical Society, 2019, 66(2): 188-196. doi: 10.1002/jccs.201700406
    [50] 李慧, 罗琳, 卢海威, 等. 生活垃圾焚烧飞灰重金属药剂稳定化研究[J]. 环境工程学报, 2016, 10(2): 929-934. doi: 10.12030/j.cjee.20160265
    [51] MA W, CHEN D, PAN M, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study[J]. Journal of Environmental Management, 2019, 247: 169-177.
    [52] 中国人民共和国生态环境部, 中华人民共和国国家市场监督管理总局. 危险废物填埋污染控制标准: GB 18598-2019[S]. 北京: 中国环境出版集团, 2019.
    [53] 中国人民共和国环境保护部, 中华人民共和国国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准: GB 16889-2008[S]. 北京: 中国环境科学出版社, 2008.
    [54] 林昌梅. 适用GB 16889-2008的垃圾焚烧厂飞灰处理成本分析[J]. 环境卫生工程, 2010, 18(6): 50-52. doi: 10.3969/j.issn.1005-8206.2010.06.019
    [55] 高发车, 陈娟, 杨秀禄. 用层次分析法评价济南市生活垃圾处理方案[J]. 山东国土资源, 2011, 27(1): 20-22. doi: 10.3969/j.issn.1672-6979.2011.01.005
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.6 %DOWNLOAD: 4.6 %HTML全文: 87.6 %HTML全文: 87.6 %摘要: 7.8 %摘要: 7.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 78.9 %其他: 78.9 %Aliso Viejo: 0.2 %Aliso Viejo: 0.2 %Ashburn: 2.6 %Ashburn: 2.6 %Beijing: 6.3 %Beijing: 6.3 %Central: 0.3 %Central: 0.3 %Chang'an: 0.1 %Chang'an: 0.1 %Changzhou: 0.1 %Changzhou: 0.1 %Chongqing: 0.2 %Chongqing: 0.2 %Coimbatore: 0.3 %Coimbatore: 0.3 %Foshan: 0.3 %Foshan: 0.3 %Fuzhou: 0.1 %Fuzhou: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %Gilbert: 0.2 %Gilbert: 0.2 %Guangzhou: 0.2 %Guangzhou: 0.2 %Hangzhou: 0.7 %Hangzhou: 0.7 %Hefei: 0.2 %Hefei: 0.2 %Hyderabad: 0.1 %Hyderabad: 0.1 %Kunming: 0.2 %Kunming: 0.2 %Mountain View: 0.5 %Mountain View: 0.5 %Nanjing: 0.1 %Nanjing: 0.1 %Nantong: 0.1 %Nantong: 0.1 %Nashville: 0.1 %Nashville: 0.1 %Newark: 1.0 %Newark: 1.0 %Okazaki: 0.1 %Okazaki: 0.1 %Qinnan: 0.1 %Qinnan: 0.1 %Seoul: 0.2 %Seoul: 0.2 %Shanghai: 0.3 %Shanghai: 0.3 %Shenyang: 0.1 %Shenyang: 0.1 %Suzhou: 0.1 %Suzhou: 0.1 %Taiyuan: 0.2 %Taiyuan: 0.2 %Taiyuanshi: 0.1 %Taiyuanshi: 0.1 %Tongshan: 0.1 %Tongshan: 0.1 %Wuhan: 0.2 %Wuhan: 0.2 %Xi'an: 0.3 %Xi'an: 0.3 %Xingfeng: 0.2 %Xingfeng: 0.2 %XX: 2.9 %XX: 2.9 %Yanqing Qu: 0.1 %Yanqing Qu: 0.1 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhengzhou: 0.2 %Zhengzhou: 0.2 %北京: 0.6 %北京: 0.6 %南平: 0.1 %南平: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.4 %深圳: 0.4 %衡阳: 0.1 %衡阳: 0.1 %郑州: 0.3 %郑州: 0.3 %长沙: 0.1 %长沙: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他Aliso ViejoAshburnBeijingCentralChang'anChangzhouChongqingCoimbatoreFoshanFuzhouGaochengGilbertGuangzhouHangzhouHefeiHyderabadKunmingMountain ViewNanjingNantongNashvilleNewarkOkazakiQinnanSeoulShanghaiShenyangSuzhouTaiyuanTaiyuanshiTongshanWuhanXi'anXingfengXXYanqing QuYunchengZhengzhou北京南平呼和浩特武汉济南深圳衡阳郑州长沙阜阳阳泉Highcharts.com
图( 3) 表( 5)
计量
  • 文章访问数:  8662
  • HTML全文浏览数:  8662
  • PDF下载数:  281
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-18
  • 录用日期:  2021-10-29
  • 刊出日期:  2022-01-10
蒋旭光, 段茵, 吕国钧, 龙凌, 邱琪丽, 赵奕萌. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098
引用本文: 蒋旭光, 段茵, 吕国钧, 龙凌, 邱琪丽, 赵奕萌. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098
JIANG Xuguang, DUAN Yin, LYU Guojun, LONG Ling, QIU Qili, ZHAO Yimeng. Research progress on the mechanism and systematic evaluation methods of solidification and stabilization of heavy metals in municipal solid waste incineration fly ash[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098
Citation: JIANG Xuguang, DUAN Yin, LYU Guojun, LONG Ling, QIU Qili, ZHAO Yimeng. Research progress on the mechanism and systematic evaluation methods of solidification and stabilization of heavy metals in municipal solid waste incineration fly ash[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098

垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展

    通讯作者: 蒋旭光(1965—),男,博士,教授,jiangxg@zju.edu.cn
    作者简介: 蒋旭光(1965—),男,博士,教授,jiangxg@zju.edu.cn
  • 1. 浙江大学能源清洁利用国家重点实验室,热能工程研究所,杭州 310027
  • 2. 浙江大学青山湖能源研究基地,杭州 310027
  • 3. 南京工程学院环境工程学院,南京 211167
  • 4. 中国电力建设集团河北省电力勘测设计研究院有限公司,石家庄 050031
基金项目:
国家重点研发计划(2018YFC1901302,2018YFF0215001);国家自然科学基金创新群体(51621005);江苏省自然科学基金资助项目(BK20201032);中国电力建设集团有限公司科技项目(DJ-PTZX-2018-01)

摘要: 垃圾焚烧飞灰中的重金属是必须处理的环境污染物。目前,对于垃圾焚烧飞灰的固化稳定化处理已经有了大量的实验研究。但是,不同地区垃圾焚烧厂产生的飞灰中,重金属含量和形态大不相同,故相应的飞灰仍然难以实现大规模、普适性的处理。在查阅文献及实际调研的基础上,系统总结了垃圾焚烧飞灰中重金属的存在形态与浸出特性;通过对重金属固化稳定机理的分析,指出了垃圾焚烧飞灰固化材料和稳定剂选择的方向。此外,还计算了不同的固化剂与稳定剂对不同重金属的固化率,发现材料复配的方式对多种重金属的稳定效果较好。最后,比较了不同评价方法在垃圾焚烧飞灰固化系统选择中的应用效果,指出综合评价方法是目前相对较完善、系统的方法,在工程实际中具有广阔的应用前景。

English Abstract

  • 生活垃圾的无害化处置方式主要为卫生填埋和焚烧,其中,垃圾焚烧方式因具有减量化、能源化的优势在近几年迅速发展,并逐渐成为城市生活垃圾处理的主流技术。但是,生活垃圾的焚烧处理会产生大量的飞灰,这些焚烧飞灰主要是垃圾焚烧过程中在烟气净化以及除尘装置中的捕集物[1]。根据国家统计局数据[2]可得近10年的飞灰产生量,如图1所示(按飞灰产生量4%计算[3])。按照图1所示的增长趋势,可预测出2025年我国年飞灰产生量将达到1.3×107 t。

    市政垃圾焚烧飞灰中含有大量的重金属(即密度大于4.5 g·cm−3的金属[4]),而重金属只能迁移和转化,如果处置不当,会进入到土壤和地下水中,从而直接或间接影响人类的身体健康[5]。随着垃圾焚烧飞灰产量的逐年增加,其安全处置已成为我国急需解决的重要环境和安全问题。然而,目前我国对于垃圾焚烧飞灰的处理存在以下2个问题。

    1) 我国各地区的生活垃圾成分差异较大,垃圾燃烧之后产生的飞灰性质也存在地域性差异,而且垃圾焚烧炉的型号和焚烧方式也会影响垃圾飞灰的组成和特性,从而造成不同地区垃圾焚烧厂产生的飞灰中重金属含量和形态的差别[6]

    2) 大多数垃圾焚烧厂处理飞灰时仅注意其固化稳定化之后重金属的浸出毒性,而缺乏对原焚烧飞灰中重金属的理化特征和浸出特性的了解,并且难以正确地选择固化剂的种类和用量[7]

    飞灰作为垃圾焚烧技术的主要副产品,重金属浸出毒性高,被归类为危险废物,因此,对飞灰中的重金属进行处理非常必要。目前,我国有关垃圾焚烧飞灰中重金属固化稳定化的方法和材料虽然很多,但却毫无规律和普适性。如果固化剂添加量过少,则会导致重金属浸出到环境中,对环境造成不可逆的危害;如果固化剂的添加量过多,则会提高重金属的固化成本,造成资源的浪费。在这样的现状之下,亟需寻找可以针对性处理不同飞灰的固化系统。

    本文通过总结重金属在垃圾焚烧飞灰中的存在形态与浸出特性,对其固化稳定机理进行了分析,并比较了不同固化剂和稳定剂对不同重金属的固化效果,最后对垃圾焚烧飞灰固化处理系统的评价方法进行了梳理和总结,从而为垃圾焚烧飞灰的处理提供参考。

    • 重金属的形态即重金属元素存在的理化形式,包括其化合态、价态、结合态等,不同形态的重金属呈现不同的毒性和环境行为。通过分析重金属的具体形态,可更加清晰地评估飞灰中重金属的污染程度。表1列出了MSWI飞灰中存在的主要重金属化合物[8-9]

      欧洲共同体标准物质局(European Community Bureau of Reference)提出了多级连续提取法,将重金属分成4种不同形态,分别为弱酸提取态、可还原态、可氧化态和残渣态[10]。在4种形态中,弱酸提取态的重金属在酸性水溶液的环境中即可释放到周边环境,对人类和环境的危害最大;可还原态和可氧化态虽然较为稳定,但可在合适的氧化还原条件下会被释放出来;残渣态通常称为无效态,残渣态的重金属只能在强酸消解的条件下释放到环境中,它是最稳定的重金属形态,对环境基本无害。

      因为不同垃圾焚烧炉内温度、烟气流速和飞灰停留时间等差异较大,所以不同的飞灰中的重金属的形态分布存在比较大的差异[10-13]。但是,其存在形态大多是弱酸提取态、可还原态和可氧化态,迁移性较强,对环境有较大的风险。常威[14]的研究表明,不同炉型的重金属形态分布存在一定的差异。流化床炉中Zn、Cu、Cd弱酸提取态比例很高,Pb的可还原态比例较高,所以,流化床炉飞灰中Cd、Pb、Cu的浸出毒性远远超出生活垃圾填埋标准值,而炉排炉飞灰中只有Cd和Pb略超出标准值。

    • 当达到溶解平衡状态时,不同重金属的浸出浓度之间的差异主要由其化合物的浸出特性决定。大多数研究[15-23]通过对飞灰进行不同影响因素下的浸出实验,指出影响飞灰中重金属浸出特性的重要因素包括飞灰的基础理化性质、液固比、浸提液 pH 环境等。

      飞灰的粒径分布会影响重金属的浸出,因为一些有毒重金属会聚集在较小的颗粒中,例如大部分Cu和Zn都集中在小于3 mm的灰粒中[15],而且细小颗粒拥有较大的比表面积,浸出速率相对更快。牟陈亚等[16]分析了3种不同的固化体形状的重金属浸出浓度并指出,为了提高安全性和长期稳定性,飞灰固化体成型时应尽量缩小比表面积。另外,飞灰中的硫酸根化合物和氯化物的存在对重金属的浸出也有一定的影响。在浸出时,硫酸根可使一些重金属成为不溶性的硫酸盐而被稳定在固相中;而氯离子则相反,可使重金属的流动性增强,从而加速重金属向浸提液的转移[17]

      液固比也是影响重金属浸出的一个关键因素[18]。由于重金属浸出主要是由溶解机理控制的,而且液固比的增加会促进矿物相的溶解,所以,较高的液固比可以加速重金属的溶解和释放[19]。赵友杰等[20]指出,液固比对不同的重金属有不同的影响:随着液固比的增加,浸出液中 Cd、Cu和Zn的浓度先升高后降低;Pb 的浸出浓度呈现缓慢增加的趋势;Cr、Ni 的浸出浓度变化不大,即液固比对其影响不显著。

      浸提液的pH也会影响重金属的溶出行为[21],因为pH是影响重金属化合物溶解和沉淀的关键因素。pH值对浸出元素浓度的影响遵循3种不同的模式,包括阳离子型、氧阴离子型和两性型[22]。在阳离子模式中,元素的浸出液浓度随着pH的增加而持续降低。在氧阴离子模式中,元素的浸出液浓度随pH值的增加而增加,且在碱性(pH>10)的条件下,达到相对较高的浓度。在两性模式下,元素的浸出浓度在中性左右时最小,而在酸性和碱性条件下则增加。

      图2 展示了不同重金属浸出率随浸出液pH值的变化趋势[3]。可以看出,Zn、Pb、Cr的浸出率随pH的变化呈现V形曲线,在浸出液pH值上非典型地形成两性峰。在中性或弱碱性条件下,出现了最低的浸出率,其浸出符合两性模式。Cd和Cu的浸出率最初在pH为2~5趋于平稳,随后表现出单调下降,直到pH达到14为止,即阳离子模式。这与刘国威[13]的研究结果一致,即大多重金属在酸性条件下容易浸出,而Pb、Zn、Cr在强碱条件下也容易浸出。这也解释了炉排炉飞灰中大多阳离子型重金属的浸出浓度比流化床飞灰低的原因,主要是由于炉排炉中碱性物质的释放使浸出环境呈碱性,相反,其碱性环境也使得炉排炉中的两性型金属Pb浸出毒性更高[23]。所以,对飞灰中重金属进行固化时,可以选用碱性较强的固化剂,并尽量采用较大尺寸的固化体,以保证大多数重金属的固化效果。

    • 将危险废弃物与固化剂混合成固化体时,重金属以物理形式被包裹在固化体养护时产生的地质聚合物内部,其浸出毒性会大大降低。例如水泥、高岭土、钢渣等一些富含硅铝酸盐的原材料在碱激发作用下,其中的硅氧键和铝氧键断裂之后会重新组合成硅氧四面体和铝氧四面体,从而形成了地质聚合物。地质聚合物中大量环状分子结合,形成封闭的三维网状空腔,该空腔可以包裹重金属和其他有毒物质,以达到固化效果[24]

      有研究者[25]认为,重金属不仅仅是以离子形式被包裹,还会以不溶化合物的形式被包封,例如Pb2+、Cd2+形成沉淀后会被再次固封。通常,固化体抗压强度越高,对重金属的物理包封效果越好,即固化性能越好。

    • 有较大比表面积或者带电的胶凝材料,可以通过吸附来固定各种重金属离子。例如水化硅酸钙凝胶(C-S-H),它是一种具有高比表面积的无定型胶状微孔材料,可以物理吸附大量的阳离子和阴离子。垃圾焚烧飞灰本身也可以在资源化水热反应和高温养护的条件下,形成沸石或类沸石产物,从而对重金属有一定的理化吸附作用[26]

      一些具有高活性表面的矿物被应用在水处理和土壤修复等领域内作为固体鳌合剂和吸附剂,所以这些矿物在飞灰固化处理方面也有较大的应用前景。针铁矿的表面具有大量的功能基(如单位羟基、孪位羟基、三位羟基等),这些表面基团可通过吸附作用与重金属离子紧密地结合在一起,因而是一种极有前景的飞灰固化剂[27]

    • 同晶置换即矿物结晶时,晶体结构中由某种离子占有的位置部分被性质或大小相近的其他离子所替代,但晶体结构型式仍保持不变。在地聚合物形成的过程中,重金属离子可以替代Na+和K+在地聚合物中的位点,因此可以更有效地被固定在地聚合物体系中。在水化硅酸钙(C-S-H)结构中,Zn2+可以取代Ca2+从而被固定[28]。水化硅铝酸钙(C-A-S-H)结构中的碱金属和碱土金属离子与晶体的结合力很弱,所以水化硅铝酸钙具有很强的离子交换能力[29]。具有相同性质的还有钙矾石,其离子交换可发生在Al3+、Ca2+和SO42−的位置上,其中Pb2+、Cd2+、Zn2+和Cr3+等阳离子可以替代Ca2+和A13+,Cr2O42−等阴离子团可以替代SO42−

    • 用于稳定重金属的化学药剂分为无机类和有机类2种,其稳定机理分别是复分解沉淀作用以及化学键合作用[30]

      复分解沉淀作用可以将有毒重金属转化为低溶解性、低毒性的物质,包括难溶盐沉淀、氢氧化物沉淀和铁氧体沉淀[31]。难溶盐沉淀法包括硫化物沉淀法、碳酸盐沉淀法、磷酸盐沉淀法等。范庆玲等[32]研究了硫化钠和碳酸钠对Pb2+、Cd2+等重金属离子的去除效果,指出硫化钠的去除效果较好,而碳酸钠对重金属的去除效果相对较差,其原因是飞灰中Ca2+的存在消耗了CO32−。何茂[33]发现,磷酸盐的加入可以使Pb、Cr从酸可提取态向残渣态转化,其中磷酸二氢钾对重金属固定效率最高。氢氧化物沉淀法常用的沉淀剂有CaO和NaOH等。pH是影响氢氧化物沉淀法效果的关键因素,故在应用氢氧化物沉淀法时,控制好pH尤为重要。铁氧体沉淀法[34]的原理是调节铁盐溶液的pH后,被氧化的亚铁离子可以通过吸附与表面络合作用结合重金属离子形成复合铁氧体,从而稳定重金属。

      化学键合作用主要是重金属离子与有机物稳定剂的螯合作用,水溶性的螯合高分子可与重金属离子反应,生成稳定的高分子螯合物沉淀[35]。李建陶等[36]与杨光等[37]指出,因为硫原子半径大而且带负电,所以有机螯合剂中以 S、N 为中心原子的配位体可以通过强极性键与重金属离子结合。不同的螯合剂与不同的重金属离子所形成的结构虽然有一定的差别,但稳定重金属的方式相同,均由螯合剂高分子上的有效官能团与重金属离子通过化学键合作用反应后,生成稳定交联空间网状结构沉淀[38]

    • 工业中常用的固化剂包括水泥、粉煤灰、偏高岭土、矿渣等[39]。常用的稳定剂包括磷酸盐、硫化钠、DTC类有机螯合剂等[30]。一种固化剂基本可以同时固定多种重金属,只是稳定效果有一定的差异。如果有单一的重金属含量超标,可以采用相应的稳定剂进行针对性处理。为了更有针对性地处理不同的飞灰,了解不同材料对不同重金属的固化率非常重要。

      固化率指固化稳定化前、后飞灰重金属元素浸出浓度的差值与原始飞灰中重金属元素浸出浓度的比值,计算方法见式(1)。

      式中:ƞ为固化率;c0为稳定化之前飞灰重金属元素的浸出质量浓度,mg·L−1ct为稳定化之后飞灰重金属元素的浸出质量浓度,mg·L−1

      所以,固化率越高,固化体中重金属的浸出浓度越低,即越安全。通过计算不同固化剂和稳定剂对不同重金属的固化率,可以为工程实际应用提供参考,计算结果见表2表3

      由于大多数飞灰中的Hg含量较低,符合卫生填埋标准,所以针对Hg的浸出研究较少。由表2可以看出,大部分固化材料对Pb、Zn的固化效果都比较好。其中,硅酸盐水泥的固化效果顺序为Cr>Pb>Zn>Cd>Cu;粉煤灰对于除Cr以外的重金属固化效果都达到了95%以上;偏高岭土对Zn、Pb、Cu、Hg的固化效果较好,而对Cr的固化效果一般,而且因为偏高岭土本身含有可溶解性的Cd,所以偏高岭土不仅对于Cd完全没有稳定作用,还会引入一定量的Cd元素。所以,用偏高岭土固定Cd超标的飞灰时,应加入适当的稳定剂进行处理。

      矿渣和脱硫石膏组成的胶凝材料在飞灰掺量较低时对多种重金属都达到了85%以上的固化率,固化效果较好,而且矿渣基固化体的抗压强度高达47 MPa,在做建筑材料等方面有较大的资源化利用前景[44]

      赤泥虽然是一种很好的可形成地聚合物的原材料,但赤泥对Cr完全没有固定作用,而且赤泥固化体的耐久能力差,抗压强度低,长期稳定性无法保证。而在赤泥中加入一定量的煤矸石之后,形成的赤泥-煤矸石地聚合物的抗压强度会大大提升。因此,可以从物理包封的角度稳定重金属,其结构和形态特征进一步证明,地聚合物基质在其致密的网络微观结构中固定了重金属[43]

      相关研究[45]也指出,只用单一的硅酸盐水泥做固化材料对重金属的稳定并不是非常有效,将硅灰加入到硅酸盐水泥或者轻烧氧化镁中形成的胶凝材料中存在大量的C-S-H或M-S-H凝胶,对重金属的稳定效果极好。由此,我们可以得出,对固化材料进行复配可以解决单一固化体抗压强度低和对某种重金属固定效果较差的问题,这是将来垃圾焚烧飞灰固化的一个重要发展趋势。

      另外,大多数固化材料处理飞灰时,为了达到重金属稳定的效果,其飞灰掺量较低,导致成型固化体的增容较大,从而大大增加了填埋场的负担。而且,这些固化体的长期稳定性亦存疑,因为若固化体出现裂隙,在中性或偏酸性环境下,仍然存在较大的浸出风险。

      通过药剂稳定处理飞灰可以实现少增容或不增容。由表3可以看出,磷酸盐对于Pb和Cd均有一定的稳定化效果,而多数有机螯合剂可以在掺量较小的情况下实现更高的固化率。然而,无机稳定剂对重金属选择性不同且长期稳定性较差,同时有机螯合剂的成本较高,所以,复合稳定剂近年来发展迅速,在保证重金属稳定效果的同时,可以最大限度减少处理成本。由于药剂稳定处理飞灰在资源化应用方面具有一定的局限性,所以,将固化剂与稳定剂复配来处理飞灰并进行建材方向的资源化利用有一定的研究前景。

    • 单因素指标有环境指标和经济指标等。环境指标主要包括重金属浸出浓度和二恶英含量。生活垃圾焚烧飞灰已被列入2021年新施行的《国家危险废物名录》中,其经过HJ/T 299-2007制备的浸出液中有害成分浓度不超过《危险废物填埋污染控制标准》(GB 18598-2019)中规定的限值[52],即可进入柔性危废填埋场中处置(表4);或者经处置后满足现行国家标准《生活垃圾填埋场污染控制标准》(GB 16889-2008)规定的条件,即可以进入生活垃圾填埋场填埋,以HJ/T 300-2007制备的浸出液中危害成分质量浓度低于表5规定的限值[53]为标准。但随着环境问题的日益严重以及可持续发展的要求,飞灰中重金属的长期浸出毒性更值得关注,虽然目前已经有一些相关的研究,但非常有限。

      有时为了满足要求,加入过量的固化剂,从而导致成本提升也是不可取的。所以,飞灰固化处理系统在进行工程实际应用时,应该在满足国家规定的环境标准的基础上,尽量降低经济成本。

      经济方面常见的指标包括固化材料费、碱激发剂费用、运输费、电费、填埋费等。林昌梅[54]通过对每吨飞灰应用不同处理方式的费用计算,得出用固体螯合剂稳定后的飞灰送往生活垃圾填埋场填埋是最经济的方法。杨光等[37]指出,用药剂复配的方式稳定飞灰,可减少约30%的成本。

      在已有的研究中[39],通过工程应用实例分析了不同固化材料的固化成本,因为不同飞灰中所含的重金属含量差距较大,所以不同固化系统的处置成本相差较大。因此,针对不同的飞灰,应该结合相应重金属的浸出毒性,综合考虑不同固化剂的固化率和材料价格及其资源化利用程度来选择固化方案,所以综合性评价是比较合理的方法。

    • 固化系统的综合评价是指该评价方法综合考虑了多方面的因素,其中应用较为广泛的评价方法为层次分析法(analytic hierarchy process)。层次分析法是一种定性和定量分析相结合的决策方法,它将与决策有关的要素分解成目标、准则和方案等层次,适合应用于具有分层交错评估指标的应用程序和目标系统[55]

      合理确定飞灰固化系统受到经济、环境等多种因素的影响,是一个科学决策的过程。因此,层次分析法在飞灰固化处理系统评价中的应用具有一定的合理性。层次分析法应用的关键主要在于指标体系的构建,评价飞灰固化系统的方案如下:目标层为确定针对某种飞灰的最优固化方案;准则层围绕经济和环境两方面,主要包括材料费用、材料可得性、资源化效益、重金属浸出问题;方案层为不同的固化方式。

      根据以上分析,我们以浙江省的炉排炉飞灰[14]为例,其中Pb、Cd的浸出毒性分别是生活垃圾填埋标准值的1.692倍、5.42倍,则要求固化率应该分别至少达到41%、82%。根据表2表3,选择能达到固化率要求的备选方案为:粉煤灰;脱硫石膏、矿渣;氧化镁、硅灰;DTC螯合剂。由此确定的层次分析结构模型如图3所示。通过建立判断矩阵,保证矩阵一致性检验良好,进行层次单排序和层次总排序后,得出方案层P对于目标层A的权重分析结果,P1、P2、P3、P4的权重分别为0.228、0.237、0.310、0.226。4种方案的排序为P3>P2>P1>P4,可见采用氧化镁和硅灰作为固化材料是针对该浙江飞灰的最优处理方案。

      事实上,每个地区飞灰的理化性质和重金属含量大不相同,易得的固化材料和填埋场的运行情况也不同,所以每个地区最优的飞灰固化处理方式也不尽相同。针对不同的地区,可以利用层次分析模型计算出最合适的飞灰处理方式。

    • 目前,我国垃圾焚烧飞灰的处置存在的问题有2个:一是我国的生活垃圾来源复杂,不同时间、地点产生的飞灰含量与组成差距都比较大,所以飞灰的处理系统并不具有科学性与普适性;二是虽然目前各种飞灰固化处理方案层出不穷,但每种处理方案都要针对不同的飞灰进行分析研究后经过实验才能进行工业的应用,这不仅消耗了大量的人力物力,而且其固化处理系统连续应用价值较低。基于上述问题,对未来垃圾焚烧飞灰的重金属处理给出以下4点建议。

      1) 固化体比表面积的增大可以减小飞灰中重金属的浸出,为了减少重金属的浸出毒性,应在技术和资金允许的情况下,尽量做大固化体的尺寸。同时,首选呈碱性的固化体,因为大多数重金属在弱碱性环境下不容易浸出,而且垃圾填埋场渗滤液呈酸性,所以碱性固化体长期稳定性和安全性较好。

      2) 采用单一的固化材料有时可能达不到想要的固化效果,而直接加入大量无机或有机稳定剂又会大大提升飞灰处理的成本。因此,工程上建议采取2种固化剂结合或固化剂与稳定剂复配的方式,可以在实现较好重金属稳定效果的同时降低成本。所以,材料复配的方法有很大的应用前景,可以在此方面进行更深入的实验研究。

      3) 对垃圾焚烧飞灰固化系统的选择应从多个角度加以考虑,比如环境、经济成本方面等,采用层次分析法可以对飞灰固化处理系统的选择进行定性和定量的分析,提供多方面的、更加完善的评价,实现对资源的有效利用。

      4) 针对不同飞灰的固化处理仍然值得开展更深入的研究,应继续寻找高效、低成本的新型固化剂以及回收重金属的方法。随着未来我国垃圾分类技术的逐步成熟,同一垃圾焚烧厂焚烧的垃圾组分将趋于均衡,产生的飞灰性质也更加均一,故不同地区和炉型的焚烧厂即可以根据其飞灰成分及特性选择最合适的固化稳定处理系统,并实现大规模工业化。

    参考文献 (55)

返回顶部

目录

/

返回文章
返回