-
抗生素作为一种抗菌类药物被广泛应用于治疗和预防疾病、促进动物生长以及作物种植和保护等领域[1-2]。至2013年,我国抗生素的使用量已突破16×104 t,其中48%为人类摄入,剩余的用于畜禽等动物[1]。然而,生物体所摄取抗生素的30%~90%不会被代谢,而是会从体内排出,最后进入环境中,从而对生态系统和人类健康造成威胁[3-4]。同时,抗生素残留在环境中还会诱导抗生素耐药细菌和抗生素抗性基因(antibiotics resistance genes, ARGs)的产生[5]。
然而,传统的污水处理厂一般没有针对抗生素的处理工艺,抗生素与抗性基因在废水和污泥中被频繁检测出来[6],导致大量抗生素未经处理进入环境中。有研究[7]表明,人工湿地(constructed wetland, CW)在抗生素和ARGs的处理中具有巨大的潜力。但是,CW易堵塞、占地面积大、受外部条件影响大等缺点,影响了其对污染物的去除性能[8]。微生物燃料电池型人工湿地系统(microbial fuel cell integrated with constructed wetland, CW-MFC)作为一种新型废水处理技术,其可将微生物燃料电池(microbial fuel cell, MFC)嵌入到人工湿地中,实现废水处理的同时产生电能[9]。典型的MFC需要一个厌氧阳极区和好氧阴极区来提供氧化还原梯度,以促进电子和质子从厌氧区到好氧区的转移。而CW底部为厌氧区,顶部为有氧区,因而形成了天然的氧化还原梯度。两者在结构上的相似性,提供了将两者进行结合的可能性。二者的耦合可更好得提高污染物的去除效率。有研究[10-12]表明,CW-MFC对N、P等常规污染物以及偶氮染料、硝基苯、药品及个人护理品等难降解有机物都有良好的去除性能。
目前,关于CW-MFC对抗生素废水的处理效果及相关机理的研究还较少。杨可昀等[13]利用CW-MFC处理含四环素和磺胺甲恶唑的废水,证实了CW-MFC相较于传统CW可以更有效的去除废水中的抗生素,但没有明确其去除机理。因此,构建高效的微生物燃料电池型人工湿地并研究其对抗生素废水处理的效果及机制已成为当前废水处理中的研究热点之一。
生物炭作为吸附剂广泛地应用于污水处理,其不仅容易获取而且对污染物有良好的吸附效果[14]。有研究[15]表明,利用生物炭作吸附剂可有效吸附去除水中的抗生素。YUAN等[16]发现,生物炭作为基质填充到人工湿地,可以提高湿地对污染物的去除效果,因为生物炭不但可以吸附更多的污染物,同时发达的孔隙结构,较大的比表面积可以为微生物提供附着场所,有利于微生物生长。基于此,本研究建造了以生物炭作为电极基质的CW-MFC系统,开展不同电路运行模式下处理含喹诺酮类抗生素盐酸环丙沙星(ciprofloxacin hydrochloride, CIPH)和磺胺类抗生素磺胺甲恶唑(sulfamethoxazole, SMX)废水的研究,通过系统运行,研究了不同电路运行模式下CW-MFC对抗生素的去除效果、抗生素废水中常规污染物的去除效果以及基质微生物对不同运行模式的响应。
开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应
Treatment effect of wastewater containing antibiotic and microbial community response in microbial fuel cell integrated with constructed wetland under different circuit operation mode
-
摘要: 为探究微生物燃料电池型人工湿地处理抗生素废水的效果,构建了闭路运行(CW-MFC1)与开路运行(CW-MFC2)的微生物燃料电池型人工湿地,研究了不同电路运行模式下微生物燃料电池型人工湿地对氮、COD以及抗生素的去除效果,并对阳极与阴极的微生物群落及其与污染物去除效果的关系进行了探究。结果表明,闭路运行模式下CW-MFC对
$ {\rm{N}}{{\rm{H}}^ +_4} $ -N、TN、COD以及盐酸环丙沙星(CIPH)与磺胺甲恶唑(SMX)2种抗生素的去除效果均显著高于开路运行模式(P<0.05),对$ {\rm{N}}{{\rm{O}}^ -_3} $ -N的去除效果低于开路运行模式。16SrDNA测序结果表明:闭路运行模式下CW-MFC阳极具有更高的微生物丰富度和多样性;不同电路运行模式对阳极与阴极门水平上的微生物群落结构影响较小,但对属水平上的微生物组成有显著的影响。冗余分析结果表明,CW-MFC对污染物的去除率随着绝大多数阳极与阴极的细菌属的相对丰度增加而增加,但随着阳极的Methylotenera相对丰度的增加而减少。以上研究结果表明,闭路运行模式下CW-MFC处理高浓度抗生素废水具有更好的潜力。-
关键词:
- 微生物燃料电池型人工湿地 /
- 氮去除 /
- 抗生素 /
- 微生物群落
Abstract: To explore the treating effect of wastewater containing antibiotic by microbial fuel cell integrated with constructed wetland, microbial fuel cell integrated with constructed wetlands were designed to explore the removal effects of nitrogen, COD and antibiotics under different circuit operation modes: the closed circuit operation mode (CW-MFC1) and the open circuit operation mode (CW-MFC2). Meanwhile, the microbial communities of anode and cathode and their correlation with pollutants removal were also explored. The results showed that the removal efficiencies of$ {\rm{N}}{{\rm{H}}_4}^ + $ -N, TN, COD and ciprofloxacin hydrochloride (CIPH) and sulfamethoxazole (SMX) in the closed circuit operation mode were significantly higher than those in the open circuit operation mode (P<0.05), but the removal efficiency of$ {\rm{N}}{{\rm{O}}_3}^ - $ -N in the closed circuit operation mode was lower than that in the open circuit operation mode. The results of 16SrDNA sequencing showed that the anode in CW-MFC had higher microbial richness and diversity in the closed circuit mode. At the same time, different circuit operation mode of CW-MFC had slight effect on the microbial community structure on phylum level at the anode and cathode, but had a significant effect on the microbial community structure on the genus level. Redundancy analysis showed that the removal rate of pollutants by CW-MFC increased with the increase of the relative abundance of most bacteria genera at anodes and cathodes, but decreased only with the increase of the relative abundance of Methylotenera at the anodes. The results indicated that, CW-MFC in the closed circuit operation mode had better potential in the treatment of wastewater with high concentration of antibiotics. -
图 2 开闭路运行模式下微生物燃料电池型人工湿地出水中
$ {\bf{N}}{{\bf{H}}^ +_4} $ -N、$ {\bf{N}}{{\bf{O}}^ -_3} $ -N、TN和COD的变化Figure 2. Variation of
$ {\rm{N}}{{\rm{H}}^ +_4} $ -N,$ {\rm{N}}{{\rm{O}}^ -_3} $ -N, TN, and COD in the effluent of microbial fuel cell integrated with constructed wetland under open and close circuit operation modes表 1 开闭路运行模式下微生物燃料电池型人工湿地进出水污染物的平均质量浓度与平均去除率
Table 1. The mean quality concentrations and removal rates of pollutant in influents and effluents of microbial fuel cell integrated with constructed wetlands under open and close circuit operation modes
污染物 进水质量浓度/(mg·L−1) 出水质量浓度/(mg·L−1) 去除率/% CW-MFC1 CW-MFC2 CW-MFC1 CW-MFC2 -N$ {\rm{N}}{{\rm{H}}^ +_4} $ 24.07±0.43 5.81±0.72 7.27±0.86 75.86±3.14a 69.79±3.76b -N$ {\rm{N}}{{\rm{O}}^ -_3} $ 2.38±0.10 1.06±0.11 0.87±0.10 55.22±5.03b 63.54±4.64a TN 26.80±0.68 7.50±0.78 9.50±0.90 71.96±3.26a 64.51±3.94b COD 299.46±4.92 20.21±4.19 40.24±4.43 93.25±1.40a 86.38±1.46b 注:所有数据均代表平均值±标准差,同一行中不同小写字母表示显著差异(P<0.05)。 表 2 开闭路运行模式下微生物燃料电池型人工湿地阳极与阴极微生物群落的多样性指数
Table 2. Diversity indices of the microbial communities in anode and cathode of CW-MFCs under open and close circuit operation modes
装置 取样点 OUT数 Chao1 Shannon Simpson 覆盖率/% CW-MFC1 阳极 2 818 3 075.95a 9.72a 0.9 948a 98 阴极 2 254 2 423.44c 9.50b 0.9 955a 99 CW-MFC2 阳极 2 200 2 350.18c 9.22c 0.9 945a 99 阴极 2 426 2 599.68b 9.67a 0.9 950a 99 注:数据为3次采样数据的平均值。同一行中不同小写字母表示显著差异(P<0.05)。 -
[1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of china: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [2] 白亭亭, 杨群辉, 李铭刚, 等. 植保抗生素阿扎霉素对白菜根肿病的防治效果[J]. 植物保护, 2018, 44(1): 210-214. [3] HU X A, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010, 158(9): 2992-2998. doi: 10.1016/j.envpol.2010.05.023 [4] BARAN W, ADAMEK E, ZIEMIANSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196: 1-15. doi: 10.1016/j.jhazmat.2011.08.082 [5] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review[J]. Environmental Research, 2019, 169: 483-493. doi: 10.1016/j.envres.2018.11.040 [6] HU J, ZHOU J, ZHOU S Q, et al. Occurrence and fate of antibiotics in a wastewater treatment plant and their biological effects on receiving waters in Guizhou[J]. Process Safety and Environmental Protection, 2018, 113: 483-490. doi: 10.1016/j.psep.2017.12.003 [7] LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response[J]. Environmental Pollution, 2019, 254: 112996. doi: 10.1016/j.envpol.2019.112996 [8] 黄锦楼, 陈琴, 许连煌. 人工湿地在应用中存在的问题及解决措施[J]. 环境科学, 2013, 34(1): 401-408. [9] 王琳, 李雪, 王丽. 微生物燃料电池-人工湿地耦合系统研究进展[J]. 环境工程, 2016, 34(10): 11-16. [10] FANG Z, SONG H L, CANG N, et al. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J]. Biosensors & Bioelectronics, 2015, 68: 135-141. [11] XIE T Y, JING Z Q, HU J, et al. Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland[J]. Ecological Engineering, 2018, 112: 65-71. doi: 10.1016/j.ecoleng.2017.12.018 [12] 陈桐清. 产电型人工湿地对典型PPCPs的去除作用及机理解析[D]. 南京: 东南大学, 2018. [13] 杨可昀. 人工湿地耦合微生物燃料电池产电及去除抗生素的效能研究[D]. 南京: 东南大学, 2016. [14] 常飞, 程文博, 张天旭. 生物炭吸附去除水中有机污染物的研究进展[J]. 能源研究与信息, 2018, 34(4): 187-194. [15] 陈若霓, 肖坤全. 从废水中吸附去除抗生素的进展研究[J]. 应用化工, 2021, 50(3): 834-837. doi: 10.3969/j.issn.1671-3206.2021.03.056 [16] YUAN Y R, YANG B S, WANG H, et al. The simultaneous antibiotics and nitrogen removal in vertical flow constructed wetlands: Effects of substrates and responses of microbial functions[J]. Bioresource Technology, 2020, 310: 123419. doi: 10.1016/j.biortech.2020.123419 [17] SONG H L, LI H, ZHANG S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350: 920-929. doi: 10.1016/j.cej.2018.06.035 [18] LU L, XING D F, REN Z J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell[J]. Bioresource Technology, 2015, 195: 115-121. doi: 10.1016/j.biortech.2015.05.098 [19] TEOH T P, ONG S A, HO L N, et al. Up-flow constructed wetland-microbial fuel cell: Influence of floating plant, aeration and circuit connection on wastewater treatment performance and bioelectricity generation[J]. Journal of Water Process Engineering, 2020, 36: 101371. doi: 10.1016/j.jwpe.2020.101371 [20] DENG Y Q, ZHANG Y, GAO Y X, et al. Microbial Community Compositional Analysis for Series Reactors Treating High Level Antibiotic Wastewater[J]. Environmental Science & Technology, 2012, 46(2): 795-801. [21] GUO X P, PANG W H, DOUC L, et al. Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors[J]. Chemosphere, 2017, 175: 21-27. doi: 10.1016/j.chemosphere.2017.01.134 [22] KATIPOGLU-YAZAN T, UBAY-COKGOR E, ORHON D. Chronic impact of sulfamethoxazole: How does process kinetics relate to metabolic activity and composition of enriched nitrifying microbial culture[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(6): 1722-1732. [23] CONKLE J L, WHITE J R, METCALFE C D. Reduction of pharmaceutically active compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana[J]. Chemosphere, 2008, 73(11): 1741-1748. doi: 10.1016/j.chemosphere.2008.09.020 [24] TURIRL E, BORDIN G, RODRIÍGUEZ A R. Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samp les by HPLC-UV/MS/MS-MS[J]. Journal of Environmental Monitoring, 2005, 7(3): 189-195. doi: 10.1039/B413506G [25] BIAŁK-BIELIŃSKA A, Stolte S, Matzke M, et al. Hydrolysis of sulphonamides in aqueous solutions[J]. Journal of Hazardous Materials, 2012, 221-222: 264-274. doi: 10.1016/j.jhazmat.2012.04.044 [26] SONG H L, LI H, ZHANG S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350: 920-929. doi: 10.1016/j.cej.2018.06.035 [27] YANG W L, HAN H X, ZHOU M H et al. Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells[J]. RSC Advances, 2015, 5: 49513. doi: 10.1039/C5RA05545H [28] GOLET E M, XIFRA I, SIEGRIST H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil[J]. Environmental Science & Technology, 2003, 37(15): 3243-3249. [29] LIU L, LIU C X, ZHENG J Y, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere, 2013, 91(8): 1088-1093. doi: 10.1016/j.chemosphere.2013.01.007 [30] SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072 [31] 刘兰, 明语真, 吕爱萍, 等. 厌氧氨氧化细菌的研究进展[J]. 微生物学报, 2021, 61(4): 969-986. [32] 郑勇, 郑袁明, 张丽梅, 等. 极端环境下嗜热酸甲烷营养细菌研究进展[J]. 生态学报, 2009, 29(7): 3864-3871. doi: 10.3321/j.issn:1000-0933.2009.07.049 [33] LI H, XU H, YANG Y L, et al. Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland[J]. Water Research, 2019: .114988. [34] 温慧洋. 微生物燃料电池耦合人工湿地对典型抗生素的去除特性及强化措施研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2020. [35] 马晓丹, 高灵芳, 谭文博, 等. 一株异养脱硫反硝化菌株的筛选及其生物脱硫脱氮特性研究[J]. 微生物学通报, 2015(5): 853-857.