开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应

李峰, 杨宝山, 王惠, 袁英睿, 孙文, 曹鑫磊. 开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应[J]. 环境工程学报, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073
引用本文: 李峰, 杨宝山, 王惠, 袁英睿, 孙文, 曹鑫磊. 开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应[J]. 环境工程学报, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073
LI Feng, YANG Baoshan, WANG Hui, YUAN Yingrui, SUN Wen, CAO Xinlei. Treatment effect of wastewater containing antibiotic and microbial community response in microbial fuel cell integrated with constructed wetland under different circuit operation mode[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073
Citation: LI Feng, YANG Baoshan, WANG Hui, YUAN Yingrui, SUN Wen, CAO Xinlei. Treatment effect of wastewater containing antibiotic and microbial community response in microbial fuel cell integrated with constructed wetland under different circuit operation mode[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073

开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应

    作者简介: 李峰(1997—),男,硕士研究生。研究方向:水污染控制。E-mail:353154200@qq.com
    通讯作者: 王惠(1971—),女,博士,教授。研究方向:水土污染成因及控制技术。E-mail:hwang_118@163.com
  • 基金项目:
    国家自然科学基金资助项目(41877424;31870606;32071559);山东省自然科学基金资助项目(ZR2018MD002)
  • 中图分类号: X703.1

Treatment effect of wastewater containing antibiotic and microbial community response in microbial fuel cell integrated with constructed wetland under different circuit operation mode

    Corresponding author: WANG Hui, hwang_118@163.com
  • 摘要: 为探究微生物燃料电池型人工湿地处理抗生素废水的效果,构建了闭路运行(CW-MFC1)与开路运行(CW-MFC2)的微生物燃料电池型人工湿地,研究了不同电路运行模式下微生物燃料电池型人工湿地对氮、COD以及抗生素的去除效果,并对阳极与阴极的微生物群落及其与污染物去除效果的关系进行了探究。结果表明,闭路运行模式下CW-MFC对NH+4-N、TN、COD以及盐酸环丙沙星(CIPH)与磺胺甲恶唑(SMX)2种抗生素的去除效果均显著高于开路运行模式(P<0.05),对NO3-N的去除效果低于开路运行模式。16SrDNA测序结果表明:闭路运行模式下CW-MFC阳极具有更高的微生物丰富度和多样性;不同电路运行模式对阳极与阴极门水平上的微生物群落结构影响较小,但对属水平上的微生物组成有显著的影响。冗余分析结果表明,CW-MFC对污染物的去除率随着绝大多数阳极与阴极的细菌属的相对丰度增加而增加,但随着阳极的Methylotenera相对丰度的增加而减少。以上研究结果表明,闭路运行模式下CW-MFC处理高浓度抗生素废水具有更好的潜力。
  • 随着工业化和城镇化的加速推进,对废水的集中处理备受关注[1]。1932年开始应用的Wuhrmann工艺是最早的脱氮工艺,称之为O/A工艺,遵循硝化、反硝化的流程顺序而设置[2]。然而,在硝化过程中需要供氧,反硝化过程中需要外加碳源,这造成了能耗和碳源的双重浪费。对此,将生物单元的顺序进行倒置,便产生了A/O工艺,A/O工艺成为最早使用的生物脱氮技术。这是工艺单元不同排列顺序构成组合工艺的开端,后续发展的废水生物处理工艺几乎均为厌氧、缺氧/水解、好氧单元的组装(图1)。典型的工艺有A/A/O和O/A/O,组合工艺中的不同单元反应器排序会影响碳源利用和脱氮效果,因此,需要根据废水组成与处理目标选择合适的工艺技术。

    图 1  前置厌氧与前置好氧工艺的演化配置
    Figure 1.  Evolutionary configuration of pre-anaerobic and pre-aerobic processes.

    厌氧置前的工艺可以控制碳源转化为小分子有机物或者甲烷,提高废水的可生化性,为后续反硝化反应提供碳源。HAO等[3]采用A/A/O工艺处理制革废水,考察了沿程溶解性有机物的浓度变化,发现A1的厌氧水解单元能优先去除小分子量的物质和蛋白质,后续的A/O工艺可更彻底地去除残余有机物。O/A/O工艺可在O1单元反应器中好氧降解部分有机物,实现含氮有机物的氨化,有助于硝化反应的实现。李国令等[4]对比了O/A/O和A/O工艺处理同一城镇污水的结果,在O1单元反应器中降解了大部分有机物,可为O2提供良好的硝化环境,因此,O/A/O脱氮效果优于A/O工艺。A/A/O工艺对高毒性工业废水的处理不具有优势,这是因为A1中的微生物增殖速度慢,难以消除毒性抑制作用。兼顾脱氮和除磷是A/A/O工艺的特征,脱氮效率受回流比的影响,无法实现完全脱除总氮,也存在着与除磷菌在碳源利用分配之间的矛盾。然而,前置好氧的O/A/O工艺因大幅度削减了毒性物质而有利于后续单元硝化菌的生长。与A/A/O工艺不同的是,该工艺不能利用废水中存在的易降解有机物作为碳源进行反硝化脱氮,造成一定程度的碳源浪费。由此可见,前置厌氧或者前置好氧对后续的脱氮工艺有着不同的影响机制,A/A/O工艺多用于生活污水[5-6],而O/A/O工艺可能更适合于工业废水[7]

    焦化废水是典型的高碳氮比工业废水,含有多种高浓度有毒物质。其中的有机污染物主要包括酚类[8]、苯系物、杂环芳烃和多环芳烃等物质[9];其无机物中,S2-、SCN、CN等均为典型的毒性物质,并且对废水的COD值有较大的贡献[10]。LI等[11]研究了在相同水力停留时间下A/A/O与A/O工艺分别对焦化废水中COD和NH4+-N的去除效果,发现两者的去除率几乎相同,但A/A/O比A/O工艺对总氮的去除效果更好。汤清泉等[12]比较了A/A/O与O/A/O工艺对焦化废水的处理效果,认为碳氮比是决定二者对总氮去除效果的关键因素。当碳氮比为15~20时可以选择A/A/O工艺,当碳氮比为20~35时则O/A/O工艺效果更好。其原因是:前置好氧单元可以去除高碳氮废水中的有机物而降低后续处理的负荷。本课题组在长期实践的基础上开发了针对焦化废水处理三污泥系统的好氧-水解-好氧流化床脱氮工艺(命名为O/H/O工艺,其中,O1为除碳氨化单元,H为水解脱氮单元,O2为完全硝化单元) [13-15],已有 5个实际工程应用案例,最长运行时间达到12年。O/H/O工艺具有独特的三相分离器,可以保证在不需要污泥回流的情况下实现各个单元反应器独立的污泥特征和生物量,节省了能耗,并促进了污泥生态与水质环境的相容性[16]。新型结构生物三相流化床作为O1反应器,在进水有机负荷达到2.4 kg ·(m3·d)−1 的运行情况下,其耗氧有机物的去除率可以达到93.0%以上,反应器中氧的利用率为50%~60%。面对高毒性、高浓度的焦化废水,A/A/O工艺需要1~2倍稀释后才能进入生物系统,而O/A/O或O/H/O工艺则不需要稀释。

    厌氧、水解、好氧单元不同顺序的排列组合构成了不同的废水生物处理工艺技术。在废水性质转化方面,厌氧单元可提高B/C值[17],而好氧单元可降低B/C值,分别有利于异养反硝化与硝化反应;在脱氮模式中,要考虑硝化反硝化[18]、短程硝化反硝化[19]、厌氧氨氧化[20]、自养反硝化[21]、好氧反硝化[22]等原理的选用、协同及条件控制。A/A/O工艺和O/A/O工艺都需要回流才能保持反应器内的污泥浓度,A/A/O工艺的运行属于单污泥系统,O/A/O工艺中设置了2个二沉池,属于双污泥系统,而O/H/O工艺属于三污泥系统。根据废水的性质选择合适的工艺,可以在达标排放的基础上实现能耗与物耗的减量化。由于目前缺乏不同工艺特征的比较,为此,本文分析了不同工艺的碳源利用模式和脱氮模式,提出了一种代表性的焦化废水组成并通过研究A/A/O、O/A/O、O/H/O的组合工艺对焦化废水中核心污染物的去除及其能耗分配关系,阐明了工艺技术选择的原则,为复杂工业废水生物处理技术的工艺优选提供参考。

    本课题组对国内38个焦化厂进行了实地调查和数据采集,分析了焦化废水的水质特征与地域差异的关系,发现华北、华中、华东地区废水中的COD值略高,华中和西南地区废水的氨氮浓度略低[23]。焦化废水中的含氮物质主要由氨氮、有机氮、SCN、CN等组分构成,由于蒸氨工艺的差异,含氮物质的比例各有不同。综合国内外的焦化废水原水水质[24-26],结合我们的调查,为了消除差异性和增强可比性,本文定义代表性的焦化废水组成为: COD为4 000 mg·L−1,苯酚、NH+4-N、SCN、CN、S2−以及总氮的质量浓度分别为800、 100、 500、 50、 50 和280 mg·L−1

    A/A/O工艺借鉴宝武韶钢公司的运行数据,水量为60 m3·h−1,3个单元反应器的水力停留时间分别为34、22和52 h,COD负荷分别为1.22、1.46和0.47 kg·(m3·d)−1;O/H/O工艺参考实验室和焦化厂的运行数据[27-28],废水处理量为60 m3·h−1,3个单元反应器的水力停留时间分别为36、40和24 h,COD负荷分别为2.30、0.38和0.55 kg·(m3·d)−1;选取韩国某厂实验室数据作为O/A/O工艺的案例[29],实验规模为0.03 L·h−1,3个反应器的水力停留时间分别为28.8、12和19.2 h,进水中添加KH2PO4和Na2CO3以维持碱度,在缺氧池中加入3倍总氮浓度的甲醇作为碳源,工艺装置总水力停留时间为2.5 d。通过实际与假设相结合的方法进行分析,以3个焦化厂的实际废水数据(见表1)来剖析不同工艺的碳源利用和脱氮模式。O/A/O和O/H/O工艺的反应器排列顺序相同,反应器的性能和运行模式不同。因此,在分析碳源利用和脱氮模式时只考虑A/A/O与O/A/O的对比,而在能耗分析时,再考虑O/A/O与O/H/O的差异性。

    表 1  3种工艺实际运行水质
    Table 1.  Actual operating water quality in three processes mg·L−1
    工艺COD挥发酚NH+4-NSCNCN
    A/A/O1 727±60742±69173±12175±1826.2±4.5
    O/A/O2 300±100635±15235±15375±25-
    O/H/O3 451±215973±74245±15450±1725±3
      注:以集水调池的水质作为生物上水。
     | Show Table
    DownLoad: CSV

    根据污染物的降解途径计算了污染物的COD当量和TN当量,结果见表2,在生物系统里,SCN和CN中的氮转化为氨氮[30-31]

    表 2  不同污染物对COD和总氮的贡献
    Table 2.  Contribution of various pollutants to COD and nitrogen mg·mg-1
    当量挥发酚SCNCNS2−NO3NO2
    COD当量2.3801.1000.6152.000-0.348
    N当量-0.2410.538-0.2260.304
     | Show Table
    DownLoad: CSV

    通过分析不同污染物对COD和总氮的贡献,检验废水组成的合理性。如式(1)所示,废水中的含氮量主要由NO3NO2NH+4、SCN、CN以及其他有机氮提供。如式(2)所示,废水中的COD主要由有机物和还原性无机离子构成,其中,挥发酚、苯系物、SCN、S2−的贡献比例比较大,部分难降解的有机物也导致生物出水中检出较高的COD值。

    CTN= 0.226CNO3+0.538CCN+0.241CSCN+CNH+4N+0.304CNO2+C其他含氮物质 (1)
    CCOD= 2.380Cphenol+1.100CSCN+0.615CCN+2.000CS2+0.348CNO2+C其他有机物 (2)

    式中:CTNCNO3CNO2CCNCSCNCNH+4-NC其他含氮物质分别表示总氮、硝酸根、亚硝酸根、氰化物、硫氰化物、氨氮以及其他含氮物质的质量浓度,mg·L−1CCOD为废水中耗氧有机物(以COD计)的质量浓度,mg·L−1CphenolCS2−C其他有机物分别表示废水中苯酚、硫离子以及其他有机物的质量浓度,mg·L−1

    在每一个单元反应器的出水中,都通过以上的方法进行检验,以确定废水组成的合理关系。

    根据式(3)~式(7)计算A/A/O工艺中每个反应器对污染物i总体去除的贡献率,分别以PiA1PiA2PiO表示。根据式(8)~式(13)计算O/A/O每个反应器对污染物i总体去除率,分别以PiO1PiAPiO2表示。

    PiA1=(1+R1)×CiA1-I-CiA1-ECi0×100% (3)
    PiA2=(1+R1+R2)×CiA2-I-CiA2-ECi0×100% (4)
    PiO=(1+R1+R2)×CiO-I-CiO-ECi0×100% (5)
    CiA2-I=(1+R1)×CiA1-E+R1×CiO-E1+R1+R2 (6)
    CiO-I=CiA2-E (7)
    PiO1=(1+R3)CiO1-I-CiO1-ECi0×100% (8)
    PiA=(1+R4+R5)×CiA-I-CiA-ECi0×100% (9)
    PiO2=(1+R4+R5)×CiO2-I-CiO2-ECi0×100% (10)
    CiO1-I=Ci0+R3CiO1-E1+R3 (11)
    CiA-I=CiO1-E+(R4+R5)×CiO2-E1+R4+R5 (12)
    CiO2-I=CiA-E (13)

    式中:i为各种污染物(COD、苯酚、硫氰化物、氰化物、氨氮、亚硝酸根、硝酸根和总氮)。R1R2分别为A/A/O工艺中污泥回流比和硝化液回流比,污泥回流比取值1,硝化液回流比取值3;R3R4R5分别为O/A/O工艺中初沉池回流至O1的污泥回流比、二沉池回流至A的污泥回流比以及硝化液回流比,均取值为1。C0i为未处理废水中污染物i的质量浓度,mg·L−1CiA1ICiA1ECiA2ICiA2ECiOICiOECiO1ICiO1ECiAICiAECiO2ICiO2E分别表示A1、A2、O反应器和O1、A、O2反应器中污染物i的进水和出水的质量浓度,mg·L−1

    排除水力停留时间对工艺对比造成差异,假设A/A/O与O/A/O工艺具有相同的总水力停留时间,结合文献调研和实际考虑,每个工艺各个反应器的体积比为1:1:2,处理水量为60 m3·h−1

    污染物在反应器中会进行到氨化碳氧化、亚硝化氮氧化或硝化氮氧化3种不同的处理阶段,不同阶段的耗氧量分别根据式(14)~式(16)进行计算。

    OS=[aKCODCCOD+CDO]Q24 000 (14)
    OS=[aKCODCCOD+b(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)CDO]Q24 000 (15)
    OS=[aKCODCCOD+c(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)CDO]Q24 000 (16)
    Kd=(1-NoNi)×100% (17)

    式中:Q为生物系统进水量,m3·d−1abc分别为氧化COD、氨氮到亚硝氮、氨氮到硝态氮的有关的耗氧系数,在本研究中为1.4、3.43、4.57;Os为好氧单元的理论需氧量,kg·h−1CCOD为耗氧有机物(以COD计)的质量浓度,mg·L−1CDO为好氧单元溶解氧的质量浓度,mg·L−1KCOD为COD去除率,%;RsRd分别为活性污泥和硝化液回流比;CNCCNCSCN分别为以脱氮为目标的好氧池中含氨氮、氰化物、硫氰化物的质量浓度,mg·L−1Kd为反硝化率,%;NiNo分别为脱氮系统进、出水总氮的质量浓度,mg·L−1

    A/A/O中的好氧单元主要发挥硝化作用,通过式(16)和式(17)计算可知其耗氧量;O/A/O工艺中,O1易氧化降解耗氧有机物(以COD计),不考虑硝化作用,耗氧量通过式(14)计算可知;在O2中进行硝化作用,耗氧量通过式(16)和式(17)计算可知;O/H/O工艺与O/A/O工艺相似,但不需要污泥回流,因此,在计算O/H/O工艺中O2的曝气能耗时,式(16)的污泥回流比Rs为0。

    污泥回流的能耗是A/A/O与O/A/O工艺所必不可少的,只有通过污泥回流才能保证生物池活性污泥的浓度,回流泵的能耗通过式(18)进行计算。

    WS=KQH (18)
    K=k183.5 (19)

    式中:Ws为污泥回流泵的能耗,kW·h;K是安全系数,由式(19)计算,当水泵功率和污泥回流泵功率超过5 kW时,式(19)中的k取值1.15[32]Q为回流的流量,m3·d−1H为水泵总水头损失,m。

    由于回流污泥含水率高达99.5%~99.9%,所以,污泥回流与废水回流的能耗以相同方法计算。A/A/O与O/A/O工艺的回流比已经明确,O/H/O工艺仅存在硝化液回流,回流比为1,能耗估算值可由泵能耗的公式给出。A/A/O工艺中污泥回流至厌氧池的水头损失为1.5~2 m,硝化液回流至缺氧池的水头损失为1~1.2 m。O/A/O工艺有2个污泥回流系统,二沉池至O1的水头损失为0.5~0.8 m,另一个二沉池至A的水头损失为1~1.5 m。O/H/O不存在污泥回流,硝化液回流的水头损失为1~1.6 m。

    首先考察了2种工艺中COD的沿程变化,分析2种工艺的碳源利用模式差异。由图2可以看出,在A/A/O工艺中,O单元对耗氧有机物(以COD计)的去除效果最好,A1的水解作用使难降解有机物断链、开环,转化为小分子有机酸,为后续的反硝化脱氮所利用;而在O/A/O工艺中,O1对COD的去除率高达90.0%以上,使后续单元工艺主要为脱氮服务。两者不同的是,A/A/O工艺通过微生物反硝化作用去除了废水中的耗氧有机物,而O/A/O工艺则通过生物耗氧直接氧化废水中的耗氧有机物。

    图 2  各工艺沿程COD的变化
    Figure 2.  COD changes along each process.

    LI等[11]对比了A/A/O与A/O工艺的处理效果,指出2个工艺对于有机物和氨氮的去除效果几乎相同,但A/A/O工艺更有利于总氮脱除,这是因为A/A/O工艺设置了产酸阶段。CHAKRABORTY等[33]发现,在A1中COD的去除率为5%~11%,CN降解率为35.0%,没有发现苯酚降解的中间产物和甲烷的生成。王子兴等[34]指出,在A/A/O-MBR工艺处理焦化废水的过程中,单个反应器COD去除率分别为9.2%、73.5%、14.7%;经过GC/MS检测分析,苯酚在A1中的降解率为26.7%,而含氮杂环化合物以及苯系物的去除率分别为49.5%和65.8%。此外,有研究[35]表明,在A/A/O工艺中,A1单元去除污染物效果不明显,COD去除率低于10%;A2单元的COD去除率最高,尤其是易降解有机物在此阶段几乎全部被利用;在O单元中,利用异养微生物好氧氧化残留的有机物,CN和SCN在O2中也被彻底去除。SHARMA[36]研究了厌氧、缺氧、好氧单个单元的处理效果时发现,好氧单元可去除83.3%的CN 和62.0%的COD;当加入氰化物后,好氧单元中COD的去除率下降到52.0%。由此可见,废水组成的复杂性会影响单组分的去除效果。马昕等[37]采用O/A/O工艺处理焦化废水时发现,在O1停留时间为16 h时对COD的去除率达到75.0%,这与我们调查的工艺结果相似。由图2(b)可见,在O/A/O工艺中,O1对COD的去除率很高,浪费了部分有机碳源,而添加的外部有机碳源是造成A单元COD去除率降低的原因之一[38];另一方面,O1中的氨化过程可为O2提供良好的硝化环境。以上研究结果表明,2种工艺对废水中碳源的利用在原理上存在非常大的差异。

    脱氮的效果可通过协调碳源、电子供受体以及DO等因素来实现,故根据2种工艺中氨氮浓度沿流程变化来分析不同脱氮模式的有效性。 由图3可见,虽然O/A/O工艺进水氨氮偏高,但出水氨氮却很低,在O2单元中已经彻底硝化。可见,前置好氧工艺可以为后续O2创造良好的硝化条件。A1去除了27.0%的氨氮,而O1去除了87.5%的氨氮,即在A1中仍然保留着较高浓度的氨氮,而在O1中氨氮几乎完全硝化,这与在进水中是否添加磷盐有关[39]。O1、A1中氨氮浓度的变化以及微生物同化、有机氮氨化、氰化物及硫氰化物氨化等可以同时发生。在工程研究中发现,O1中还存在亚硝化和硝化的可能性[17]

    图 3  各工艺沿程铵离子浓度变化
    Figure 3.  Change in NH4+-N concentration along each process.

    焦化废水中的含氮物质除了铵离子/氨分子外,还有SCN、CN以及含氮有机物。ZHANG等[40]发现,A/A/O中各个单元对氨氮的去除率分别为-2.5%、3%、97%,A1出水中氨氮升高的原因是其他含氮物质氨化作用所致。吕鹏飞等[41]的研究表明,2种流化床工艺的前置厌氧单元对氨氮有少量的降解,氨氮去除率分别为18.1%和35.6%,体现出反应器对于处理效果的影响不同,流化床反应器面对复杂毒性废水比传统的沸腾床反应器表现出更好的耐毒性抑制作用。经过缺氧反应器A2后,氨氮浓度的变化主要有回流导致的直接稀释以及微生物降解的共同作用。GUI等研究了2个A/A/O系统,在硝化液回流比为200%的情况下,氨氮的质量浓度由250 mg·L−1降低至80 mg·L−1[42]。易欣怡等[28]考察了O/H/O工艺的焦化废水处理,发现O1单元能够把氰化物、硫氰化物氧化为氨氮,有机氮全部氨化,从而造成O1出水氨氮浓度的升高;而在H单元中,环状含氮化合物通过水解作用可实现分子开环转变为氨氮,回流液中的硝态氮实现反硝化转变为氮气;接下来的O2单元能够将残余低价状态的含氮化合物转变为硝态氮,所以对氨氮的去除非常彻底。由于多种含氮物质之间具有不同价态转化机制,工艺中合理安排碳源进行脱氮,以及通过回流/超越或微生物功能调控实现总氮的彻底去除将是工艺理论中具有挑战性的研究方向。

    1)各单元反应器的去除效率。能耗分配受工艺的单元反应器组合的影响。单元反应器的不同组合顺序可构成多样的生物处理工艺,前置好氧与厌氧工艺对同一种废水会产生不同的污染物去除效率,较优的工艺应该是在达标排放(即核心污染物去除)的基础上实现时间和空间上的减量化,还要降低二次污染。图4反映了A/A/O和O/A/O工艺污染物浓度的沿程变化。沿流程图中的百分比数据代表反应单元出水污染物浓度占进水中污染物浓度的比例。除了内部降解外,还要考虑因回流引起的反应器内污染物浓度的稀释作用。结合文献调查,综合实际情况,总结出代表性焦化废水典型污染物在单元反应器中的去除效率,如图5所示。其中,假设SCN和CN在O/A/O工艺的O1中完全氨化。

    图 4  典型污染物含量沿各工艺流程的变化
    Figure 4.  The variation of typical pollutant content along each process.
    图 5  典型污染物在各工艺单元反应器中的降解率
    Figure 5.  The degradation rate of typical pollutants in each process unit reactor.

    2)不同工艺的能耗分配。废水中的污染物在不同工艺各单元反应器中的总体去除率如图6所示。A/A/O工艺对污染物的降解主要集中在O单元中,O/A/O工艺的降解则集中在O1单元中。这两者的差异反映了前置好氧工艺与前置厌氧工艺在曝气能耗上的差别。通过式(14)~式(16)计算,各工艺需氧单元的曝气量如图7所示。A/A/O工艺中O单元的需氧量为102.7 kg·h−1,O/A/O中O1和O2的需氧量分别为260.8 kg·h−1和35.1 kg·h−1。由图7可看出,O/A/O工艺的O1大部分的曝气量是用来去除易降解有机物,因此,需氧量较高。但当废水中有机物的浓度很低时(当不考虑有机物耗氧时),A/A/O工艺氧化含氮物质需氧量为100.4 kg·h−1,O/A/O工艺氧化含氮类物质的需氧量为83.9 kg·h−1。因此,对于脱氮性能,O/A/O工艺比A/A/O工艺能耗更高。这归因于:在O1中解除了SCN、CN等有毒物质对A反应器微生物的抑制作用,使得在A中降解的含氮物质相对较多,可以实现O2单元的低能耗硝化反应。因此,当废水中的耗氧有机物的预处理较为彻底时,前置好氧工艺可以实现低耗能高效率脱氮。O/H/O工艺在保留了O/A/O工艺优点的基础上,实现了反应器内部流态化的颗粒污泥特征,氧传质系数是一般活性污泥的2倍左右[43],因此,与O/A/O工艺相比,O/H/O工艺在耗氧量的节能方面更能体现出优势。本课题组根据多年的O/H/O运行经验数据统计得出,在仅考虑脱氮目标时,O/H/O工艺的需氧量约为53.26 kg·h−1

    图 6  不同工艺单元反应器对各污染物的总体去除率
    Figure 6.  Overall removal rate of various pollutants in the unit reactor of different process.
    图 7  各工艺段的曝气量分配
    Figure 7.  Aeration distribution of each process section.

    图4所示的计算可得出,在A/A/O工艺中,进入A2的废水COD为1 140.0 mg·L−1,硝化液回流的硝酸根为84.4 mg·L−1,在A2中主要去除总氮中的硝酸根,其余的氨氮、SCN、CN等含氮物质只是发生了少量的生物降解,经过A2可去除80.0 mg·L−1左右的硝态氮,满足微生物生长的碳源需求量为723.2 g·m−3 (缺氧条件下C∶N∶P = 200∶5∶1),因为废水中含有一定量的有机物,故实际可以供微生物利用的量约为540.0 g·m−3,需要外加碳源122.1 g·m−3 (以甲醇计)。在O/A/O工艺中,进入A单元的废水COD值为633.3 mg·L−1,其总氮类型为硝酸根和氨氮,浓度分别为93.9 mg·L−1和50.0 mg·L−1,在A中降解90.0 mg·L−1的硝态氮,满足微生物正常生长的碳源需求量约为813.6 g·m−3,进入A的废水中可降解有机物的含量约为83.3 g·m−3,不足的碳源需要从外部添加486.9 g·m−3(以甲醇计)。以上的讨论是在不考虑O/A/O工艺中有超越进水的情况,但在实际工程中,往往会使部分集水调节池中的出水以超越O1池的方式进入A池,这样既可以降低O1的曝气能耗,又可减少A单元的外部碳源的需求量。当超越1/3处理量的废水进入A单元时,O1的曝气量变为174.0 kg·h−1 ,超越之后A单元进水的有机物浓度达到977.8 mg·L−1,可供微生物利用的量约为427.8 mg·L−1,因此,折合计算1 m3废水仅需要257.2 g的外加碳源,节省了229.7 g的外部碳源(以甲醇计)。可以看出,O/A/O系统的模式多样性,可以实现总氮的低能耗高效率去除。在实际运行的O/H/O工艺中,由于不需要污泥回流,每个反应器可以灵活调控,因此,O/H/O工艺比O/A/O工艺更容易实现厌氧氨氧化反应,并且可以利用FeS进行自养反硝化脱氮而节省能耗,故实际的O/H/O工艺的外部碳源需求约0~220 g·m−3,具体的需求量取决于厌氧氨氧化与自养反硝化的耦合性能[44]

    污泥回流可以保证生物单元中的污泥浓度即生物量。通过式(18)和式(19)的计算,A/A/O工艺的污泥回流和硝化液回流的总能耗约为42.37 kW·h;O/A/O系统污泥回流与硝化液回流的总能耗约为23.55 kW·h;O/H/O系统只存在硝化液回流,回流能耗约为9.42 kW·h。除了曝气和回流的能耗外,考虑综合因素,3种工艺归纳为2大类:厌氧-缺氧-好氧以及好氧-水解/缺氧-好氧。由于反应器的设置不同,好氧-水解/缺氧-好氧工艺又可以分类为O/A/O和O/H/O,分化出二污泥法和三污泥法,反应器的类型决定了工艺的耗能。若只考虑生物阶段的处理,废水COD在3 000~4 000 mg·L−1、铵离子质量浓度在100~200 mg·L−1时,A/A/O的处理费用为6~8 元·t−1[45,46],O/A/O的处理费用为7~9 元·t−1 [47-49],而O/H/O流化床工艺的处理费用仅为4~5元·t−1,体现了不同技术的成本差异。

    单元工艺的摆放顺序不仅决定了整体工艺运行的能耗,还会对冲击负荷、系统中微生物菌落和处理效果产生很大的影响。李国令等[4]指出,热单胞菌属、脱氯单胞菌属是O/A/O工艺好氧池中的优势菌属;热单胞菌属、脱氯单胞菌属、球形红假单胞菌属是O/A/O工艺缺氧池中的优势菌属。WANG等也发现[50],热单胞菌属与硝酸盐还原酶基因呈正相关,对同时厌氧氨氧化-反硝化系统中的硝酸盐还原起重要作用。 WEI等[15]指出,丛毛单胞菌属在反应器O1中对COD去除起到了关键作用,有助于去除O1反应器中的NH4+-N;硫杆菌则在H反应器中起着主要的反硝化作用,AOB和NOB(亚硝化单胞菌和硝化螺菌)对反应器中硝化作用的贡献最大。三污泥法的O/H/O工艺各单元在污染物组成、去除、功能和微生物群落等方面存在显著进步,有望实现厌氧氨氧化脱氮与深度脱氮的结合,也表明废水水质和反应器的组合对微生物功能分布具有调控功能。

    根据污泥回流的设置与否,A/A/O、O/A/O、O/H/O工艺可以分为单污泥系统、双污泥系统及三污泥系统,3个工艺的主要区别见表3。据报道,A/A/O工艺中A1单元对COD去除效率小于10%,检测不到甲烷的产生[51]。因此,A/A/O工艺仅仅在缺氧和有氧反应器中实现了对COD的去除。由于回流的存在,A/A/O工艺表现为单污泥特征,异养细菌具有较高的比生长速率,因污泥排放量高而导致其在处理高COD/TN废水时,大量自养硝化细菌被排洗。前置好氧工艺对高浓度毒性废水有很好的抗负荷冲击能力,并且O/H/O工艺中的新型结构流化床反应器的强化传质功能与污泥原位分离原理加强了各单元反应器中的微生物能力[22]。在H单元中,根据投加的电子供体不同而具有多种反硝化模式:如利用O1池的剩余COD作为碳源及其他电子供体进行异养反硝化脱氮;通过投加无机还原性电子供体以利用其作为营养源进行自养反硝化脱氮[21,52],还可以避免二次碳源的污染。另外,有研究表明,控制O1反应器在短程硝化水平,可使亚硝酸盐直接得到富集和积累,然后实现厌氧氨氧化模式脱氮,从而使工艺过程节能效果更好[17,19]。可见,复杂废水的脱氮模式多种多样,需要根据实际情况合理选择或耦合新原理,从而进一步实现低能耗、低物耗目标下的总氮去除。

    表 3  不同工艺系统的特点
    Table 3.  Characteristics of different process systems
    工艺污泥系统毒性物质的去除COD/TN脱氮途径能耗影响因素平均运行单价/(元·m-3)优点缺点
    A/A/O单污泥系统A1对大分子有机物的去除11.4异养反硝化一次回流、一次曝气7有利于含氮有机物的水解;反硝化可利用废水中有机物作为碳源不耐冲击负荷,受毒性抑制,需要稀释进水
    O/A/O双污泥系统O1对SCN、CN的去除及氨化12.5异养反硝化、自养反硝化二次回流、二次曝气8耐冲击负荷,进水不需要稀释;硝化效果好耗氧量大,污泥回流频繁,耗能多
    O/H/O三污泥系统O1对SCN、CN的去除及氨化13.8异养反硝化、自养反硝化、厌氧氨氧化及其耦合脱氮二次曝气4.5耐冲击负荷,颗粒污泥耐毒性抑制,硝化效果好,不需要沉淀池;不需要回流耗氧量大
     | Show Table
    DownLoad: CSV

    1)每处理1 m3设定浓度的焦化废水(不考虑O/A/O的超越进水),A/A/O和O/A/O工艺分别需要122.1 g 与486.9 g的外部碳源(以甲醇计)。当废水中的易降解有机物较少且只考虑脱氮目标时,O/A/O工艺的曝气需氧量为83.9 kg·h−1,A/A/O工艺的曝气需氧量为100.4 kg·h−1;当O/A/O工艺中有1/3的进水流量超越至A单元时,其碳源需求量由486.9 g·m−3减至257.2 g·m−3(以甲醇计),曝气量也将显著降低。

    2)由于废水组成的复杂性,污染物的降解效率除了受到彼此的相互制约外,工艺条件和反应器的设计也至关重要。具有高毒性、高碳氮含量的焦化废水,更适合于选择前置好氧的工艺。O/H/O工艺由于其独特的三相分离器的设置而节省了污泥回流部分的能耗,反应器中的颗粒污泥更加耐毒性抑制和抗冲击负荷,并且传氧速率高,工艺耗氧量仅为53.26 kg·h−1,外部碳源的消耗可以由486.9 g·m−3降至0~220 g·m−3

    3)反应器的高效性和可控性,使O/H/O工艺比O/A/O工艺更容易实现自养反硝化与异养反硝化协同脱氮、自养型短程反硝化与厌氧氨氧化的协同脱氮等其他脱氮途径,进而使O/H/O工艺成为一种更具潜力的低能耗、低物耗的生物脱氮技术工艺。针对不同的废水水质与物质组成特征,O/H/O工艺能够对不同功能的单元进行组合和编辑,从时间与空间、药剂与能耗、处理效率等方面追求更加丰富的优化模式,以满足各种不同的出水需求,特别是满足总氮浓度趋零的要求。

  • 图 1  CW-MFC装置示意图

    Figure 1.  Schematic diagram of CW-MFC installation

    图 2  开闭路运行模式下微生物燃料电池型人工湿地出水中NH+4-N、NO3-N、TN和COD的变化

    Figure 2.  Variation of NH+4-N, NO3-N, TN, and COD in the effluent of microbial fuel cell integrated with constructed wetland under open and close circuit operation modes

    图 3  开闭路运行模式下微生物燃料电池型人工湿地出水中抗生素的质量浓度

    Figure 3.  Mass concentrations of antibiotics in the effluent of CW-MFCs under open and close circuit operation modes

    图 4  开闭路运行模式下微生物燃料电池型人工湿地阳极与阴极细菌门与属的相对丰度

    Figure 4.  Relative abundance of bacterial phyla and genus at the two CW-MFCs anodes and cathodes under open and close circuit operation modes

    图 5  微生物属与氮去除率以及出水COD和抗生素质量浓度间关系的冗余分析(RDA)

    Figure 5.  Redundancy analysis (RDA) of the relationships among the bacterial genus and N removal rate and mass concentration of COD and antibiotic in effluent

    表 1  开闭路运行模式下微生物燃料电池型人工湿地进出水污染物的平均质量浓度与平均去除率

    Table 1.  The mean quality concentrations and removal rates of pollutant in influents and effluents of microbial fuel cell integrated with constructed wetlands under open and close circuit operation modes

    污染物进水质量浓度/(mg·L−1)出水质量浓度/(mg·L−1)去除率/%
    CW-MFC1CW-MFC2CW-MFC1CW-MFC2
    NH+4-N24.07±0.435.81±0.727.27±0.8675.86±3.14a69.79±3.76b
    NO3-N2.38±0.101.06±0.110.87±0.1055.22±5.03b63.54±4.64a
    TN26.80±0.687.50±0.789.50±0.9071.96±3.26a64.51±3.94b
    COD299.46±4.9220.21±4.1940.24±4.4393.25±1.40a86.38±1.46b
      注:所有数据均代表平均值±标准差,同一行中不同小写字母表示显著差异(P<0.05)。
    污染物进水质量浓度/(mg·L−1)出水质量浓度/(mg·L−1)去除率/%
    CW-MFC1CW-MFC2CW-MFC1CW-MFC2
    NH+4-N24.07±0.435.81±0.727.27±0.8675.86±3.14a69.79±3.76b
    NO3-N2.38±0.101.06±0.110.87±0.1055.22±5.03b63.54±4.64a
    TN26.80±0.687.50±0.789.50±0.9071.96±3.26a64.51±3.94b
    COD299.46±4.9220.21±4.1940.24±4.4393.25±1.40a86.38±1.46b
      注:所有数据均代表平均值±标准差,同一行中不同小写字母表示显著差异(P<0.05)。
    下载: 导出CSV

    表 2  开闭路运行模式下微生物燃料电池型人工湿地阳极与阴极微生物群落的多样性指数

    Table 2.  Diversity indices of the microbial communities in anode and cathode of CW-MFCs under open and close circuit operation modes

    装置取样点OUT数Chao1ShannonSimpson覆盖率/%
    CW-MFC1阳极2 8183 075.95a9.72a0.9 948a98
    阴极2 2542 423.44c9.50b0.9 955a99
    CW-MFC2阳极2 2002 350.18c9.22c0.9 945a99
    阴极2 4262 599.68b9.67a0.9 950a99
      注:数据为3次采样数据的平均值。同一行中不同小写字母表示显著差异(P<0.05)。
    装置取样点OUT数Chao1ShannonSimpson覆盖率/%
    CW-MFC1阳极2 8183 075.95a9.72a0.9 948a98
    阴极2 2542 423.44c9.50b0.9 955a99
    CW-MFC2阳极2 2002 350.18c9.22c0.9 945a99
    阴极2 4262 599.68b9.67a0.9 950a99
      注:数据为3次采样数据的平均值。同一行中不同小写字母表示显著差异(P<0.05)。
    下载: 导出CSV
  • [1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of china: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
    [2] 白亭亭, 杨群辉, 李铭刚, 等. 植保抗生素阿扎霉素对白菜根肿病的防治效果[J]. 植物保护, 2018, 44(1): 210-214.
    [3] HU X A, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010, 158(9): 2992-2998. doi: 10.1016/j.envpol.2010.05.023
    [4] BARAN W, ADAMEK E, ZIEMIANSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196: 1-15. doi: 10.1016/j.jhazmat.2011.08.082
    [5] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review[J]. Environmental Research, 2019, 169: 483-493. doi: 10.1016/j.envres.2018.11.040
    [6] HU J, ZHOU J, ZHOU S Q, et al. Occurrence and fate of antibiotics in a wastewater treatment plant and their biological effects on receiving waters in Guizhou[J]. Process Safety and Environmental Protection, 2018, 113: 483-490. doi: 10.1016/j.psep.2017.12.003
    [7] LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response[J]. Environmental Pollution, 2019, 254: 112996. doi: 10.1016/j.envpol.2019.112996
    [8] 黄锦楼, 陈琴, 许连煌. 人工湿地在应用中存在的问题及解决措施[J]. 环境科学, 2013, 34(1): 401-408.
    [9] 王琳, 李雪, 王丽. 微生物燃料电池-人工湿地耦合系统研究进展[J]. 环境工程, 2016, 34(10): 11-16.
    [10] FANG Z, SONG H L, CANG N, et al. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J]. Biosensors & Bioelectronics, 2015, 68: 135-141.
    [11] XIE T Y, JING Z Q, HU J, et al. Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland[J]. Ecological Engineering, 2018, 112: 65-71. doi: 10.1016/j.ecoleng.2017.12.018
    [12] 陈桐清. 产电型人工湿地对典型PPCPs的去除作用及机理解析[D]. 南京: 东南大学, 2018.
    [13] 杨可昀. 人工湿地耦合微生物燃料电池产电及去除抗生素的效能研究[D]. 南京: 东南大学, 2016.
    [14] 常飞, 程文博, 张天旭. 生物炭吸附去除水中有机污染物的研究进展[J]. 能源研究与信息, 2018, 34(4): 187-194.
    [15] 陈若霓, 肖坤全. 从废水中吸附去除抗生素的进展研究[J]. 应用化工, 2021, 50(3): 834-837. doi: 10.3969/j.issn.1671-3206.2021.03.056
    [16] YUAN Y R, YANG B S, WANG H, et al. The simultaneous antibiotics and nitrogen removal in vertical flow constructed wetlands: Effects of substrates and responses of microbial functions[J]. Bioresource Technology, 2020, 310: 123419. doi: 10.1016/j.biortech.2020.123419
    [17] SONG H L, LI H, ZHANG S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350: 920-929. doi: 10.1016/j.cej.2018.06.035
    [18] LU L, XING D F, REN Z J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell[J]. Bioresource Technology, 2015, 195: 115-121. doi: 10.1016/j.biortech.2015.05.098
    [19] TEOH T P, ONG S A, HO L N, et al. Up-flow constructed wetland-microbial fuel cell: Influence of floating plant, aeration and circuit connection on wastewater treatment performance and bioelectricity generation[J]. Journal of Water Process Engineering, 2020, 36: 101371. doi: 10.1016/j.jwpe.2020.101371
    [20] DENG Y Q, ZHANG Y, GAO Y X, et al. Microbial Community Compositional Analysis for Series Reactors Treating High Level Antibiotic Wastewater[J]. Environmental Science & Technology, 2012, 46(2): 795-801.
    [21] GUO X P, PANG W H, DOUC L, et al. Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors[J]. Chemosphere, 2017, 175: 21-27. doi: 10.1016/j.chemosphere.2017.01.134
    [22] KATIPOGLU-YAZAN T, UBAY-COKGOR E, ORHON D. Chronic impact of sulfamethoxazole: How does process kinetics relate to metabolic activity and composition of enriched nitrifying microbial culture[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(6): 1722-1732.
    [23] CONKLE J L, WHITE J R, METCALFE C D. Reduction of pharmaceutically active compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana[J]. Chemosphere, 2008, 73(11): 1741-1748. doi: 10.1016/j.chemosphere.2008.09.020
    [24] TURIRL E, BORDIN G, RODRIÍGUEZ A R. Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samp les by HPLC-UV/MS/MS-MS[J]. Journal of Environmental Monitoring, 2005, 7(3): 189-195. doi: 10.1039/B413506G
    [25] BIAŁK-BIELIŃSKA A, Stolte S, Matzke M, et al. Hydrolysis of sulphonamides in aqueous solutions[J]. Journal of Hazardous Materials, 2012, 221-222: 264-274. doi: 10.1016/j.jhazmat.2012.04.044
    [26] SONG H L, LI H, ZHANG S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350: 920-929. doi: 10.1016/j.cej.2018.06.035
    [27] YANG W L, HAN H X, ZHOU M H et al. Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells[J]. RSC Advances, 2015, 5: 49513. doi: 10.1039/C5RA05545H
    [28] GOLET E M, XIFRA I, SIEGRIST H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil[J]. Environmental Science & Technology, 2003, 37(15): 3243-3249.
    [29] LIU L, LIU C X, ZHENG J Y, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere, 2013, 91(8): 1088-1093. doi: 10.1016/j.chemosphere.2013.01.007
    [30] SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072
    [31] 刘兰, 明语真, 吕爱萍, 等. 厌氧氨氧化细菌的研究进展[J]. 微生物学报, 2021, 61(4): 969-986.
    [32] 郑勇, 郑袁明, 张丽梅, 等. 极端环境下嗜热酸甲烷营养细菌研究进展[J]. 生态学报, 2009, 29(7): 3864-3871. doi: 10.3321/j.issn:1000-0933.2009.07.049
    [33] LI H, XU H, YANG Y L, et al. Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland[J]. Water Research, 2019: .114988.
    [34] 温慧洋. 微生物燃料电池耦合人工湿地对典型抗生素的去除特性及强化措施研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2020.
    [35] 马晓丹, 高灵芳, 谭文博, 等. 一株异养脱硫反硝化菌株的筛选及其生物脱硫脱氮特性研究[J]. 微生物学通报, 2015(5): 853-857.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 9.4 %DOWNLOAD: 9.4 %HTML全文: 72.4 %HTML全文: 72.4 %摘要: 18.1 %摘要: 18.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.4 %其他: 94.4 %XX: 3.7 %XX: 3.7 %上海: 0.0 %上海: 0.0 %乌海: 0.0 %乌海: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %北京: 0.8 %北京: 0.8 %商丘: 0.0 %商丘: 0.0 %宜春: 0.0 %宜春: 0.0 %成都: 0.0 %成都: 0.0 %无锡: 0.0 %无锡: 0.0 %杭州: 0.0 %杭州: 0.0 %沈阳: 0.0 %沈阳: 0.0 %济南: 0.0 %济南: 0.0 %深圳: 0.1 %深圳: 0.1 %濮阳: 0.0 %濮阳: 0.0 %石家庄: 0.0 %石家庄: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.0 %郑州: 0.0 %重庆: 0.0 %重庆: 0.0 %长沙: 0.0 %长沙: 0.0 %阳泉: 0.0 %阳泉: 0.0 %其他XX上海乌海佛山保定北京商丘宜春成都无锡杭州沈阳济南深圳濮阳石家庄邢台邯郸郑州重庆长沙阳泉Highcharts.com
图( 5) 表( 2)
计量
  • 文章访问数:  5508
  • HTML全文浏览数:  5508
  • PDF下载数:  107
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-14
  • 录用日期:  2021-08-04
  • 刊出日期:  2021-09-10
李峰, 杨宝山, 王惠, 袁英睿, 孙文, 曹鑫磊. 开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应[J]. 环境工程学报, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073
引用本文: 李峰, 杨宝山, 王惠, 袁英睿, 孙文, 曹鑫磊. 开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应[J]. 环境工程学报, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073
LI Feng, YANG Baoshan, WANG Hui, YUAN Yingrui, SUN Wen, CAO Xinlei. Treatment effect of wastewater containing antibiotic and microbial community response in microbial fuel cell integrated with constructed wetland under different circuit operation mode[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073
Citation: LI Feng, YANG Baoshan, WANG Hui, YUAN Yingrui, SUN Wen, CAO Xinlei. Treatment effect of wastewater containing antibiotic and microbial community response in microbial fuel cell integrated with constructed wetland under different circuit operation mode[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3038-3048. doi: 10.12030/j.cjee.202105073

开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应

    通讯作者: 王惠(1971—),女,博士,教授。研究方向:水土污染成因及控制技术。E-mail:hwang_118@163.com
    作者简介: 李峰(1997—),男,硕士研究生。研究方向:水污染控制。E-mail:353154200@qq.com
  • 1. 济南大学水利与环境学院,济南 250022
  • 2. 山东省高校水资源与水环境工程重点实验室,济南 250022
基金项目:
国家自然科学基金资助项目(41877424;31870606;32071559);山东省自然科学基金资助项目(ZR2018MD002)

摘要: 为探究微生物燃料电池型人工湿地处理抗生素废水的效果,构建了闭路运行(CW-MFC1)与开路运行(CW-MFC2)的微生物燃料电池型人工湿地,研究了不同电路运行模式下微生物燃料电池型人工湿地对氮、COD以及抗生素的去除效果,并对阳极与阴极的微生物群落及其与污染物去除效果的关系进行了探究。结果表明,闭路运行模式下CW-MFC对NH+4-N、TN、COD以及盐酸环丙沙星(CIPH)与磺胺甲恶唑(SMX)2种抗生素的去除效果均显著高于开路运行模式(P<0.05),对NO3-N的去除效果低于开路运行模式。16SrDNA测序结果表明:闭路运行模式下CW-MFC阳极具有更高的微生物丰富度和多样性;不同电路运行模式对阳极与阴极门水平上的微生物群落结构影响较小,但对属水平上的微生物组成有显著的影响。冗余分析结果表明,CW-MFC对污染物的去除率随着绝大多数阳极与阴极的细菌属的相对丰度增加而增加,但随着阳极的Methylotenera相对丰度的增加而减少。以上研究结果表明,闭路运行模式下CW-MFC处理高浓度抗生素废水具有更好的潜力。

English Abstract

  • 抗生素作为一种抗菌类药物被广泛应用于治疗和预防疾病、促进动物生长以及作物种植和保护等领域[1-2]。至2013年,我国抗生素的使用量已突破16×104 t,其中48%为人类摄入,剩余的用于畜禽等动物[1]。然而,生物体所摄取抗生素的30%~90%不会被代谢,而是会从体内排出,最后进入环境中,从而对生态系统和人类健康造成威胁[3-4]。同时,抗生素残留在环境中还会诱导抗生素耐药细菌和抗生素抗性基因(antibiotics resistance genes, ARGs)的产生[5]

    然而,传统的污水处理厂一般没有针对抗生素的处理工艺,抗生素与抗性基因在废水和污泥中被频繁检测出来[6],导致大量抗生素未经处理进入环境中。有研究[7]表明,人工湿地(constructed wetland, CW)在抗生素和ARGs的处理中具有巨大的潜力。但是,CW易堵塞、占地面积大、受外部条件影响大等缺点,影响了其对污染物的去除性能[8]。微生物燃料电池型人工湿地系统(microbial fuel cell integrated with constructed wetland, CW-MFC)作为一种新型废水处理技术,其可将微生物燃料电池(microbial fuel cell, MFC)嵌入到人工湿地中,实现废水处理的同时产生电能[9]。典型的MFC需要一个厌氧阳极区和好氧阴极区来提供氧化还原梯度,以促进电子和质子从厌氧区到好氧区的转移。而CW底部为厌氧区,顶部为有氧区,因而形成了天然的氧化还原梯度。两者在结构上的相似性,提供了将两者进行结合的可能性。二者的耦合可更好得提高污染物的去除效率。有研究[10-12]表明,CW-MFC对N、P等常规污染物以及偶氮染料、硝基苯、药品及个人护理品等难降解有机物都有良好的去除性能。

    目前,关于CW-MFC对抗生素废水的处理效果及相关机理的研究还较少。杨可昀等[13]利用CW-MFC处理含四环素和磺胺甲恶唑的废水,证实了CW-MFC相较于传统CW可以更有效的去除废水中的抗生素,但没有明确其去除机理。因此,构建高效的微生物燃料电池型人工湿地并研究其对抗生素废水处理的效果及机制已成为当前废水处理中的研究热点之一。

    生物炭作为吸附剂广泛地应用于污水处理,其不仅容易获取而且对污染物有良好的吸附效果[14]。有研究[15]表明,利用生物炭作吸附剂可有效吸附去除水中的抗生素。YUAN等[16]发现,生物炭作为基质填充到人工湿地,可以提高湿地对污染物的去除效果,因为生物炭不但可以吸附更多的污染物,同时发达的孔隙结构,较大的比表面积可以为微生物提供附着场所,有利于微生物生长。基于此,本研究建造了以生物炭作为电极基质的CW-MFC系统,开展不同电路运行模式下处理含喹诺酮类抗生素盐酸环丙沙星(ciprofloxacin hydrochloride, CIPH)和磺胺类抗生素磺胺甲恶唑(sulfamethoxazole, SMX)废水的研究,通过系统运行,研究了不同电路运行模式下CW-MFC对抗生素的去除效果、抗生素废水中常规污染物的去除效果以及基质微生物对不同运行模式的响应。

  • 本实验在济南大学水利与环境学院温室中进行,温度保持在(25±3) ℃,模拟构建了2个CW-MFC装置模型。如图1所示,闭路运行的CW-MFC1与开路运行的CW-MFC2的圆柱型池体由有机玻璃制成,内径20 cm,高50 cm。由下向上依次填充底层基质粗砾石5 cm,细砾石10 cm、阳极层基质生物炭10 cm、中间层基质沸石15 cm、阴极层基质生物炭5 cm。在阳极层中部与阴极层顶部铺设附着在不锈钢网上的碳纤维毡以增强电子的转移。在空气阴极层种植4颗菖蒲。其中CW-MFC1阴极与阳极之间使用绝缘铜线相连接,中间连接1 000 Ω电阻形成闭合回路。CW-MFC2阴极与阳极之间不进行连接,开路模式运行,本质上是传统人工湿地。使用黑色遮光布对装置与水箱进行遮光处理防止藻类的产生和抗生素的光解。

  • 受试废水是人工制备的合成废水,由160 mg·L−1葡萄糖、160 mg·L−1乙酸钠、89 mg·L−1 NH4Cl、16 mg·L−1 KNO3、10 mg·L−1 KH2PO4、10 mg·L−1 CaCl2和5 mg·L−1 MgSO4组成。在实验装置构建完成后,使用活性污泥对阳极进行接种,活性污泥取自济南光大水务二厂;之后进入培养期,合成废水使用蠕动泵从底部进水口连续泵入2个实验装置,流量为1.190 mL·min−1,2个实验装置的水力停留时间(hydraulic retention time, HRT)为3 d。在30 d后,装置内形成稳定的生物膜,出水水质稳定,CW-MFC1输出端电压稳定。系统达到稳定后,在合成废水中加入目标抗生素磺胺甲恶唑(SMX)与盐酸环丙沙星(CIPH)各2 mg·L−1,该系统运行90 d。

  • 1)常规水质指标的测定。每3 d从装置顶部出水口采集系统出水,同时获取进水样品。在水样采集当天,分别按照以下标准方法测定出水水质指标。NH+4-N采用靛酚蓝比色法测定,NO3-N采用紫外分光光度法测定,TN采用碱性过硫酸钾消解-紫外分光光度法(HJ 636-2012)测定,COD采用快速消解分光光度法(HJ/T 399-2007)测定。所有的目标污染物检测均设定3个重复。

    2)抗生素检测方法。每6 d从装置顶部出水口采集系统出水,检测抗生素(CIPH和SMX)的浓度。进出水样品使用0.22 μm滤膜过滤后采用高效液相色谱和紫外检测器(DAD)测定SMX和CIPH的质量浓度。采用C18反相柱(4.6 mm×250 mm;5 μm),2种抗生素的注射量均为20 μL,流动相流速为1 mL·min−1。CIPH流动相为0.025 mol·L−1磷酸∶乙腈=75∶25,用三乙胺溶液调节磷酸溶液pH至(3.0±0.1),荧光检测波长为278 nm。SMX流动相为水∶乙腈=1∶1,荧光检测波长为272 nm。

    3)微生物群落分析。装置运行结束后,采集装置阳极层(A)与阴极层(C)基质,探究开路和闭路运行模式下阴极与阳极微生物群落多样性和组成。采集的基质送到杭州LC-Bio科技有限公司。使用E.Z.N.A.®Soil DNA Kit土壤试剂盒进行DNA的提取。针对16SrRNA基因V3~V4高变区,选择正向引物341F(5'-CCTACGGGNGGCWGCAG-3')和反向引物805R(5'-GACTACHVGGGTATCTAATCC-3')作为扩增引物。在Illumina Novaseq平台上按照制造商的操作指南进行测序。使用Vsearch (2.3.4版本)筛选高质量的嵌合序列,利用DADA2进行解调,得到特征表和特征序列。通过QIIME2软件获取观测物种、Chao1、Shannon和Simpson指数。

  • 采用Excel 2019进行数据的平均值和标准偏差计算,采用SPSS 26进行统计差异与相关性分析,使用Origin 2018软件绘制图形,使用Canoco 5进行冗余分析(RDA)。

  • 表1所示为CW-MFC1(闭路)和CW-MFC2(开路)运行期间的进出水污染物平均质量浓度与平均去除率。CW-MFC1和CW-MFC2对NH+4-N、TN和COD的平均去除率为75.86%和69.79%、71.96%和64.51%、93.25%和86.38%,CW-MFC1比CW-MFC2分别高出6.07%、7.45%和6.87%。在闭路运行模式下,CW-MFC的NH+4-N、TN和COD平均去除率显著高于开路运行模式下的CW-MFC (P<0.05)。CW-MFC1和CW-MFC2的对NO3-N的去除率分别为55.22%和63.54%,出水质量浓度为(1.06±0.11) mg·L−1和(0.87±0.10) mg·L−1,闭路运行的CW-MFC相比开路运行的CW-MFC,对NO3-N去除率低8.32%,但出水质量浓度相差不大。上述结果表明,虽然闭路运行与开路运行的CW-MFC对氮与COD都有较好的去除率,但与开路运行的CW-MFC相比,闭路运行的CW-MFC表现出更好的去除性能,表明采用闭路运行模式在人工湿地中形成完整的微生物燃料电池系统,可以增强废水中氮与COD的去除。

    有研究表明,闭路运行模式可以加快电化学细菌在电极上的富集与生长[17],而电化学活性细菌对CW-MFC中硝化和反硝化过程会有促进作用[18]。在本研究中,闭路运行的CW-MFC中电化学细菌和氨氧化细菌具有更高的丰度,可使硝化作用得到增强,这可能是其中NH+4-N去除率较高的主要原因。此外,较高的微生物活性同样是COD去除率高的原因。TEOH等[19]对上升流CW-MFC中硝酸盐去除的沿程变化进行研究时发现,废水中的NO3-N进入装置底部厌氧区后得到有效去除,但在阴极层出水中又有所增加,这与硝化作用产生NO3NH+4的减少相对应。由此可推测,本研究进水中NO3-N在进入装置底部后经过反硝化作用得到有效去除。但污水经过阴极区时,在有氧条件下经过硝化作用将NH+4-N转化为NO3-N,一部分扩散进入厌氧区域通过反硝化作用去除;另一部分未得到及时去除而随着出水流出。因此,出水中NO3-N质量浓度又有增加。而本研究合成废水中氮主要以NH+4-N存在,由于形成完整的微生物燃料电池通路,闭路运行的CW-MFC中NH+4-N去除效率较高,硝化作用可产生更多NO3-N,这可能是导致其NO3-N出水质量浓度高于开路运行下CW-MFC的主要原因。此外,本研究进水总氮主要以NH+4-N存在,因此,较高的NH+4-N去除率导致较高的总氮去除率,这与出水总氮含量的测试结果相互吻合。

    运行期间开闭路2种运行模式下CW-MFC出水中NH+4-N、NO3-N、TN和COD的动态变化情况如图2所示。结果表明,开始加入抗生素后,CW-MFC1与CW-MFC2 系统中出水NH+4-N、TN和COD的质量浓度值变化趋势为先升高后降低最后趋于稳定,NO3-N质量浓度为先降低后升高但十分不稳定。加入抗生素后,开路运行模式和闭路运行模式下CW-MFC出水NH+4-N质量浓度均有所升高,在第15天左右最高可增加到7.44 mg·L−1和9.25 mg·L−1。有研究表明,高浓度的抗生素会抑制微生物活性,改变细菌群落结构,降低微生物多样性[20-21],特别是一些参与硝化与反硝化的细菌对抗生素具有很高的敏感性[22]。在CW-MFC系统中,氮的去除主要由微生物脱氮完成,加入抗生素后,系统的微生物群落结构遭到破坏,硝化反硝化能力会降低。因此,抗生素加入的初期,NH+4-N去除率降低,出水质量浓度也随之升高,之后随着运行时间的增加,出水质量浓度逐渐降低,直到系统运行45 d之后出水质量浓度开始趋于稳定。这是因为,随着系统运行时间的增加,在抗生素的环境压力诱导下,抗生素抗性基因逐渐产生,抗生素耐药性细菌出现,抗生素对微生物的抑制作用变小,微生物群落稳定性逐渐增强,因此,NH+4-N去除率逐渐升高,出水质量浓度逐渐降低。NO3-N变化趋势总体与NH+4-N相反,但出水质量浓度变化较大。原因可能是:由于抗生素的加入,由NH+4-N转化的NO3-N减少,但抗生素同样对反硝化细菌有影响,从而降低NO3-N的去除效果。同上,由于本研究总氮主要以NH+4-N存在,出水总氮质量浓度的变化大体与NH+4-N变化趋势相同。抗生素的出现对微生物群落结构产生影响,随着微生物多样性的减少及其丰度的降低,耗氧有机物(以COD计)消耗随之减少,出水COD值增加,之后系统逐渐稳定,出水COD值降低。在加入抗生素之前,2个装置已形成稳定生物膜,闭路运行模式的CW-MFC具有更好的污染物去除性能和微生物活性,因而即使系统微生物群落受到抗生素的冲击,但闭路运行的CW-MFC比开路运行的CW-MFC具有更好的抵抗力,闭路运行的CW-MFC仍保持更好的处理性能。

  • 图3为运行期间开闭路2种运行模式下CW-MFC出水中目标抗生素质量浓度的变化。CW-MFC1和CW-MFC2中CIPH的平均出水质量浓度分别为4.23 μg·L−1与7.73 μg·L−1,平均去除率为99.79%与99.61%,SMX的平均出水质量浓度分别为22.43 μg·L−1与34.96 μg·L−1,平均去除率为98.89%和98.25%。上述结果表明,闭路运行的CW-MFC与开路运行的CW-MFC对CIPH和SMX都有较好的去除效果,闭路运行的CW-MFC对CIPH和SMX的出水质量浓度显著低于开路运行的CW-MFC(P<0.05),同时,2个系统中CIPH的去除效果显著好于SMX的去除效果(P<0.05)。

    CW-MFC主要通过基质吸附,微生物降解和植物吸收等方式去除废水中的抗生素[23]。水解与光解也是去除抗生素的途径,CIPH容易发生光解,SMX易发生水解[24-25]。本研究装置的池体使用黑色遮光布覆盖,以此降低CIPH的光解作用。本研究中,装置内pH保持在7左右,此时水解作用十分有限[25]。因此,本实验不考虑抗生素的光解与水解作用。在CW-MFC系统中,阳极微生物会分解葡萄糖以及一些难降解有机物产生电子,而闭路运行模式的CW-MFC阳极产生的电子通过外电路到达阴极,为阴极提供了更多的末端电子受体,从而可提高阴极还原速率。因此,闭路运行模式可能具有更高的阳极微生物活性,从而提高了污染物的利用率,可促进抗生素的微生物降解[26]。同时,YANG等[27]的研究表明,电吸附过程可以增强基质对抗生素的吸附能力,闭路运行模式的CW-MFC中有弱电流的存在,这可能是其具有更好去除抗生素效率的原因之一。有研究[28]表明,喹诺酮类抗生素的去除主要靠基质的吸附作用,而磺胺类抗生素的去除则是以微生物作用为主。这可能是2种抗生素出水质量浓度差异较大的原因。LIU等[29]的研究表明,CW对喹诺酮类抗生素的去除效果要远高于磺胺类抗生素,这与本研究得到的结果一致。

  • 表2为利用Illumina Novaseq测序得到的Alpha多样性数据。闭路运行的CW-MFC阳极微生物的丰富度(Chao1)与多样性(Shannon、Simpson)显著高于开路运行的CW-MFC(P<0.05)。在闭路运行的CW-MFC装置中,阳极微生物的丰富度和多样性显著高于阴极微生物(P<0.05)。而在开路运行的CW-MFC装置中则相反,阳极微生物的丰富度和多样性略微低于阴极微生物。以上结果表明,不同运行模式显著改变了微生物的丰富度和多样性。闭路运行的CW-MFC由于电流刺激促进了微生物在阳极的富集与生长,这与闭路运行模式的CW-MFC对污染物有更好的去除性能相一致。微生物降解是主要的污染物去除途径,因此,更高的微生物丰度会带来更好的处理性能。

    图4(a)所示为CW-MFCs中细菌门水平相对丰度最高的20个门。在2个CW-MFC阳极中,变形菌门(Proteobacteria)是主要的优势菌门之一,具有最高的相对丰度,分别为49.71%和48.38%,其次是拟杆菌门(Bacteroidetes)、Patescibacteria、浮霉菌门(Planctomycetes)、绿弯菌门(Chloroflexi)在2个CW-MFC阴极中,变形菌门(Proteobacteria)同样是主要的优势菌门,且具有更高的相对丰度,分别为62.56%和64.43%,其次是拟杆菌门(Bacteroidetes),Patescibacteria,疣微菌门(Verrucomicrobia)和硝化螺旋菌门(Nitrospirae)这些广泛存在于自然界中的菌门,在污染物的去除方面扮演着重要的角色。Proteobacteria可以有效降解污水中营养物质与一些有机污染物,同时在生物电的生产中起着重要的作用[30]。在本研究中,闭路运行的CW-MFC阳极和阴极Proteobacteria的相对丰度略高于开路运行的CW-MFC,但差异不显著(P>0.05),但2个装置阴极Proteobacteria的相对丰度显著大于阳极(P<0.05)。BacteroidetesChloroflexi作产电菌,在2个装置阳极的相对丰度均高于阴极。在2个装置的阳极,闭路运行的CW-MFC中Patescibacteria的相对丰度低于开路运行的CW-MFC,但Planctomycetes的相对丰度高于开路运行的CW-MFC。属于Planctomycetes的厌氧氨氧化细菌类群可以在厌氧环境下,以NO2作为电子受体,直接将NH+4转化为N2从而达到脱氮的目的[31]。因此,闭路运行的CW-MFC阳极Planctomycetes相对丰度较高可能是其NH+4-N去除率高的原因之一。在2个装置阴极,闭路运行模式的CW-MFC中VerrucomicrobiaNitrospirae的相对丰度均高于开路运行模式。Verrucomicrobia中的甲烷营养细菌类群,可以将CH4转化为CO2[32],而Nitrospirae中的一些硝化细菌,可以将NO2氧化成NO3。这进一步表明:不同运行模式可以影响CW-MFC系统的微生物群落结构,从而影响系统对氮和抗生素处理性能。

    选取相对丰度最高的30个属,将其中未分类的归为一类,得到图4(b)。可以看出,开闭路运行模式对细菌属水平上的结构有明显的影响。在2个装置阳极,主要的菌属为地杆菌属(Geobater)、陶厄氏菌属(Thauera)、甲基娇养杆菌属(Methylotenera)、脱氯单胞菌属(Dechloromonas)、脱硫单胞菌属(Desulfuromonas)、NitrospiraEllin6067等菌属。Geobater是CW-MFCs装置阳极相对丰度最高的属,这是一种典型的电化学活性细菌,属于产电菌中的优势菌属[33]。闭路运行模式下CW-MFC的Geobater相对丰度的显著高于开路运行模式,而闭路运行时电子可以通过外电路到达阴极产生电流,二者结果一致。Thauera具有反硝化能力,作为一种反硝化功能菌,其在2个装置阳极的相对丰度为4.00%和3.68%,远大于其在2个装置阴极0.81%和0.48%的相对丰度,由此可知,阳极厌氧区域确实为进行反硝化作用的主要场所。Ellin6067是一种亚硝化菌属,Nitrospira是常见的硝化细菌,二者参与硝化作用,其在2个装置的阴极与阳极均有发现,但Nitrospira在闭路运行模式的CW-MFC阴极丰度最高。由此说明,在装置阳极与阴极均有硝化作用发生,但装置阴极发生的硝化作用更强,而装置阳极发生硝化作用的原因可能是由于进水中含有一定的溶解氧。Desulfuromonas在参与硫的转化中同样会产生电子,高丰度的Desulfuromonas可能会使SMX中的S=O化学键断裂,从而提高抗生素去除率[34]。因此,闭路运行模式下CW-MFC更高的产电性能和抗生素去除效率可能与其更高的Desulfuromonas相对丰度有关。2个装置的阴极的主要菌属为地杆菌属(Geobater)、固氮弧菌属(Azoarcus)、SulfuritaleaNitrospira等菌属。Azoarcus是CW-MFCs系统阴极相对丰度最高的菌属,这是一种广泛存在于自然界中的兼性厌氧菌,是参与污水中的NO3去除的重要成员[35]。闭路运行模式下CW-MFC中Azoarcus相对丰度为8.34%,显著高于开路运行模式的5.26%(P<0.05),这可能是其有更好脱氮效率的原因之一。值得注意的是,对全部细菌属数据进行分析时发现,虽然已知的厌氧氨氧化菌属的相对丰度在闭路运行的CW-MFC阳极高于开路运行的CW-MFC阳极,与Planctomycetes结果相一致,但均未达到细菌属前30的水平,硝化反硝化仍是脱氮的主要途径。整体上来看,CW-MFC系统阳极与阴极微生物在群落组成上有显著的差异,不同的运行模式显著影响了细菌在属水平上的结构组成。

  • 分别选取阳极与阴极已归类的相对丰度前5的细菌属和NH+4-N、NO3-N、TN、COD、SMX及CIPH的去除性能进行RDA分析,以探讨微生物群落与污染物去除之间的关系。图5(a)为阳极和阴极优势菌属与氮去除率之间的冗余分析结果。结果表明,NH+4-N与TN的去除率随着阴极的5个细菌属以及阳极4个细菌属丰度的升高而升高,随着阳极的Methylotenera丰度的升高而降低。而NO3-N的去除率则相反,随着大多数细菌属丰度的升高而降低,仅随着阳极的Methylotenera丰度的升高而升高。NH+4-N和TN与优势菌属之间的关系进一步证明了微生物是CW-MFC脱氮的主要途径,微生物群落结构是影响脱氮的因素之一。有研究[16]表明,NO3-N的去除与高的微生物丰度紧密相关。据此可以推测,本研究中NO3-N去除受NH+4-N硝化作用转化影响更大。图5(b)为阳极和阴极优势菌属与出水耗氧有机物(以COD计)及抗生素质量浓度之间的冗余分析结果。结果表明,出水COD与2种目标抗生素CIPH、SMX浓度随着阳极Methylotenera丰度的升高而升高,而随着其他阳极和阴极的细菌属丰度的升高而降低,即COD、CIPH和SMX的去除率随着绝大部分细菌属的升高而升高,这与NH+4-N与TN的去除结果一致。同时,在图5(a)图5(b)中,闭路运行的CW-MFC中绝大部分细菌属的相对丰度更高。RDA分析结果表明,开闭路运行模式显著影响了CW-MFC的细菌群落组成,在氮素与抗生素的去除方面起着关键性作用。

  • 1) CW-MFC系统对氮及有机物等污染物有良好的去除性能,闭路运行模式对NH4+、TN及COD有更好的处理效果。

    2)闭路运行与开路运行的CW-MFC系统均能够有效去除污水中的抗生素,去除率大于99%。闭路运行的CW-MFC去除效果更好。

    3)闭路运行模式会提高微生物丰富度与多样性,同时会对微生物群落结构产生影响,从而影响废水中污染物的去除能力。

参考文献 (35)

返回顶部

目录

/

返回文章
返回