-
尿液是生活废水中营养成分的主要来源,虽然其体积仅占生活废水总体积的1%,却贡献了其中80%的氮和50%的磷[1]。尿液废水直接排放不但会导致水源污染、水体富营养化,还具有携带病原体、传播传染病的风险[2]。传统的尿处理方式是排入生活废水中通过污水处理厂进行集中处理,这种混合处理方式具有基础设施投资大、运营成本高的缺点,故不适合在居民分散、经济欠发达地区应用[3-4]。因此,对尿液单独分离并进行原位处理的源分离、分散式尿处理技术日益引起业界的关注[5-8]。
电化学氧化技术具有占地面积小、建造成本低、运营需求少等优点,特别适合在分散式旱厕污水、畜禽养殖废水等小型、分散式水处理设施中应用[9]。多项研究证明:电化学氧化方法同时具备脱氮、矿化、消毒功能,被认为是最具有应用前景的尿液处理技术之一[10-12]。HOFFMANN等[13]开发了基于电化学氧化技术的“Eco-san”原位处理厕所系统,尿液废水经过4 h的处理后COD去除率达到88.3%,其出水水质满足冲洗厕所或排放的要求。
有研究[14-15]表明,在电化学氧化尿液过程中,氯离子(Cl−)阳极氧化产生的活性氯(Cl·、
${\rm{Cl}}_2^{ - \cdot }$ 、Cl2、HClO/ClO−等)在氨氮去除、有机物降解以及灭菌过程中发挥了重要作用。然而,氯与有机物之间会发生反应生成消毒副产物(DBPs)。DIBRA等[11]发现,使用硼掺杂金刚石电极(BDD)电化学氧化模拟尿液时,TOC去除效率远高于钌、铱氧化物涂层电极,但采用BDD电极存在将Cl−氧化成无机消毒副产物(ICBPs)的问题,其主要成分为高氯酸盐(${\rm{ClO}}_4^ - $ )。JASPER等[16]采用铱氧化物涂层电极电化学氧化尿液废水,发现DBPs的主要成分为有机消毒副产物(OCBPs)以及氯酸盐(${\rm{ClO}}_3^ - $ )。现有研究的重点主要集中在脱氮、脱磷、灭菌以及降低能耗等问题[10-12],虽然有些研究注意到产生DBPs的问题,然而电极反应与尿液中复杂有机成分的降解反应互相耦合,特别是电极性能的差异使上述过程更加复杂[10-11],导致目前对DBPs产生机理的认识尚不充分。由于多种DBPs具有三致效应[17],因此,如何减少和去除DBPs的问题历来受到高度重视[18-20]。然而,作为一种潜在的来源,电化学氧化后的尿液中残留DBPs的问题尚未得到充分关注和认识,给该技术的广泛应用带来了潜在的风险。基于上述原因,本研究从电化学析氯以及氯“催化”降解有机物与去除氨氮的机理入手,重点探究了电化学氧化尿液过程中OCBPs、ICBPs生成与转化的基本规律,并以此为基础进行电化学工艺优化。针对电化学处理后的尿液中残留的DBPs成分主要为有机物的情况,采用适合有机物去除的活性炭吸附方法进行后处理技术研究。本研究结果可为电化学氧化技术在尿处理以及畜禽养殖废水预处理等类似领域的应用提供参考。
电化学氧化对尿液处理过程中消毒副产物的生成控制和去除
Control and removal of disinfection by-products (DBPs) during electrochemical oxidation of urine
-
摘要: 减少和去除电化学氧化处理的尿液中残留的消毒副产物(DBPs),是解决该技术潜在风险的关键。为此,开展电化学氧化实验并探求DBPs的生成调控及其后处理效果。电化学氧化实验结果表明,当电流密度为25~100 mA·cm−2、耗电量为40 Ah·L−1时,模拟尿液中游离氯的浓度出现由基本不变到快速升高的转折点(氯化折点)。在折点之前,DBPs的生成受氨氮、尿素氯代反应对游离氯的竞争抑制,浓度保持在较低水平;在折点之后,有机氯代消毒副产物(OCBPs)浓度快速升高并达到峰值,此后OCBPs有所减少,但游离氯大部分转化为无机氯代消毒副产物(ICBPs),主要成分为氯酸盐(
${\rm{ClO}}_3^ - $ )。总之,采用较高的电流密度、在折点时结束电解,可以实现氨氮完全去除、微生物完全灭活,同时将DBPs的浓度控制在较低水平的目标。使用活性炭对电化学处理后的尿液进行吸附后处理,结果表明,当加炭量为30 g·L−1时,尿液中残留的主要DBPs成分二氯乙酸(DCAA)和三氯乙酸(TCAA)的去除率分别为71.6%和96.5%。电解工艺优化结合活性炭后处理能够有效减少电化学处理的尿液中的DBPs。Abstract: Reduction and removal of disinfection by-products (DBPs) residues in the effluents of electrochemical oxidation of urine are the key points to eliminate the potential risk of this technique. In this study, the experiments on electrochemical oxidation of urine were conducted to regulation and control of DBPs production and their post-treatment. The results demonstrated at the current density of 25~100 mA·cm−2 and power consumption of 40 Ah·L−1, the inflection point of free chlorine concentration from almost invariable to rapid increase (i.e., the chlorination breakpoint) occurred when treating synthetic urine (SU). Before the breakpoint, the competitive inhibition occurred between the ammonia ions and urea chlorination reaction and free chlorine, the concentration of produced DBPs kept at relative low level. After breakpoint, the concentrations of organic chlorination by-products (OCBPs) increased rapidly to the peak value. Thereafter, OCBPs concentrations declined slightly, but most free chlorine transformed into inorganic chlorination by-products (ICBPs) with the main species of chlorate. Overall, at higher current density, electrolysis at the end of chlorination breakpoint could control DBPs production at low level, completely remove ammonia nitrogen and inactivate microorganisms. The residues of DBPs in urine subjected to electrochemical oxidation were further post-treated by adsorption. The results showed that at the activated carbon dosage of 30 g·L−1, the removal efficiencies of the major DBPs dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were 71.6% and 96.5%, respectively. Therefore, electrolysis process optimization coupled with the activated carbon post-treatment can effectively reduce the DBPs residues in urine treated by electrochemical oxidation.-
Key words:
- electrochemical oxidation /
- urine /
- disinfection by-products (DBPs) /
- production control /
- removal
-
表 1 模拟尿液的成分及其质量浓度
Table 1. Components and concentrations in SU
成分 质量浓度/(mg·L-1) 成分 质量浓度/(mg·L-1) 尿素 12 012 氯化钙 333 尿酸 168 硫酸镁 241 肌酸 597 碳酸氢钠 168 柠檬酸 1 471 草酸钠 13 氯化钠 3 156 硫酸钠 1 278 氯化钾 2 237 磷酸二氢钠 432 氯化铵 802 磷酸氢二钠 57 -
[1] CHEN X, GAO Y F, HOU D X, et al. The microbial electrochemical current accelerates urea hydrolysis for recovery of nutrients from source-separated urine[J]. Environmental Science & Technology Letters, 2017, 4: 305-310. [2] LI J H, LIU R D, ZHAO S, et al. Simultaneous desalination and nutrient recovery during municipal wastewater treatment using microbial electrolysis desalination cell[J]. Journal of Cleaner Production, 2020, 261: 1-9. [3] ZOLLIG H, REMMELE A, MORGENROTH E, et al. Removal rates and energy demand of the electrochemical oxidation of ammonia and organic substances in real stored urine[J]. Environmental Science Water Research & Technology, 2017, 3(3): 480-491. [4] TARPEH W A, UDERT K M, NELSON K L. Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine[J]. Environmental Science & Technology, 2017, 51(4): 2373. [5] IGOS E, BESSON M, GUTIERREZ T N, et al. Assessment of environmental impacts and operational costs of the implementation of an innovative source-separated urine treatment[J]. Water Research, 2017, 126: 50-59. doi: 10.1016/j.watres.2017.09.016 [6] CHRISTIAENS M E R, GILDEMYN S, MATASSA S, et al. Electrochemical ammonia recovery from source-separated urine for microbial protein production[J]. Environmental Science & Technology, 2017, 51(22): 13143-13150. [7] PAEPE J D, PAEPE K D, GODIA F, et al. Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification[J]. Water Research, 2020(116223): 1-12. [8] ZAMORA P, GEORGIEVA T, HEIJNE A T, et al. Ammonia recovery from urine in a scaled-up microbial electrolysis cell[J]. Journal of Power Sources, 2017, 356: 491-499. doi: 10.1016/j.jpowsour.2017.02.089 [9] 黄琳琳, 戴常超, 刘峻峰, 等. CFD模拟用于电催化反应器电极结构及进水方式的优化[J]. 环境工程学报, 2020, 14(10): 2742-2750. doi: 10.12030/j.cjee.201911134 [10] LI H, YU Q N, YANG B, et al. Electro-catalytic oxidation of artificial human urine by using BDD and IrO2 electrodes[J]. Journal of Electroanalytical Chemistry, 2015, 738: 14-19. doi: 10.1016/j.jelechem.2014.11.018 [11] DBIRA S, BENSALAH N, AHMAD M I, et al. Electrochemical oxidation/disinfection of urine wastewaters with different anode materials[J]. Materials, 2019, 12(8): 1-16. [12] CHO K D, Hoffmann M R. Electrochemical treatment of human waste coupled with molecular hydrogen production[J]. RSC Advances, 2014, 4: 4596-4608. doi: 10.1039/C3RA46699J [13] HOFFMANN M R. Development of integrated reactor systems for the combined biological and electrochemical treatment of wastewater without discharge to the environment[C]. Proceedings of Science Summit on Urban Water, 2016: 1-5. [14] CHO K W, HOFFMANN M R. Urea degradation by electrochemically generated reactive chlorine species: Products and reaction pathways[J]. Environmental Science & Technology, 2014, 48(19): 11504-11511. [15] CHO K, QU Y, KWON D, et al. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment[J]. Environmental Science & Technology, 2014, 48(4): 2377-2384. [16] JASPER J T, YANG Y, HOFFMANN M R. Toxic byproduct formation during electrochemical treatment of latrine wastewater[J]. Environmental Science & Technology, 2017, 51(12): 7111-7119. [17] CHAVES R S, GUERREIRO C S, CARDOSO V V, et al. Hazard and mode of action of disinfection by-products (DBPs) in water for human consumption: Evidences and research priorities[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019, 223: 53-61. [18] MAZHAR M A, KHAN N A, AHMED S, et al. Chlorination disinfection by-products in Municipal drinking water-A review[J]. Journal of Cleaner Production, 2020, 273(123159): 1-13. [19] GHERNAOUT D, ELBOUGHDIRI N, ALGHAMDI A, et al. Trends in decreasing disinfection by-products formation during electrochemical technologies[J]. Open Access Library Journal, 2020, 7: e6337. [20] SUN X F, CHEN M WEI D B, et al. Research progress of disinfection and disinfection by-products in China[J]. Journal of Environmental Sciences, 2019, 31(7): 54-69. [21] BOUATRA S, AZIA F, MANDAL R, et al. The human urine metabolome[J]. PLoS One, 2013, 8(9): 1-28. [22] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法 微生物指标: GB/T 5750.12-2006[S]. 北京: 2006. [23] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [24] 黄睿, 刘志泉, 闫博引, 等. 基于EPA标准开发同步检测饮用水中三卤甲烷和卤乙酸的方法[J]. 给水排水, 2016, 42(5): 32-36. doi: 10.3969/j.issn.1002-8471.2016.05.008 [25] HERNLEM B J. Electrolytic destruction of urea in dilute chloride solution using DSA electrodes in a recycled batch cell[J]. Water Research, 2005, 39(11): 2246-2252. [26] SHANG C, GONG W L, BLATCHLEY E R. Breakpoint chemistry and volatile byproduct formation resulting from chlorination of model organic-N compounds[J]. Environmental Science & Technology, 2000, 34(9): 1721-1728. [27] BLATCHLEY E R, CHENG M M. Reaction mechanism for chlorination of urea[J]. Environmental Science & Technology, 2010, 44(22): 8529-8534. [28] MINEO I, KAZUHIRO K, MASAHIRO I, et al. Electrochemical treatment of human urine to remove nitrogen and phosphorus[J]. Chemistry Letters, 2006, 35(6): 576-577. doi: 10.1246/cl.2006.576 [29] MAURER M, PRONK W, LARSEN T A. Treatment processes for source-separated urine[J]. Water Research, 2006, 40(17): 3151-3166. doi: 10.1016/j.watres.2006.07.012 [30] MINEO I, KAZUHIRO K, MASAHIRO I, et al. Electrochemical treatment of human urine for its storage and reuse as flush water[J]. Science of Total Environment, 2007, 382(1): 159-164. doi: 10.1016/j.scitotenv.2007.03.028 [31] BOUGEARD C, GOSLAN E H, JEFFERSON B, et al. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine[J]. Water Research, 2010, 44(3): 729-740. doi: 10.1016/j.watres.2009.10.008 [32] KORSHIN G V, JENSEN M D. Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment[J]. Electrochimica Acta, 2003, 47(5): 747-751. [33] BOND T, GOSLAN E H, PASONS S A, et al. A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates[J]. Environmental Technology Reviews, 2012, 1(1): 93-113. doi: 10.1080/09593330.2012.705895 [34] LIANG L, YANG Y, SINGER P C. Influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water[J]. Environmental Science & Technology, 2003, 37(13): 2920-2928. [35] 叶必雄, 王五一, 魏建荣, 等. 饮用水中消毒副产物的消减措施[J]. 环境化学, 2008, 27(4): 539-540. doi: 10.3321/j.issn:0254-6108.2008.04.031 [36] 曹莉莉, 张晓健, 王占生, 等. 饮用水处理中活性炭吸附卤乙酸的特性[J]. 环境科学, 1999, 20(5): 72-75. [37] 汪昆平, 齐嵘, 张昱, 等. 5种颗粒活性炭对水中卤乙酸的等温吸附试验[J]. 环境科学, 2005, 26(3): 96-99. doi: 10.3321/j.issn:0250-3301.2005.03.020 [38] 沈钟, 赵振国, 康万利. 胶体与表面化学[M]. 北京: 化学工业出版社, 2002.