-
厌氧消化技术可有效处理污泥并产生绿色能源“沼气”,已成为污泥处理的重要发展方向[1]。在2013年“水环境治理三年行动方案” [2]及产业升级政策的契机下,北京市借鉴国际上大城市污泥处理经验,采取“热水解+厌氧消化+板框压滤+土地利用”的技术路线[3]处理中心城区的污泥,开创了污泥处理处置新思路。热水解技术被广泛应用在厌氧消化预处理阶段,随之产生的热水解厌氧污泥消化液是一种典型的高氨氮废水。此类废水主要指污泥经过热水解预处理及厌氧消化过程后排放的废水,以污泥消化液主。经过热水解预处理后的消化液具有比传统厌氧消化液更加复杂的水质特征,其特点为低CON/N。因此,在其处理过程中,高氨氮浓度、碱度严重不足,以及难降解底物抑制等问题尤为突出[4]。若采取传统硝化反硝化脱氮技术对其进行处理,不仅处理费用高,且出水水质难以保证。
厌氧氨氧化菌(anaerobic ammonium oxidation bacteria, AnAOB)可利用亚硝酸盐作为电子受体将污水中的氨氮氧化为氮气。该脱氮过程仅需将50%的氨氮氧化为亚硝酸盐氮,可节省50%的曝气能耗、50%的碱度消耗及100%的有机碳源,且剩余污泥产量可降低约90%,温室气体排放量减少量大于90%[5-6]。目前,国外已有将厌氧氨氧化成功应用于污泥消化液、养殖废水、垃圾渗滤液等高氨氮废水处理工程的案例[7-12]。热水解厌氧消化液的氨氮高达2 000~3 000 mg·L−1,C/N低于1.5,温度约为30℃。这一水质特点使得其适合采用费用较低的厌氧氨氧化技术进行脱氮处理。然而,有学者通过小试实验发现热水解厌氧消化液中含有的可溶性有机物对氨氧化菌(ammonium oxidation bacteria, AOB)和厌氧氨氧化菌(anaerobic ammonia-oxidizing bacteria,AnAOB)具有较强的抑制作用,经过长期驯化也无法消除此抑制作用。另外,厌氧氨氧化技术应用于热水解厌氧消化液的处理难度更大[13-15],尚无成功案例。
本研究团队在前期研究和实践中已将厌氧氨氧化高效脱氮技术成功应用于城市污水处理厂,并实现了产业化。本研究拟通过启动并调试利用短程硝化厌氧氨氧化(partial nitritation-anammox,PN-ANA)工艺进行热水解厌氧消化液的旁侧脱氮处理工程,深入考察PN-ANA工艺处理热水解厌氧消化液的工艺运行效果,拟评价该技术对城市污水处理厂主流区的影响,并对反应系统内的功能菌群进行定量分析,考察系统菌群的生长情况,以期为该工艺处理高氨氮废水的工程应用提供参考。
PN-ANA技术处理热水解厌氧消化液工艺的启动及运行调试
Startup and operation of PN-ANA technology for treating anaerobic digestion liqui d treated by thermal hydrolysis
-
摘要: 在北京某污水处理厂成功启动了短程硝化厌氧氨氧化(PN-ANA)技术处理热水解厌氧污泥消化液的工艺,并评价了该旁侧技术对主流区的影响。该工艺运行结果表明:在接种生物膜的填料填充比为5%,生物膜上AnAOB占比大于10%的情况下,经过6个月调试运行之后,PN-ANA工艺出水可达到设计指标;总氮去除负荷为0.3 kg·(m3·d)−1,总氮去除率达到78%。估算表明,旁侧PN-ANA工艺可使日处理量为100×104 t水厂的出水总氮降低约3 mg·L−1。另外,通过分子生物学分析发现,工程调试过程中氨氧化菌(AOB)和厌氧氨氧化菌(AnAOB)呈缓慢增长趋势,与处理效果的提升趋势相一致。该工艺成功运用厌氧氨氧化处理热水解厌氧污泥消化液,启动时间仅为半年,可为该技术处理高氨氮废水的工程应用提供参考。Abstract: A practical project of a sewage treatment plant in Beijing was taken as an example to investigate the effect of partial nitritation-anammox (PN-ANA) process on the dewatering liquid of anaerobic digestion pretreated with thermal hydrolysis (THP-AD), and the influence of sidestream PN-ANA technique on the mainstream was evaluated. The operation results showed that when the inoculation amount of biofilm was 5% and the proportion of anaerobic ammonia-oxidizing bacteria (AnAOB) on biofilm was more than 10%, after 6 months of commissioning and operation, the effluent of PN-ANA process reached the design index. The total nitrogen removal load was 0.3 kg·(m3·d)-1 and the total nitrogen removal rate reached 78%.It was estimated that the sidestream PN-ANA technique could reduce the total nitrogen by about 3 mg·L-1 in the eflluent of a water plant with a day capacity of 100×104 t. Meanwhile, the ammonia oxidizing bacteria (AOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) showed a trend of slow growth during engineering commissioning by molecular biology detection, which was consistent with the improvement trend of the project treatment effect. In this project, anaerobic ammonium oxidation was successfully used to treat thermal hydrolysis anaerobic sludge digestion liquid, and the start-up time was only half a year, which can provide reference for the engineering application of this technology to treat high ammonia nitrogen wastewater.
-
-
[1] 齐力格娃, 李伟, 高金华, 等. 污泥高含固厌氧消化研究进展[J]. 中国给水排水, 2021, 37(18): 14-19. [2] 北京市人民政府. 关于印发北京市加快污水处理和再生水利用设施建设三年行动方案(2013-2015年)的通知[EB/OL][2013-04-23]. http://www.beijing.gov.cn/zhengce/zfwj/zfwj/szfwj/201905/t20190523_72662.html. [3] 张强. 热水解消化污泥产成品土地利用研究与分析[D]. 北京: 北京建筑大学, 2020. [4] GU Z L, LI Y, YANG Y F, et al. Inhibition of anammox by sludge thermal hydrolysis and metagenomic insights[J]. Bioresource Technology, 2018, 270: 46-54. doi: 10.1016/j.biortech.2018.08.132 [5] STROUS M, FUERST J A, KRAMER E H, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400: 446-449. doi: 10.1038/22749 [6] HENZE M, VAN LOOSDRECHT M, EKAMA G, et al. Biological Wastewater Treatment: Principles, Modelling and Design[M]. London: IWA Publishing, 2008: 139–154. [7] FUX C, BOEHLER M, HUBER P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J]. Journal of Biotechnology, 2002, 99: 295-306. doi: 10.1016/S0168-1656(02)00220-1 [8] WETT B. Development and implementation of a robust deammonification process[J]. Water Science and Technology, 2007, 56: 81-88. [9] VAN DER STAR W, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41: 4149-4163. doi: 10.1016/j.watres.2007.03.044 [10] JOSS A, SALZGEBER D, EUGSTER J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR[J]. Environment Science and Technology, 2009, 43: 5301-5306. doi: 10.1021/es900107w [11] GANIGUE R, VOLCKE E I, PUIG S, et al. Systematic model development for partial nitrification of landfill leachate in a SBR[J]. Water Science and Technology, 2010, 61: 2199-2210. doi: 10.2166/wst.2010.979 [12] JENNI S, VLAEMINCK S E, MORGENROTH E, et al. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios[J]. Water Research, 2014, 49: 316-326. doi: 10.1016/j.watres.2013.10.073 [13] FIGDORE B, WETT B, HELL M, et al. Treatment of dewatering sidestream from a thermal hydrolysis-mesophilic anaerobic digestion process with a single-sludge deammonification process[C]//Water Environment Federation. Annual Water Environment Federation technical exhibition and conference. Los Angeles, 2011: 249-264. [14] ZHANG Q, CLIPPELEIR H D, SU CH Y, et al. Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization[J]. Enviromental Biotechnology, 2016, 100: 5595-5606. [15] ZHANG Q, VLAEMINCK S E, CHRISTINE D, et al. Supernatant organics form anaerobic digestion after thermal hydrolysis cause direct and /or diffusional activity loss for nitritation and anammox[J]. Water Research, 2018, 143: 270-281. doi: 10.1016/j.watres.2018.06.037 [16] 李柏林, 杨丹丹, 黄馨, 等. 基于DO和游离氨联合控制的短程硝化快速启动及稳定运行研究[J]. 环境污染与防治, 2018, 40(11): 1219-1223. [17] PARK S, BAE W, RITTMANN B. Operational boundaries for nitrite accumulation in nitrification based on minimum/maximum substrate concentrations that include effects of oxygen limitation, pH, and free ammonia and free nitrous acid inhibition[J]. Environmental Science and Technology, 2010, 44: 335-342. doi: 10.1021/es9024244 [18] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340 [19] WANG T, LIU Y M, GUO J B, et al. Rapid start up anammox process through a new strategy with inoculating perchlorate reduction sludge and a small amount of anammox sludge[J]. Biochemical Engineering Journal, 2020, 164: 1-10. [20] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences-An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032 [21] 张星星, 王昕竹, 印雯, 等. 厌氧氨氧化工艺快速启动策略研究进展[J]. 水处理技术, 2020, 46(11): 16-23. [22] HUANG ZH H, GEDALANGA P B, ASVAPATHANAGUL P, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15): 4351-4358. doi: 10.1016/j.watres.2010.05.037 [23] VEUILLET F, LACROIX S, BAUSSERON A, et al. Integrated fixed-film activated sludge ANITA™ Mox process–a new perspective for advanced nitrogen removal[J]. Water Science and Technology, 2014, 69(5): 915-922. doi: 10.2166/wst.2013.786