流域突发性水环境风险的评估方法

黄大伟, 贾滨洋, 谢红玉, 郑文丽, 冯立师, 邴永鑫, 虢清伟. 流域突发性水环境风险的评估方法[J]. 环境工程学报, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029
引用本文: 黄大伟, 贾滨洋, 谢红玉, 郑文丽, 冯立师, 邴永鑫, 虢清伟. 流域突发性水环境风险的评估方法[J]. 环境工程学报, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029
HUANG Dawei, JIA Binyang, XIE Hongyu, ZHENG Wenli, FENG Lishi, BING Yongxin, GUO Qingwei. Method of watershed-scale environmental risk assessment for accidental water pollution incidents[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029
Citation: HUANG Dawei, JIA Binyang, XIE Hongyu, ZHENG Wenli, FENG Lishi, BING Yongxin, GUO Qingwei. Method of watershed-scale environmental risk assessment for accidental water pollution incidents[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029

流域突发性水环境风险的评估方法

    作者简介: 黄大伟(1985—),男,博士,副研究员。研究方向:突发环境事件风险评估、应急处置及技术开发。E-mail:huagndawei@scies.org
    通讯作者: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术、环境风险管理、水污染治理。E-mail:guoqingwei@scies.org
  • 基金项目:
    广东省省级科技计划项目(2016B020240007);中央级公益性科研院所基本科研业务专项(PM-zx703-202002-079)
  • 中图分类号: X522

Method of watershed-scale environmental risk assessment for accidental water pollution incidents

    Corresponding author: GUO Qingwei, guoqingwei@scies.org
  • 摘要: 针对突发性水环境风险,提出了以环境敏感受体保护为基础的流域突发性水环境风险评估技术方法。该技术方法充分考虑我国现行突发环境事件分级标准,从我国环境风险管理重点关注的环境敏感受体(如集中式饮用水水源地、行政边界及重要生态保护区域边界)着手,以环境敏感受体保护为最终目的,综合分析流域水环境风险水平,并通过环境风险地图进行表征。本方法统一了固定源和移动源的流域性突发环境风险评估,可用以对流域内存在的固定源和移动源进行全面识别与分级,是我国现有环境风险评估体系的补充,并可为提升我国流域水环境风险管理水平提供参考。
  • 随着城市点源污染得到基本控制,由暴雨径流引起的非点源污染逐渐成为城市水体主要污染来源[1]。在城市分流制排水系统中,暴雨径流携带的部分颗粒物在重力作用下沉积在雨水管道底部,形成管道沉积物。这些沉积物在后续管道径流的冲刷作用下,部分又将重新进入管流并随之排入城市水体,成为水体污染重要的源和汇[2-4]。李海燕等[5-6]对北京市某区域分流制雨水管道进行了调查,结果表明,约80%以上管道存在不同程度的沉积现象,管道沉积物中TN对径流污染负荷的贡献率约为23%,TP贡献率约为30%。

    管道沉积物对径流污染负荷的贡献可能与沉积物-水界面污染物交换特性有关。影响沉积物-水界面污染物交换的因素有沉积物的理化性质、环境因子和扰动(包括物理扰动和生物扰动)等[7]。近年来一些学者在管道沉积物污染分布[8-9]、冲刷沉积规律[10]、吸附解吸[11]及溶出特性[12]等方面开展了研究。陈红等[13]对合流制入河管道沉淀物中氮转化规律进行了探究,结果表明,氨氮是其主要释放形态。李明怡[14]利用北京市雨水管道沉积物进行了研究,发现上覆水体pH和流速是影响沉积物中磷和重金属释放的主要因素,并利用连续函数法计算出:当流速为1.1 m·s−1时,沉积物和水之间磷的平均交换速率为4.09 mg·(m2·min)−1。目前,有关分流制雨水管道沉积物-水界面的研究很少,关于微生物对沉积物-水界面之间污染物交换特性的影响尚未见有报道。

    株洲市位于湖南省东部,湘江中下游,其中白石港是湘江在株洲最大的支流,沿河两岸雨水及溢流污水均直接排入白石港。港道水体氨氮等指标超标明显,水质较差[15]。基于此,本研究选取株洲市某分流制雨水管道沉积物作为研究对象,通过模拟实验考察了溶解氧、温度、水力扰动强度及微生物种群对污染物在沉积物-水界面之间交换的影响,剖析上覆水中污染物转化途径与规律,为雨水管道沉积物污染控制提供参考。

    研究区域位于株洲市白石港流域职教城片区,汇水面积约为0.29 km2。该区域为新建城区,毗邻长株高速,以教育用地为主,下垫面主要由沥青道路、建筑屋面及绿地组成。区域内颗粒物污染来源主要为大气沉降、土壤以及道路磨损等,未见垃圾填埋场、工厂等大型污染源。研究区域排水体制为雨污分流制,雨水管道管径为1 000~1 500 mm,降雨时管道径流直接排入白石港主河道。

    2020年7—9月调研期间,受强降雨条件下管道径流冲刷的影响,该区域雨水管道沉积物主要分布在拐弯及交汇处的管段末端,平均沉积厚度为10 cm。取样点处管道直径为1 200 mm,旱季无流量,沉积物呈黑色,有轻微气味。采样点位置见图1

    图 1  研究区域及采样点分布示意图
    Figure 1.  Map of study area and sampling point

    样品采集日前期的干旱天数为12 d。采样时,利用铲子铲取采样点表层沉积物,置于黑色聚乙烯袋中,采样后立即送回实验室。利用真空冷冻干燥机对部分沉积物进行干燥处理,其余沉积物去除树叶、石块等杂物后采用四分法进行均化,所有样品置于−20 ℃条件下冷冻保存。在采样结束后的雨天,采集该处降雨中期管道径流样,置于聚乙烯塑料瓶中,带回实验室于4 ℃条件下冷藏保存,以供模拟实验用。

    沉积物样品主要由粒径在380~830 μm和75~150 μm内的颗粒物组成。沉积物初始pH为7.89,含水率为23.44%,有机质含量为4.22%,SCOD、氨氮、硝酸盐氮、TP质量分数分别为2 154.99、20.41、11.05、1 200.86 mg·kg−1,无机磷(IP)占总磷含量的68.9%,Fe/Al-P占IP的70.2%,可见,该区域沉积物中的磷活性较高,沉积物释磷潜力较大[16]。管道径流初始水样pH为7.6,氨氮、硝酸盐氮和亚硝酸盐氮质量浓度分别为0.467、1.283和0.106 mg·L−1,SCOD、DTP和DIP质量浓度分别为41.77、0.025和0.014 mg·L−1

    分别考察溶解氧、温度和扰动强度3种环境因素对污染物转化的影响。具体实验条件设置如下:为模拟管道中不同溶解氧含量的环境,采取滴加亚硫酸钠和人工曝气的方式控制上覆水溶解氧质量浓度,使其分别保持在≤1、3和5 mg·L−1,此时环境温度均为25 ℃,不进行扰动;为模拟不同季节下管道环境温度,采用恒温培养箱实现对环境温度的控制,使其分别保持在15、25和35 ℃,此时上覆水溶解氧质量浓度为3 mg·L−1,不进行扰动;为模拟管道中不同水流流速情景,通过调节搅拌器的转速实现对扰动强度的控制,分别设置转速为0、150和300 r·min−1,此时环境温度为25 ℃,实验过程中监测各组上覆水pH及DO值。

    取250 g经均化处理的沉积物置于1 L烧杯底部,沿杯壁缓慢加入经0.45 μm滤膜过滤后的管道径流,稍没过底泥后进行搅拌使泥水充分混合,于25 ℃恒温培养箱中静置24 h,之后再加入剩余上覆水至水土比为1.5∶1。实验周期为7 d,装置全程避光置于恒温培养箱中,每隔12 h用注射器抽取50 mL水样,经0.45 μm滤膜过滤后,测定相关污染物质量浓度。取样后向烧杯中补充同体积的原上覆水,补充过程中尽量避免对沉积物造成扰动。在25 ℃条件下,每隔24 h取5~10 g(DO=3 mg·L−1)的沉积物,用以测定沉积物中微生物群落。实验结束后测定各组沉积物中污染物质量浓度。

    本实验主要检测分析沉积物和上覆水中氨氮、硝酸盐氮、淋溶态化学需氧量(SCOD)、溶解态总磷(DTP)及溶解态正磷酸盐(DIP)等指标。沉积物中SCOD和无机氮含量测定采用浸提法[17];沉积物磷形态分析采用SMT磷分级分离方法[18];各步骤提取液以及上覆水中SCOD、DTP、DIP、氨氮、硝态氮、亚硝态氮的测定方法均参照国标法[19]。样品做2次平行样测定,结果取平均值,利用Excel和SPSS分析数据,Origin2018作图。

    委托上海美吉生物利用细菌/古菌通用引物对(GTGYCAGCMGCCGCGGTAA/GGACTACNVGGGTWTCTAAT)进行16S rRNA基因扩增,并通过Illumina Miseq平台进行高通量测序[20],将结果与Silva数据库比对进行物种注释,得出微生物群落结构组成。

    沉积物与上覆水中营养盐交换通量[21]参照式(1)进行计算。

    M=(V(CtC0)+tj=1V0(Cj1Ca))/(St) (1)

    式中:M为平均交换通量,mg∙(m2∙h)−1V为上覆水总体积,L;V0为每次所取上覆水体积,L;C0CtCj1为初始时刻、t时刻和j−1时刻测得的上覆水中污染物质量浓度,mg·L−1Ca为补充水样中污染物质量浓度,mg·L−1S为沉积物与水界面营养盐交换面积,m2t为反应时间,h。当M>0时,表明污染物以从沉积物中向上覆水释放为主;当M<0时,表明上覆水中污染物以被沉积物吸附或发生降解为主。

    微生物种群结构如图2所示。由图2(b)可见,方格颜色代表样品中某一物种的种群数量,颜色越深表明种群数量越大。沉积物中共有25个门水平的物种丰度大于0.2%,其中与氮磷转化相关的变形菌门、绿弯菌门、厚壁菌门[22]等7个物种的总丰度达80%以上,表明在沉积物中进行着大量与氮磷转化相关的生物过程。泉古菌门是一类具有氨氧化功能的古菌,能在有氧条件下将氨氧化为亚硝酸盐,是硝化过程的关键限制反应[23],其相对丰度为0.2%~1.05%。硝化螺旋菌门和硝化刺菌门可将亚硝酸盐氧化为硝酸盐,在样品中的相对丰度为0.56%~0.58%。1个实验周期内所取的7个样品中,优势种群均为与氨化、反硝化及聚磷作用相关的菌属,主要包括变形菌门的不动杆菌属(Acinetobacter)、食酸菌属(Acidovorax)、热单胞菌属(Thermomonas)、假单胞菌属(Pseudomonas),厚壁菌门的微小杆菌属(Exiguobacterium)以及绿弯菌门的厌氧绳菌属(Anaerolinea)[22]

    图 2  样品中微生物种群结构
    Figure 2.  Microbial population structure of samples

    1)不同溶解氧水平下污染物交换特性。各实验组污染物平均交换通量见表1,上覆水污染物浓度随时间变化见图3。由图3(a)~(c)可知,NH+4-N质量浓度随反应时间逐渐升高,NO3-N质量浓度逐渐降低,而NO2-N质量浓度在实验初期经短时升高后迅速降低。这可能是由于静置状态下沉积物内部处于缺氧环境,AcinetobacterExiguobacterium等反硝化菌为优势菌属,氨氧化菌和亚硝酸盐氧化菌丰度较低,氮类物质的转化主要由氨化及反硝化过程主导[24]Clostridiaceae菌在缺氧环境中具有很强的氨化能力,可将含氮有机物转化为NH4+-N[25-26],从而促使体系中NH4+-N质量浓度升高。体系中异化反硝化和同化反硝化具体过程[27]分别如式(2)~式(3)所示。

    表 1  不同溶解氧水平下污染物平均交换通量
    Table 1.  Effect of dissolved oxygen on the exchange fluxes of pollutants
    溶解氧质量浓度/(mg·L−1)平均交换通量/(mg∙(m2∙h)−1)
    氨氮硝酸盐氮亚硝酸盐氮SCODDTPDIP
    ≤11.425−0.586−0.05817.0130.0340.028
    31.034−0.472−0.04813.8460.0170.016
    50.726−0.297−0.0337.7030.0090.009
     | Show Table
    DownLoad: CSV
    图 3  溶解氧对上覆水中污染物质量浓度的影响
    Figure 3.  Effect of dissolved oxygen on the content of pollutants in overlying water
    NO3NO2N2ON2 (2)
    NO3NO2NH2OH有机体 (3)

    实验初期,大量NO3-N经反硝化生成NO2-N,导致NO2-N质量浓度短时升高,但随后由于NO2-N的反硝化速率大于生成速率,故其浓度迅速降低。

    图3(d)可见,缺氧条件下SCOD质量浓度随反应时间逐渐升高,好氧条件下SCOD质量浓度逐渐降低。这可能是由于溶解氧较低时体系中还原态物质逐渐增多,并在浓度差的作用下向上覆水中释放;而好氧条件下微生物活性较强,对有机物的降解相对较快。

    图3(e)~(f)可见:磷质量浓度随反应时间逐渐升高,DTP峰值浓度为初始浓度的1.49~3.01倍,DIP峰值质量浓度为初始浓度的1.33~2.61倍。其中,上覆水DIP含量占DTP的78.2%~83.6%,说明上覆水中溶解态磷主要以无机磷为主。好氧条件下磷的释放强度低于缺氧条件,一是由于好氧环境中PseudomonasArthrobacterAnaerolinea等聚磷菌属[28]释磷过程受抑制,磷的生物释放强度减弱;二是由于此时表层沉积物中Fe2+被氧化为Fe3+,部分磷被Fe(OH)3胶体吸附发生沉积[29];三可能是由于好氧条件下,上覆水中较高浓度的NO3-N作为电子受体也抑制了Fe-P的还原,从而一定程度上抑制磷的释放。这与BEUTEL等[30]的研究结果相似。

    表1可见,NH+4-N平均交换通量为正值,硝态氮平均交换通量均为负值。这主要是由于体系中氨化作用较强而硝化作用较弱,NH+4-N的生成速率总体上高于消耗速率的缘故;同时,硝态氮因反硝化作用不断被消耗,其生成速率低于消耗速率。好氧条件下SCOD质量浓度虽逐渐降低(图3(d)),但其交换通量依然为正值。这可能是由于沉积物中以兼性厌氧微生物为主,有机物降解速率较低,SCOD降解速率低于释放速率。体系中磷平均交换通量均为正值,随溶解氧的降低而升高,表明体系中磷的释放占主导地位。

    表 2  不同温度水平下污染物平均交换通量
    Table 2.  Effect of temperature on the exchange fluxes of pollutants
    温度/℃平均交换通量/(mg∙(m2∙h)−1)
    氨氮硝酸盐氮亚硝酸盐氮SCODDTPDIP
    150.771−0.319−0.0329.9790.0070.007
    251.034−0.472−0.04813.8460.0170.016
    351.274−0.562−0.06118.8610.0270.026
     | Show Table
    DownLoad: CSV

    2)不同温度水平下污染物交换特性。各实验组上覆水污染物含量随时间变化见图4,平均交换通量见表2。由图4(a)~(c)可知,污染物质量浓度随时间的变化与溶解氧组相似。温度对氮类物质转化的影响主要体现在两方面,一是温度升高,沉积物中微生物活动随之增强,加速体系中氧的消耗,从而促使有机氮氨化及扩散过程加快[21];二是高温为反硝化过程提供了低溶解氧环境与最适温度,体系中反硝化作用增强[27]。由图4(d)可知,高温时SCOD质量浓度升高较明显。这可能是由于高温能促使沉积物中有机物释放,而沉积物中微生物以兼性厌氧型为主,温度的升高对有机物氧化速率的促进作用较弱。由图4(e)~(f)可见,上覆水磷的质量浓度随温度升高而增加。这是因为温度升高促进沉积物中PseudomonasArthrobacter等聚磷菌释磷,以及Fe结合态磷的释放[31];且随着温度升高,磷酸盐的解吸作用增强[32]

    图 4  温度对上覆水中污染物质量浓度的影响
    Figure 4.  Effect of temperature on the content of pollutants in overlying water

    表2可知,NH+4-N、SCOD、DTP和DIP的平均交换通量均为正值,并随温度的升高而升高,而硝态氮交换通量为负值。这可能是由于此时体系中硝态氮同样因较强的反硝化作用不断被消耗,总体上其消耗速率大于生成速率的缘故。

    3)不同扰动强度下污染物交换特性。各实验组上覆水溶解氧质量浓度随时间变化见图5,污染物含量随时间变化见图6,平均交换通量见表3。由图5可知,静置组溶解氧质量浓度随反应时间的增加逐渐降低,而扰动组溶解氧始终保持在较高水平,持续的水力扰动增加了泥水混合体系中的氧含量。除图6(b)外,扰动组上覆水污染物质量浓度均呈先升高后降低的趋势。这可能是由于扰动促使沉积物间隙水中高浓度污染物的释放,致使上覆水污染物质量浓度在短时内显著升高[32-33],从而出现明显的初始冲刷现象。

    图 5  上覆水溶解氧质量浓度随时间变化情况
    Figure 5.  Dissolved oxygen concentration in overlying water
    图 6  扰动对上覆水中污染物质量浓度的影响
    Figure 6.  Effect of disturbance on the content of pollutants in overlying water
    表 3  不同扰动强度下污染物平均交换通量
    Table 3.  Effect of disturbance on the exchange fluxes of pollutants
    扰动强度/(r·min−1)平均交换通量/(mg∙(m2∙h)−1)
    氨氮硝酸盐氮亚硝酸盐氮SCODDTPDIP
    00.964−0.468−0.04114.3200.0180.018
    1501.3010.1110.00222.6190.0310.028
    3001.6300.2350.02536.2180.0490.041
     | Show Table
    DownLoad: CSV

    图6(a)~(c)中,扰动组上覆水中NH+4-N、NO3-N和NO2-N质量浓度达到平衡时,其浓度值分别为静置组平衡状态下的1.17~1.35、3.73~4.32和3.05~4.13倍。其中,NH+4-N和NO2-N质量浓度先升高后降低,而NO3-N质量浓度升高后未明显下降。这可能是由于此时体系中氧浓度较高,硝化反应处于主导地位,NH+4-N和NO2-N不断被氧化为NO3-N,NO3-N较稳定从而出现累积。由图6(d)可知,扰动对上覆水SCOD的影响较为明显,实验开始12 h左右扰动组SCOD即达到峰值,其质量浓度达到平衡时为静置组的1.17~1.48倍。强扰动条件下SCOD质量浓度下降速率较快。其原因可能是此时微生物对有机物的降解速率较低扰动条件下更高。由图6(e)~(f)可知,扰动组中磷质量浓度均先升高后降低。这可能是由于持续的扰动使得部分磷重新被沉积物吸附[32],或被聚磷菌摄入用于生命体的合成的缘故。

    对比图3(c)图4(c)图6(c)可知,3种条件下NO2-N质量浓度变化趋势虽相同,但其内在的驱动机制有所区别。对水体施加扰动后,沉积物间隙水中NO2-N的释放致使上覆水中NO2-N质量浓度短时升高,后由于NO2-N易被进一步氧化成NO3-N而降低,直至上覆水中NO2-N的生成与消耗达到平衡,此过程中NO2-N质量浓度的变化主要受硝化作用的影响,而静置条件下各实验组NO2-N质量浓度的变化主要受反硝化作用的影响。

    表3可知,NH+4-N、SCOD、DTP和DIP的平均交换通量均为正值,且随扰动的增强而增加。静置组硝态氮平均交换通量为负值,而扰动组其平均交换通量为正值。这可能是由于施加扰动后,体系处于有氧环境,AcinetobacterExiguobacterium等反硝化菌活性受到抑制,硝态氮消耗速率降低。此时在CrenarchaeotaNitrospiraeNitrospinae等硝化细菌的作用下,NH+4-N逐步被氧化为NO3-N[27],致使上覆水中硝态氮生成速率高于其消耗速率。扰动同样使得上覆水SS质量浓度增加,加大了颗粒物与水的接触为硝化反应提供了大量活性位点[34]。余晖等[35]的模拟实验结果表明,水体中硝化过程速率与颗粒物含量呈正相关。

    实验结束后各组沉积物中污染物释放率见图7。由图7可知,沉积物中各污染物释放率随环境因子变化的规律相似,但相同条件下不同污染物释放率存在一定差异,其中磷的释放率最低,而硝酸盐氮释放率最高。整体来看,SCOD释放率为4.1%~26.3%;NO3-N释放率最大,为91.2%~95.3%,NH+4-N释放率为9.7%~47.2%;TP释放率为1.6%~18.8%,其中以Fe/Al-P为主。当扰动强度为300 r·min−1时,沉积物中污染物释放率均达到最大,SCOD、NH+4-N和TP的释放率分别为静置时的1.44、3.28和2.69倍。

    图 7  环境因素对沉积物中污染物释放率的影响
    Figure 7.  Effects of environmental factors on pollutant release from sediments

    1)研究区域中雨水管道沉积物-水界面污染物交换通量随溶解氧质量浓度的升高而降低,而随温度的升高而升高。静置时水体中硝态氮主要表现为被消耗,其余污染物表现为从沉积物中释放;对水体施加扰动后,所有污染物均表现为向上覆水体释放,且交换通量随扰动的增强而增加。

    2)研究区域中雨水管道沉积物中优势菌门主要有7种,包括与氮磷转化密切相关的变形菌门、绿弯菌门、放线菌门、厚壁菌门等,优势菌种主要为反硝化菌和聚磷菌。未施加扰动时,沉积物中氮的生物转化以氨化与反硝化过程为主。

    3) 研究区域中雨水管道沉积物中磷释放率较低,在管道沉积物中易出现富集现象;有机物释放率次之;氮易于在生物化学作用下发生转化,释放率较高,其中硝酸盐氮释放率最大。沉积物中磷的释放形态以Fe/Al-P为主。

  • 图 1  液体类危化品泄漏入河量

    Figure 1.  Leakage of liquid hazardous chemicals into the river

    图 2  环境敏感受体及环境风险路段关系的典型情景

    Figure 2.  Typical scenarios with different the relationship s between environmental risk receptor and road section for assessment

  • [1] 中华人民共和国生态环境部. 中国环境状况公报(2009-2016)[S/OL]. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/.
    [2] 中华人民共和国生态环境部. 中国生态环境状况公报(2017-2019)[S/OL]. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/
    [3] 吕书丛, 张洪, 单保庆, 等. 海河流域主要河口区域沉积物中重金属空间分异及生态风险评价[J]. 环境科学, 2013, 34(13): 4204-4210.
    [4] 邹华, 王靖国, 朱荣, 等. 太湖贡湖湾主要河流表层沉积物重金属污染及其生态风险评价[J]. 环境工程学报, 2016, 10(3): 1546-1552. doi: 10.12030/j.cjee.20160386
    [5] 程鹏, 李叙勇. 洋河流域不同时空水体重金属污染及健康风险评价[J]. 环境工程学报, 2017, 11(8): 4513-4519. doi: 10.12030/j.cjee.201607234
    [6] WANG Weihua, ZHANG Wanfeng, LIANG Hong, et al. Seasonal distribution characteristics and health risk assessment of typical antibiotics in the Harbin section of the Songhua River basin[J]. Environmental technology, 2018, 40(20): 1-17.
    [7] 袁鹏, 李文秀, 彭剑峰, 等. 国内外累积性环境风险评估研究进展[J]. 环境工程技术学报, 2015, 5(5): 393-400. doi: 10.3969/j.issn.1674-991X.2015.05.062
    [8] 王炳权, 钱新. 流域累积性环境风险评价研究进展[J]. 环境保护科学, 2013, 39(2): 88-92. doi: 10.3969/j.issn.1004-6216.2013.02.022
    [9] 张珂, 刘仁志, 张志娇, 等. 流域突发性水污染事故风险评价方法及其应用[J]. 应用基础与工程科学学报, 2014, 22(4): 675-684.
    [10] SCOTT A. Environmental-accident index: Validation of a model[J]. Journal of Hazardous Materials, 1998, 61: 305-312. doi: 10.1016/S0304-3894(98)00137-X
    [11] 王漫漫, 陆昊, 李慧明, 等. 太湖流域典型河流重金属污染和生态风险评估[J]. 环境化学, 2016, 35(10): 2025-2035. doi: 10.7524/j.issn.0254-6108.2016.10.2016022301
    [12] 孙鹏程, 陈吉宁. 基于贝叶斯网络的河流突发性水质污染事故风险评估[J]. 环境科学, 2009, 30(1): 47-51. doi: 10.3321/j.issn:0250-3301.2009.01.008
    [13] 王运鑫. 基于模糊贝叶斯网络的突发水污染事故风险评价研究[D]. 兰州: 兰州交通大学, 2018.
    [14] LANDIS W G, WIEGERS J A. Design considerations and a suggested approach for regional and comparative ecological risk assessment[J]. Human and Ecological Risk Assessment, 1997, 3(3): 287-297. doi: 10.1080/10807039709383685
    [15] CHEN Qiuying, LIU Jingling, HO K C, et al. Development of a relative risk model for evaluating ecological risk of water environment in the Haihe River basin estuary area[J]. Science of the Total Environment, 2012, 420(4): 79-89.
    [16] 邢永健, 王旭, 可欣, 等. 基于风险场的区域突发性环境风险评价方法研究[J]. 中国环境科学, 2016, 36(4): 1268-1274. doi: 10.3969/j.issn.1000-6923.2016.04.044
    [17] 中华人民共和国生态环境部. 《企业突发环境事件风险评估指南(试行)》(环办〔2014〕34号)[S/OL]. http://www.mee.gov.cn/gkml/hbb/bgt/201506/t20150629_304483.htm.
    [18] 中华人民共和国生态环境部. 《尾矿库环境风险评估技术导则(试行)》(HJ 740-2015)[S/OL]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/pjjsdz/201504/t20150407_298648.shtml
    [19] 中华人民共和国生态环境部. 《行政区域突发环境事件风险评估推荐方法》(环办应急〔2018〕9号)[S/OL]. http://www.mee.gov.cn/gkml/hbb/bgt/201802/t20180206_430931.htm
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.0 %DOWNLOAD: 3.0 %HTML全文: 75.7 %HTML全文: 75.7 %摘要: 21.3 %摘要: 21.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 93.1 %其他: 93.1 %XX: 5.8 %XX: 5.8 %上海: 0.1 %上海: 0.1 %北京: 0.6 %北京: 0.6 %杭州: 0.1 %杭州: 0.1 %济南: 0.1 %济南: 0.1 %邯郸: 0.1 %邯郸: 0.1 %重庆: 0.2 %重庆: 0.2 %长沙: 0.1 %长沙: 0.1 %其他XX上海北京杭州济南邯郸重庆长沙Highcharts.com
图( 2)
计量
  • 文章访问数:  10260
  • HTML全文浏览数:  10260
  • PDF下载数:  245
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-02-04
  • 录用日期:  2021-06-13
  • 刊出日期:  2021-09-10
黄大伟, 贾滨洋, 谢红玉, 郑文丽, 冯立师, 邴永鑫, 虢清伟. 流域突发性水环境风险的评估方法[J]. 环境工程学报, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029
引用本文: 黄大伟, 贾滨洋, 谢红玉, 郑文丽, 冯立师, 邴永鑫, 虢清伟. 流域突发性水环境风险的评估方法[J]. 环境工程学报, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029
HUANG Dawei, JIA Binyang, XIE Hongyu, ZHENG Wenli, FENG Lishi, BING Yongxin, GUO Qingwei. Method of watershed-scale environmental risk assessment for accidental water pollution incidents[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029
Citation: HUANG Dawei, JIA Binyang, XIE Hongyu, ZHENG Wenli, FENG Lishi, BING Yongxin, GUO Qingwei. Method of watershed-scale environmental risk assessment for accidental water pollution incidents[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2868-2874. doi: 10.12030/j.cjee.202102029

流域突发性水环境风险的评估方法

    通讯作者: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术、环境风险管理、水污染治理。E-mail:guoqingwei@scies.org
    作者简介: 黄大伟(1985—),男,博士,副研究员。研究方向:突发环境事件风险评估、应急处置及技术开发。E-mail:huagndawei@scies.org
  • 1. 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所),广州 510530
  • 2. 成都市环境应急指挥保障中心,成都 610066
基金项目:
广东省省级科技计划项目(2016B020240007);中央级公益性科研院所基本科研业务专项(PM-zx703-202002-079)

摘要: 针对突发性水环境风险,提出了以环境敏感受体保护为基础的流域突发性水环境风险评估技术方法。该技术方法充分考虑我国现行突发环境事件分级标准,从我国环境风险管理重点关注的环境敏感受体(如集中式饮用水水源地、行政边界及重要生态保护区域边界)着手,以环境敏感受体保护为最终目的,综合分析流域水环境风险水平,并通过环境风险地图进行表征。本方法统一了固定源和移动源的流域性突发环境风险评估,可用以对流域内存在的固定源和移动源进行全面识别与分级,是我国现有环境风险评估体系的补充,并可为提升我国流域水环境风险管理水平提供参考。

English Abstract

  • 2009—2019年,全国共发生突发环境事件3 643起。其中生态环境部(包括原环境保护部)直接调度指导处置的突发环境事件有1 225起,包括水污染事件1 060起,占比约87%[1-2]。由于河流水系是一个有机联系的整体,故一旦发生突发性污染事件,极易对事故点下游流域产生影响和危害,造成巨大经济损失并引起公众恐慌。如2018年湘赣渌江铊污染事件,其污染范围跨越江西、湖南2省;2017年嘉陵江铊污染事件,污染范围波及陕西、四川2省;2016年新疆额尔齐斯河汞污染事件及同年新疆伊犁河柴油泄漏事件,均险些造成跨国界污染。在我国经济社会的持续高速发展、突发性环境污染事件频发的背景下,我国的环境风险管理体系仍有待完善,存在重应急轻防范、重突发污染事件轻长期慢性影响等问题,尚未完全实现向以风险控制为目标导向的环境风险管理模式转变。在“十四五”以及未来很长一段时期内,流域性水环境风险将是我国环境风险管理的重要内容,严防流域性突发水环境事件发生、提高流域水环境风险管理水平、开展流域水环境风险评估技术体系研究等迫在眉睫。

    突发环境事件风险评估结果的可靠性与代表性是环境风险管理的关键。现阶段,我国流域环境风险评估工作主要偏重于特定污染物的生态风险评价[3-4]、健康风险评价[5-6]及累积性环境风险评价[7-8]等方面。针对突发性水污染事件环境风险评估方法的研究甚少。如指数评价法[9-11]、贝叶斯网格法[12-13]、相对风险评估法[14-15]等都较少关注流域级水环境风险因子的释放规律及环境敏感受体受损害的途径和程度等[16],尚不能准确描述和评估流域尺度环境风险的传递性、累积性或削减性影响,其风险表征也不够具体,可操作性有待提高。我国已发布了《企业突发环境事件风险评估指南(试行)》(环办〔2014〕34号)[17]、《尾矿库环境风险评估技术导则(试行)》(HJ 740-2015)[18]以及《行政区域突发环境事件风险评估推荐方法》(环办应急〔2018〕9号)[19]。以上指南、导则及推荐方法解决了风险评估中存在的诸多问题,但仍存在不能完全反映流域突发环境事件特征,以及与环境风险管理脱节等问题。

    本文以水环境敏感受体为评估基础,在对流域内固定风险源、移动风险源进行水环境风险分类、分级及表征的基础上,提出流域级环境风险分级及表征的技术方法。根据环境风险评估结果与流域风险特征,确定流域环境风险重点和优先管理对象,并有针对性地提出防范对策,以期实现与环境风险管理的有效衔接,补充我国流域环境风险评估体系。

    • 本技术方法以《国家突发环境事件应急预案》(国办函〔2014〕119号)中“附件1突发环境事件分级标准”为基础,着重关注突发环境事件分级标准中所涉及的重要环境敏感受体,如集中式饮用水源地、跨界(国界、省界、市界、县界)以及重要生态功能区等。依据突发环境事件分级标准的“特别重大、重大、较大、一般”4级,将环境敏感受体分为3级,即一级、二级和三级,涉及特别重大和重大突发环境事件的统一为一级环境敏感受体。以流域内环境敏感受体保护为目的,在全面收集流域水文水系、地形地貌、社会经济,以及现有环境风险源(固定源和移动源)、环境敏感受体情况等资料的基础上,开展流域内固定源和移动源的风险识别、评估与分级。

      主要技术思路为:1)对流域内“一废一库一品”企业,如采选冶炼、尾矿库、石油、化工、钢铁、医药、危化品水陆运输等风险源逐一调查(现场调查风险源的位置、生产情况、危险废物和污水处置情况、排水情况、环境保护情况等)并补充收集相关资料(如风险源布局图、厂区平面图、雨污管网图等图件,以及环境应急预案、环境风险评估、环境影响评价、环境应急资源调查等报告),以识别重点环境风险源,建立环境风险源清单,并对清单内企业逐一进行突发环境事件风险评估;2)根据环境风险源评估结果,结合流域内跨界断面、集中式饮用水源地、国家级自然保护区、重要湿地、特殊生态系统等环境敏感受体特征分析,对流域水环境突发性环境风险进行综合评估,并通过环境风险源地图、环境敏感受体图等对评估结果进行表征;3)根据流域突发性水环境风险评估结果,结合流域现有风险防控措施及应急救援能力差距,提出流域水环境风险防控策略及建议,为全面提升流域水环境风险管理水平,科学施策提供理论依据和技术支撑。

    • 在开展流域水环境风险评估工作前,需详细调查流域内所有水环境敏感受体,制作出流域水环境敏感受体清单,绘制流域水环境敏感受体分布图。典型的水环境敏感受体包括集中式饮用水水源地保护区、涉水自然保护区、重要湿地、重要水生生物栖息地、水产种质资源保护区、跨界(国、省、市、县界)断面等。

    • 参考《国家突发环境事件应急预案》(国办函〔2014〕119号)中规定的突发环境事件分级标准,将环境敏感受体敏感性划分为以下3级:1)一级环境敏感受体——跨国界水体,或跨省界,或县级以上城市集中式生活饮用水水源地,或珍稀濒危野生动植物天然集中分布区,或重要水生生物的自然产卵场及索饵场、越冬场和洄游通道;2)二级环境敏感受体——跨设区的市界,或乡镇集中式生活饮用水水源地,或国家级自然保护区,或国家级风景名胜区,或世界文化和自然遗产地,或国家级森林公园,或国家级地质公园,或国家级湿地,或国家级文物保护单位;3)三级环境敏感受体——跨县界,或其他未达到二级的环境敏感受体。

    • 根据评估地区特征与污染物特征,选择水环境中风险因子的扩散模型,包括零维水质模型、一维稳态模型及一维动态混合模型。资料充分时也可采用二维、三维水质模型。

      1)零维水质模型适用于持久性污染物,河流为恒定流。假设污染物进入河道瞬间完全混合均匀(溶解或分散),并整体分散(稀释作用),即将污染物泄漏点至环境敏感受体间的河道作为一个整体。污染物在其中均匀混合。

      2)非持久性污染物稳定态采用一维稳态模型,即一维稳态稀释、降解综合模式,忽略污染物的纵向弥散系数(在稳态条件下,纵向弥散系数对结果影响小)。该模型适用于非持久性污染物,河流为恒定流。当污染物在河流断面上达到完全混合后,分析污染物在水流方向输移、转化的变化情况时采用此模型。

      3)一维动态混合模型适用于非持久性污染物,非恒定流,可用于预测任何时刻的水质状况。

    • 1)固定型水环境风险源识别。收集并分析相关资料,包括企业基本信息、周边环境敏感受体、涉及环境风险物质和数量、生产工艺、安全生产管理、环境风险单元及现有环境风险防控与应急措施,以及现有环境应急资源等。按照《企业突发环境事件风险评估指南(试行)》(国办发〔2013〕101号)的要求,综合企业信息、环境风险传播途径及环境敏感受体,识别固定型水环境风险源(以下简称固定源)。

      2)流域固定源水环境风险评估。按突发环境事件事发点下游受影响水环境敏感受体最高等级来划分固定源环境风险等级。当一级环境敏感受体受到影响时确定为重大环境风险源;当二级环境敏感受体受到影响时确定为较大环境风险源;当三级环境敏感受体受到影响时确定为一般环境风险源。

      以环境敏感受体水质安全为核心,通过估算环境污染物泄漏进入河流后的影响范围,及核算受影响范围内所有环境敏感受体的最高级别,以最高级别确定此环境风险源的风险等级。突发性环境污染事件的应急处置,关注的主要问题是污染物在河道中的浓度与污染扩散的水平距离。因此,首先在对流域固定源进行水环境风险评估时,采用合适的污染物扩散模型进行演算,得出的污染物可能影响的污染范围;随后根据此结果,结合影响范围内环境敏感受体等级划分环境风险源的风险等级。

    • 1)移动性水环境风险源识别。移动型水环境风险源(以下简称移动源)主要关注流域内危险化学品(以下简称危化品)道路运输以及船舶运输。调研流域内沿河道路路段、船舶运输路线及危化品种类等情况时,一是制作流域内陆路、水路运输路线与水系分布图,重点关注临近河流及水系联通沟渠的路段;二是掌握危化品在流域内的运输情况,包括危化品运输路线、种类、理化性质、单次运输量、运输工具类型、泄漏可能造成的环境风险类型等情况。

      2)流域移动源水环境风险评估。流域移动源水环境风险评估包括环境风险路段识别和环境风险评估参数选择。环境风险路段识别即对流域内所有危化品运输线路进行统计分析,识别水环境敏感受体风险路段(路线),即流域内各干支流的沿河公路、桥梁、水路等,危化品一旦泄漏将可能对下游水环境敏感受体产生影响。

      环境风险评估参数选择包括4个方面。一是危化品主要化学成分及表征指标分析。二是危化品泄漏量。建议采用危化品最小运输单元的运输量为危化品水陆两类运输最大泄漏量。根据对以往案例的统计结果,陆路运输中液体类危化品基本都发生在道路路沿与河岸堤顶间距在200 m范围内,路河间距越小,泄漏入河量总体越大;桥梁或翻车直接入河(水库、湖泊)可以按100%泄漏入河处理。水路运输的泄漏量按泄漏全部入河处理。液体类危化品泄漏入河量按图1测算。针对固体类危化品泄漏入河仅考虑离河岸堤10 m范围内的路段及跨河桥梁,泄漏量按最不利条件泄漏,即全部泄漏计算。三是危化品泄漏时间。当发生液体类危化品泄漏事件,其泄漏时间长短将影响危化品进入河流的初始浓度大小。首先利用伯努利方程计算出危化品(液体)泄漏速率,随后根据危化品运输量与泄漏速率的比值得出泄漏时间。四是环境风险路段的环境风险分析与分级。针对所有危化品对识别的所有环境风险路段(即评估路段)逐一进行环境风险分析与评估。结合受影响的环境敏感受体的级别确定该路段环境风险等级。当一级环境敏感受体受到影响时为重大环境风险路段(路线);当二级环境敏感受体受到影响时为较大环境风险路段(路线);当三级环境敏感受体受到影响为一般环境风险路段(路线)。

      其中,液体类危化品泄漏速率根据式(1)计算。固体类危险化学品释放时间与污染物在水中的饱和溶解度、污染物总量以及河流流量等因素有关,具体计算见式(2)。

      式中:QL为危化品泄漏速度,kg·s−1Cd为危化品泄漏系数,此值常用0.6~0.64;A为裂开面积,m2P为容器内介质压力,Pa;P0为环境压力,Pa;g为重力加速度;h为裂口之上液位高度,m;ρ为危化品密度,kg·m−3

      式中:T为污染物释放时间,s;S为固体类危险化学品所含污染物总量,g;K为污染物在水中的饱和溶解度,g·m−3Q为河流流量,m3·s−1

    • 环境风险路段长度计算以环境敏感受体为基准点,通过水质模型对污染物影响距离予以计算。在此影响距离内寻找环境敏感受体,如无环境敏感受体,则该路段为无风险路段。如有环境敏感受体,则以此环境敏感受体为基础并向上游反推(若有多个环境敏感受体,则从环境敏感受体等级从高到低依次进行),即得到临界点。若污染物在临界点处泄漏,则下游环境敏感受体处污染物的浓度刚好达到GB3838-2002相关指标限值要求,该临界点设为Z点。Z点以上为无风险路段,Z点以下为有风险路段,即环境敏感受体和Z点内的危化品运输路线为有风险的路段。环境敏感受体与临界点Z点间的距离即为环境风险路段长度。具体分为以下3个情景,如图2所示。

      1)情景一。对于某一环境敏感受体以及某一评估路段,当临界点Z落在评估路段中,该评估路段Z点以上环境风险等级为无风险,即污染物在Z点以上泄漏后的环境风险小。Z点以下为有风险路段。

      2)情景二。对于某一环境敏感受体以及某一评估路段,当临界点Z落在评估路段上游某处,则该评估路段环境风险等级为有风险。

      3)情景三。对于某一环境敏感受体以及某一评估路段,污染物泄漏扩散影响范围内无环境敏感受体,即当临界点Z落在评估路段下游某处,则该评估路段环境风险等级为无风险。

    • 流域水环境风险评估结果以一张图予以表征,即在流域水系图上,结合流域水环境敏感受体(红色△表示一级水环境敏感受体、黄色△表示二级水环境敏感受体、蓝色△表示三级水环境敏感受体),将评估出的固定源和移动源按照水环境风险等级不同以红、黄、蓝全部标识出来,其中,红色表示重大环境风险源(重大环境风险路段)、黄色表示较大环境风险源(较大环境风险路段)、蓝色表示一般环境风险源(一般环境风险路段)。同时,用绿色表示无环境风险路段。

    • 关注环境风险源强度与环境敏感受体敏感性之间的交互关系,可直观有效地评估环境风险源对流域内环境敏感受体的影响程度,有效保护环境敏感受体,适应环境应急管理需求。提出流域环境风险评估方法统一了固定源和移动源的流域性突发环境风险评估,可用以对流域内存在的固定源和移动源进行全面识别与分级,是我国现有环境风险评估体系的补充,并可为提升我国流域水环境风险管理水平提供参考。

    参考文献 (19)

返回顶部

目录

/

返回文章
返回