突发水环境事件中基于饮用水水源地保护目标的特征污染物容许浓度研究

虢清伟, 邴永鑫, 张政科, 常莎, 陈思莉, 郑文丽, 黄大伟. 突发水环境事件中基于饮用水水源地保护目标的特征污染物容许浓度研究[J]. 环境工程学报, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072
引用本文: 虢清伟, 邴永鑫, 张政科, 常莎, 陈思莉, 郑文丽, 黄大伟. 突发水环境事件中基于饮用水水源地保护目标的特征污染物容许浓度研究[J]. 环境工程学报, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072
GUO Qingwei, BING Yongxin, ZHANG Zhengke, CHANG Sha, CHEN Sili, ZHENG Wenli, HUANG Dawei. Study on the allowable concentration of characteristic pollutant based on the protection of drinking water source during the period of water environmental emergencies[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072
Citation: GUO Qingwei, BING Yongxin, ZHANG Zhengke, CHANG Sha, CHEN Sili, ZHENG Wenli, HUANG Dawei. Study on the allowable concentration of characteristic pollutant based on the protection of drinking water source during the period of water environmental emergencies[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072

突发水环境事件中基于饮用水水源地保护目标的特征污染物容许浓度研究

    作者简介: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术、环境风险管理、水污染治理。E-mail:guoqingwei@scies.org
    通讯作者: 黄大伟(1985—),男,博士,副研究员。研究方向:突发环境事件风险评估、应急处置及技术开发。E-mail:huagndawei@scies.org
  • 基金项目:
    广东省省级科技计划项目(2016B020240007);中央级公益性科研院所基本科研业务专项(PM-zx703-201803-070)
  • 中图分类号: X507

Study on the allowable concentration of characteristic pollutant based on the protection of drinking water source during the period of water environmental emergencies

    Corresponding author: HUANG Dawei, huangdawei@scies.org
  • 摘要: 针对发生在非集中式饮用水水源地的突发环境事件,应制定应急处置过程中能保证下游集中式饮用水水源地水质安全、缓解应急处置压力的特征污染物容许浓度标准。以下游集中式饮用水水源地水质安全为前提,提出了上游各个河段中特征污染物的最大容许浓度要求及计算方法。此容许浓度既能完全保证饮用水水源地水质安全,又比饮用水水源地的标准限值宽松,可为因地制宜地进行环境应急处置提供参考。
  • 河流上覆水中的重金属可以通过沉淀、吸附、络合等作用,在河床表层底泥中富集[1-2]。当水体条件发生改变时,底泥中的重金属会通过氧化还原、溶解、解吸等作用,从河床表层底泥中释放,造成上覆水体的污染[3-4]。国内外普遍使用疏浚治理河湖底泥,但是疏浚工程会产生大量含有重金属的疏浚底泥,疏浚底泥含水率高、热值低,不适合传统焚烧方法处理[5-6]。近年来,稳定化技术被用于重金属废水、污染土壤等治理工作,通过加入药剂使沉积物中重金属发生物理化学反应,从而降低重金属的溶解性和迁移性,以达到良好的稳定化效果[7]。传统的稳定化药剂采用水泥、磷灰石等化学药剂,但存在处理后土壤板结、增容等缺点[8]。因此,本研究拟采用壳聚糖、膨润土、生物炭等天然材料,开发处理效果好、价廉易得的重金属稳定剂。

    壳聚糖 (CTS) 是第二大天然线性化合物,具有无毒、无害、生物可降解性以及能通过自身丰富的基团络合重金属等特性,是一种良好的吸附重金属的材料[9]。宋俊颖等[10]利用CTS处理重金属污染土壤,当CTS投加量为7%时,铜离子的稳定化率达到92.36%。YAN等[11]利用CTS处理Cr和Hg复合型重金属污染的土壤,7 d后,土壤中有效态重金属的含量降低明显且残渣态含量升高。我国膨润土矿产资源丰富,价格低廉,具有较大的表面积、良好的吸附性、离子交换性和黏结性等优势,在底泥重金属稳定化技术中广泛应用[12]。杨秀敏等[13]通过等温吸附实验,研究了钠基膨润土对Cu2+、Zn2+、Cd2+的吸附情况,发现钠基膨润土 (NaBent) 对3种金属具有良好的吸附能力,能够降低土壤中有效型重金属的含量。这2种材料在我国产量大且易得,因此,可以使用CTS对NaBent进行改性,得到一种处理底泥重金属能力更高的复合型稳定剂。

    本研究采用壳聚糖改性钠基膨润土稳定剂 (NaBent-CTS) 对底泥中的Cu2+、Zn2+、Cd2+进行单一和复合的重金属稳定化实验,通过改变稳定剂投加量、底泥pH和底泥液固比寻求稳定重金属的最佳工况点;通过毒性特征沥滤方法 (TCLP) 进行重金属浸取,以重金属稳定化率作为处理效果的重要指标,探究实验条件的改变对重金属稳定化效果的影响以及重金属之间存在的竞争吸附关系,旨在为温瑞塘河底泥重金属稳定化处理提供相关的研究基础。

    实验疏浚底泥取自温州市温瑞塘河,使用环保绞吸式挖泥船采集底泥样品。将采集到的样品灌入洁净的聚乙烯桶中,密封后运回实验室自然风干,研磨,过100目筛,分析其各理化指标。疏浚底泥含水率为55.43%,溶解性有机碳 (DOC) 质量分数为265.63 mg·kg−1,pH为7.68,总磷质量分数为1.22 g·kg−1,氨氮质量分数为30.57 mg·kg−1,重金属Cu、Zn、Cd的质量分数分别为188.62、386.89和161.28 mg·kg−1。对疏浚底泥采用TCLP法进行重金属浸取,浸取后重金属Cu2+、Zn2+和Cd2+的质量浓度分别为0.793、0.960 和1.421 mg·L−1

    由测试结果可知,疏浚底泥中的Zn、Cu和Cd的含量均超出《围填海工程填充物质成分限值》 (GB 30736-2014) 的要求,因此将Zn、Cu和Cd3种重金属作为研究对象。

    以未受重金属污染的温瑞塘河底泥为母质,分别添加锌、铜和镉的标准储备液进行实验底泥的配制。保持实验底泥含水率为50%左右,灌入洁净的聚乙烯桶中,在密封、室温的条件下放置14周后,室内自然风干,研磨,过100目筛备用。Cu2+、Zn2+和Cd2+实验底泥重金属浸取液质量浓度分别为1.598、1.714和1.701 mg·L−1

    本实验以无毒无害、价廉易得为标准,选取CTS和NaBent作为稳定药剂的制作材料,实验药剂信息如表1所示。

    表 1  实验药剂信息
    Table 1.  Information of experimental agents
    序号名称种类化学式纯度稳定机理厂家
    1CTS有机(C6H11NO4)N化学纯羟基、氨基等高分子基团与重金属离子螯合配位Adamas
    2NaBent无机Nax(H2O)4(Al2-xMg0.83) (Si4O10) (OH)2分析纯Na+、Al2+、Mg2+等离子与重金属离子发生离子交换反应Adamas
     | Show Table
    DownLoad: CSV

    取6 g CTS (90%+) 溶于150 mL的5%醋酸溶液中,使用折叶式搅拌器将其缓慢充分溶解。向壳聚糖溶液中,缓慢加入30 g NaBent充分浸润3 h,在46 ℃恒温水浴锅中,连续搅拌4 h成糊状,加入一定量的氢氧化钠溶液,调节pH至9,缓慢搅拌10 min,沉淀壳聚糖2 h,用蒸馏水冲洗沉淀至pH为7~8,在转速为3 500 r·min−1的条件下离心分离15 min,取下层沉淀,放入烘箱在85 ℃下烘干,研磨,过100目筛,制得壳聚糖负载率为9.22%的NaBent-CTS。

    称取风干过筛的底泥样品60 g,保持底泥pH为7,底泥液固比为1.5∶1,以稳定剂投加量 (稳定剂与干底泥的质量之比) 为1%、3%、5%、7%、10%进行单一重金属和复合重金属稳定化实验;保持稳定剂投加量为5%,底泥液固比为1.5∶1,以底泥pH为5、6、7、8、9进行单一重金属和复合重金属稳定化实验。保持稳定剂投加量为5%,底泥pH为7,以底泥液固比 (液体体积与干底泥质量之比,单位为mL∶g) 为1∶1、1.3∶1、1.5∶1、1.7∶1、2∶1进行单一重金属和复合重金属稳定化实验,每个样品充分混匀8 h,室温下密封放置7 d,进行稳定化处理,稳定后的底泥放置在实验室,自然风干,研磨,过100目筛,每组实验均设置3个平行,均以未经处理的底泥作为对照。

    稳定化后的底泥采用TCLP法和我国固体废物标准浸取程序 (水平振荡法,HVM法) 进行重金属的浸取[14]。由于各实验底泥pH均大于5,因此选用2号浸取剂 (将5.7 mL冰醋酸溶入去离子水中,定容至1 L,保持溶液pH为2.88±0.05) 。称取12 g实验底泥,置于500 mL锥形振荡瓶中,按照液固比=20∶1加入浸取剂,在25 ℃条件下,恒温水浴水平往复振荡20 h,用稀硝酸淋洗抽滤器,用0.45 μm的滤膜过滤收集浸取液,4 ℃下密封保存,待测。稳定化率计算方法见式 (1) 。

    η=c0c1c0×100% (1)

    式中:η为重金属的稳定化率;c0为加稳定剂前底泥样品的重金属浸取液质量浓度;c1为加稳定剂后底泥样品中重金属浸取液质量浓度。

    针对稳定化14 d后和未经处理的疏浚底泥,采用BCR连续提取法对其中的重金属进行连续提取。测定不同阶段提取的重金属质量分数,计算疏浚底泥中酸可提取态、可氧化态、可还原态和残渣态的重金属占比,稳定性由大到小为残渣态、可还原态、可氧化态、酸可提取态。

    使用XRD、SEM、FT-IR、XPS、BET表征手段,观察NaBent-CTS微观结构及形貌特征,分析其晶相组成、晶面取向和基团结构等表面特性。

    1) FT-IR分析。图1为CTS、NaBent和NaBent-CTS的红外光谱。在CTS红外光谱中,3 438 cm−1处的吸收峰为氨基N—H和羟基O—H的伸缩振动吸收峰,2 926 cm−1处的吸收峰为C—H伸缩振动吸收峰,1 657 cm−1处的吸收峰为酰胺Ⅰ谱带吸收峰,1 593 cm−1处的吸收峰为酰胺Ⅱ谱带吸收峰,1 420 cm−1处的吸收峰为羟基O—H面内弯曲振动吸收峰,1 161 cm−1处为伯羟基O—H的吸收峰,1 072 cm−1处为仲羟基O—H的吸收峰[15]。在NaBent红外光谱中,3 618 cm−1处为NaBent层间Si—Al—OH中羟基O—H伸缩振动峰,3 476 cm−1处为层间水分子的O—H羟基伸缩振动峰,1 632 cm−1处为NaBent层间水分子O—H弯曲振动峰,990 cm−1处为Si—O—Si不对称伸缩振动峰,515 cm−1处为Si—O—Al弯曲振动峰[16]。由NaBent-CTS与CTS和NaBent的红外光谱比较结果可知:3 624 cm−1处的吸收峰显著增强,峰面积变大,说明壳聚糖进入钠基膨润土层间,使层间的O—H羟基基团增多;1 428 cm−1处羟基弯曲振动吸收峰增强,在1 113 cm−1处出现羟基弯曲振动吸收峰,说明壳聚糖成功负载在钠基膨润土上;3 434 cm−1处为钠基膨润土层间水分子O—H羟基伸缩振动峰与壳聚糖中氨基N—H弯曲振动峰的合并峰;507 cm−1处Si—O—Al吸收峰面积和强度增大,表明在Si—O—Al处发生了化学吸附,1 657 cm−1与1 593 cm−1处的酰胺谱带吸收峰消失,因此,壳聚糖上的酰胺与Si—O—Al之间可能发生了化学吸附;994 cm−1处为Si—O—Si与羟基O—H振动峰的合并峰。

    图 1  CTS、NaBent和NaBent-CTS的FT-IR
    Figure 1.  FT-IR spectra of CTS, NaBent and Nabent-CTS

    2) XRD分析。由图2可知,NaBent与NaBent-CTS衍射峰首峰的位置θ分别为3.58°和3.567 5°。层间距可根据Bragg方程[17]计算得出。计算方法见式 (2) 。

    图 2  NaBent和NaBent-CTS的XRD
    Figure 2.  XRD patterns of NaBent and Nabent-CTS
    2dsinθ=nλ (2)

    式中:d为层间距;θ为入射线与反射晶面之间的夹角;λ为波长,Cu靶Ka射线 (λ=0.154 06 nm) ;n为反射级数,n=1。

    由式 (2) 可知,NaBent的层间距为1.233 6 nm,NaBent-CTS的层间距为1.237 9 nm,NaBent层间距在负载CTS前后未发生明显改变,由红外光谱分析结果可知,存在部分CTS进入NaBent层间。

    3) SEM与BET分析。由图3可知,NaBent的外貌发生了明显的变化,NaBent颗粒表面结构较平整,NaBent-CTS颗粒表面更加粗糙。经BET分析,NaBent与NaBent-CTS的比表面积分别为21.036 m2·g−1和14.609 m2·g−1,NaBent改性后比表面积减少,这是因为CTS负载在NaBent表面,堵塞了孔隙,导致比表面积降低[18]

    图 3  NaBent和NaBent-CTS的SEM
    Figure 3.  SEM images of NaBent and Nabent-CTS

    1) 复合前后稳定效果的比较。由图4~图6可知,在pH为7、液固比为1.5:1时,随着3种重金属稳定剂投加量的递增,Cu2+、Zn2+和Cd2+的稳定化率也逐渐递增,达到一定投加量后,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定化率趋于稳定。对比3种稳定剂效果,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定效果最佳,且在较低的投加量下可达到较好的稳定效果。投加量为5%时,Cu2+的稳定化率达到稳定,浸取液质量浓度由1.714 mg·L−1降至0.213 mg·L−1,稳定化率为87.56%;投加量为7%时,Zn2+的稳定化率达到稳定,浸取液质量浓度由1.598 mg·L−1降至0.226 mg·L−1,稳定化率为85.85%;投加量为7%时,Cd2+的稳定化率达到稳定,浸取液质量浓度由1.701 mg·L−1降至0.277 mg·L−1,稳定化率为83.71%。与NaBent-CTS相比,CTS稳定重金属效果较差,NaBent稳定效果最差,均在投加量为10%时,稳定化率达到最大。

    图 4  3种稳定剂对Cu2+的稳定效果
    Figure 4.  Stabilization effect of three kinds of stabilizer on Cu2+
    图 5  3种稳定剂对Zn2+的稳定效果
    Figure 5.  Stabilization effect of three kinds of stabilizer on Zn2+
    图 6  3种稳定剂对Cd2+的稳定效果
    Figure 6.  Stabilization effect of three kinds of stabilizer on Cd2+

    由此可知,CTS改性NaBent后,NaBent-CTS稳定重金属的能力得到提升,并且在较低投加量的情况下达到较好的稳定效果。虽然NaBent改性后比表面积有一定程度的降低,但NaBent中的CTS中含有大量的羟基和氨基,这2类基团对重金属有极强的螯合能力,通过CTS表面的内扩散作用,重金属离子更易进入NaBent中,与Na+、Al3+等金属离子发生离子交换作用,使NaBent表现出较高的吸附性能[19]

    2) NaBent-CTS投加量对单一重金属稳定化率的影响。图7表明了在pH为7与实验底泥液固比为1.5∶1时,稳定剂投加量的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。随着稳定剂投加量的增加,Cu2+、Zn2+和Cd2+的稳定化率也随之升高,达到一定程度后稳定化率基本保持稳定。Cu2+、Zn2+和Cd2+的稳定化率分别在药剂投加量为5%、7%和7%时达到稳定,稳定化率为87.56%、85.85%和83.71%。

    图 7  稳定剂投加量对实验底泥中单一重金属稳定化率的影响
    Figure 7.  Effects of dosage of stabilizer on stabilization rate of single heavy metal in sediment

    NaBent-CTS中存在氨基官能团与羟基官能团,具有与重金属离子形成配位键的能力,从而螯合重金属,并且稳定剂中含有众多Na+、Al3+离子,可通过离子交换作用来吸附重金属。随着稳定剂投加量的增大,能够提供的配位键的数量与吸附比表面积不断增多,能够吸附更多的重金属离子,使3种重金属离子的稳定化率不断提高;稳定剂投加量继续增大,稳定剂颗粒之间相互黏结,比表面积减少,导致稳定化率增幅变小。

    3) 底泥pH对单一重金属稳定化率的影响。图8表明了在稳定剂投加量为5%与实验底泥液固比为1.5:1时,底泥pH对Cu2+、Zn2+和Cd2+稳定化率的影响。3种重金属稳定化率均随pH的上升呈先升高后降低的趋势,Cu2+、Zn2+和Cd2+稳定化率分别在pH为7、6和7时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.283 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.346 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.433 mg·L−1,稳定化率分别为83.47%、78.35%和74.57%。出现上述现象的原因如下:当pH小于7时,H+的质量浓度较高,占据了稳定剂的吸附位,与重金属离子形成竞争吸附关系,导致重金属稳定化率较低;当pH大于7时,部分OH会与重金属离子形成沉淀,难以被稳定剂吸附,经过TCLP浸取实验,氢氧化物沉淀溶于酸性浸取剂中,导致稳定化率下降。

    图 8  pH对实验底泥中单一重金属稳定化率的影响
    Figure 8.  Effect of pH on stabilization rate of single heavy metal in sediment

    4) 底泥液固比对单一重金属稳定化率的影响。图9表明了在pH为7与稳定剂投加量为5%时,实验底泥液固比的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。液固比对3种重金属稳定化率影响不明显,Cu2+、Zn2+和Cd2+稳定化率分别在液固比为1.3∶1、1.7∶1和1.5∶1时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.260 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.251 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.338 mg·L−1,稳定化率分别为84.82%、84.32%和80.13%。出现上述趋势的原因如下,在液固比较小的条件下,溶剂中的重金属质量浓度与底泥孔隙水中的重金属质量浓度在较短的时间内达到平衡,抑制了底泥孔隙水中的重金属向溶剂中扩散的趋势[20]。随着液固比逐渐升高,溶剂与底泥孔隙水中的重金属质量浓度需要在较长的时间内达到平衡,使得扩散作用能够在较长时间内持续进行,释放到溶剂中的重金属也增多,使稳定化率增加。并且含水率不同的实验底泥在7 d稳定化期中内部成分的变化也不同,会间接影响底泥中矿物颗粒与胶体颗粒之间的相互作用,从而改变实验底泥中重金属的存在形态和活性[21]

    图 9  液固比对实验底泥中单一重金属稳定化率的影响
    Figure 9.  Effects of liquid to solid ratio on stabilization of single heavy metal in sediment

    图10可知,在pH为7与疏浚底泥液固比为1.5∶1时,稳定剂投加量对复合重金属的稳定化率存在较大的影响。随着稳定剂投加量的不断增大,Cu2+、Zn2+和Cd2+稳定化率也逐渐升高。在稳定剂投加量为5%时,稳定化率达到了最佳值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.211 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.278 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.591 mg·L−1,稳定化率分别为73.36%、71.00%、58.38%。

    图 10  稳定剂投加量对复合重金属稳定化率的影响
    Figure 10.  Effect of stabilizer dosage on stabilization rate of composite heavy metals

    在稳定剂投加量超过5%时,Zn2+和Cd2+稳定化率呈现下降的趋势。这可能是稳定剂颗粒之间相互黏结,比表面积减少,导致重金属离子之间竞争吸附作用增强。而竞争力较弱的Zn2+和Cd2+脱离吸附位点,导致稳定化率下降。

    图11可知,在稳定剂投加量为5%与疏浚底泥液固比为1.5:1时,底泥pH的变化对复合重金属稳定化率的影响非常明显。在pH为7时,复合重金属稳定化率达到了最大值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.549 mg·L−1,稳定化率分别为77.24%、75.03%、61.33%。

    图 11  底泥pH对复合重金属稳定化率的影响
    Figure 11.  Effect of pH of sediment on stabilization rate of composite heavy metals

    图12可知,在pH为7与稳定剂投加量为5%时,随着底泥液固比的增大,Cu2+、Zn2+和Cd2+的稳定化率逐渐上升。在液固比为1.5:1时逐渐稳定,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.592 mg·L−1,稳定化率分别为77.26%、75.11%、58.32%。

    图 12  底泥液固比对复合重金属稳定化率的影响
    Figure 12.  Effects of liquid to solid ratio in sediment on stabilization of composite heavy metals

    Cd2+的稳定化率随着底泥液固比增大出现降低的趋势。原因可能是,随着液固比的增大,含水率升高,释放到溶剂中的重金属也增多,但稳定剂表面的吸附位点数量一定,使竞争能力较差的Cd2+脱离吸附位点,导致稳定化率下降。

    综上所述,在稳定剂投加量为5%、底泥pH为7、底泥液固比为1.5:1时,NaBent-CTS对复合重金属的稳定化率最好,稳定化率分别达到75.95%、73.71%和59.00%。3种重金属离子之间的竞争吸附关系为Cu2+>Zn2+>Cd2+

    图13图14所示,在稳定化处理底泥前,Cu2+、Zn2+、Cd2+的存在形态以酸可提取态和可还原态这两种不稳定形态占比较大,可氧化态和残渣态这两种稳定形态占比较小。经NaBent-CTS稳定化处理14 d后,可氧化态和残渣态这两种形态占比显著提高,表明NaBent-CTS具有良好的稳定重金属的效果。

    图 13  NaBent-CTS处理底泥前后各重金属存在形态变化
    Figure 13.  Changes of each heavy metal forms in sediment before and after NaBent-CTS treatment
    图 14  NaBent-CTS稳定后底泥重金属形态占比
    Figure 14.  Proportion of heavy metal forms in sediment after NaBent-CTS stabilization

    重金属离子与NaBent-CTS结合后,与稳定剂中的羟基和氨基发生螯合配位作用,并且稳定剂中含有Na+、Al3+等可交换离子,将以酸可提取态和可还原态存在的重金属变成了可氧化态与残渣态的存在形态,从而降低底泥中重金属污染生态环境的风险。

    图15为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的XPS全谱图。可以看出,稳定化处理Cu2+、Zn2+和Cd2+后,XPS图谱中出现Cu2p、Zn2p和Cd3d的轨道峰,充分证明Cu2+、Zn2+和Cd2+已吸附在NaBent-CTS上。NaBent-CTS稳定化处理重金属后,XPS图谱中的Na1s谱峰几乎消失,说明稳定化过程中Cu2+、Zn2+、Cd2+与Na+发生离子交换反应,导致稳定剂中Na+含量骤减。

    图 15  稳定化处理单一重金属前后的XPS
    Figure 15.  XPS spectra before and after stabilization treatment of a single heavy metal

    图16为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的FT-IR光谱图。可以看出,NaBent-CTS稳定Cu2+、Zn2+、Cd2+后没有新的峰出现,3 624、3 405、1 636、1 428、1 113、987 cm−1处的羟基与氨基特征峰发生偏移并且峰强度降低,这是由于重金属与基团之间发生了螯合反应;507 cm−1处Si—O—Al特征峰出现波数偏移与强度降低,这是由于重金属与稳定剂中Al3+离子发生了离子交换反应。稳定化处理Cu2+、Zn2+和Cd2+后,特征峰削弱强度不同,说明NaBent-CTS对Cu2+、Zn2+和Cd2+之间出现选择性吸附。由特征峰削弱强度可知,NaBent-CTS对重金属稳定能力由强到弱为Cu2+>Zn2+>Cd2+,这符合稳定剂处理复合重金属污染底泥的实验结果。

    图 16  稳定化处理单一重金属前后的FT-IR
    Figure 16.  FT-IR spectra before and after stabilization of a single heavy metal

    综上所述,NaBent-CTS稳定重金属过程中存在螯合反应与离子交换反应,重金属离子的螯合配位可能是由CTS中的氨基和羟基、Si—Al—OH和层间水分子O—H的互相作用,这样生成的螯合物可能是高交联的结构,稳定性极强。

    1) 由NaBent-CTS表面特性分析结果可知,NaBent和CTS之间存在化学吸附,大量CTS吸附在NaBent表面,稳定剂表面粗糙但比表面积降低。

    2) 经过CTS改性后的NaBent稳定重金属的能力显著提高,在投加量为5%时,可达到较好的稳定效果。在投加量为5%、pH为7、液固比为1.3∶1时,NaBent-CTS对Cu2+重金属污染底泥的处理效果最好。在投加量为7%、pH为6、液固比为1.7∶1时,NaBent-CTS对Zn2+重金属污染底泥的处理效果最好。在投加量为7%、pH为7、液固比为1.5∶1时,NaBent-CTS对Cd2+重金属污染底泥的处理效果最好。

    3) NaBent-CTS投加量为5%、pH为7、液固比为1.5∶1时,NaBent-CTS对复合重金属污染底泥的重金属稳定化效果最好,Cu2+、Zn2+、Cd2+稳定化率分别达到75.95%、73.71%和59.00%;NaBent-CTS稳定化处理复合重金属污染底泥时,Cu2+、Zn2+、Cd2+之间存在竞争吸附作用,竞争力由强到弱为Cu2+>Zn2+>Cd2+

    4) 采用BCR法分析稳定化处理14 d后底泥中Cu2+、Zn2+、Cd2+的存在形态,可以看出,在NaBent-CTS处理后,底泥中Cu2+、Zn2+、Cd2+的存在形态更加稳定,可氧化态与残渣态比例大幅上升。

  • [1] 生态环境部. 中国环境状况公报(2014—2016年)[EB/OL]. [2021-04-26]. http://www.cnemc.cn/jcbg/zghjzkgb/.
    [2] 生态环境部. 中国环境状况公报(2017—2019年)[EB/OL]. [2021-04-26]. http://www.cnemc.cn/jcbg/zghjzkgb/.
    [3] 中华人民共和国生态环境部. 国家突发环境事件应急预案(国办函〔2014〕119号)(2019-12-27)[EB/OL]. [2021-04-26]. http://www.mee.gov.cn/ywgz/hjyj/yjzb/201912/t20191227_751708.shtml.
    [4] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S/OL]. [2021-04-26]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml.
    [5] World Health Organization. Guidelines for drinking water quality(4th ed)[S/OL]. [2021-04-26]. https://www.who.int/publications/i/item/9789241548151.
    [6] United States Environmental Protection Agency. National drinking water regulations[S/OL]. [2021-04-26]. https://19january2017snapshot.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulation-table_.html.
    [7] United States Environmental Protection Agency. National Recommended Water Quality Criteria(2009)[S/OL]. [2021-04-26]. https://19january2017snapshot.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table_.html.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.7 %DOWNLOAD: 6.7 %HTML全文: 81.0 %HTML全文: 81.0 %摘要: 12.3 %摘要: 12.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.4 %其他: 94.4 %XX: 3.2 %XX: 3.2 %东莞: 0.1 %东莞: 0.1 %九江: 0.1 %九江: 0.1 %保定: 0.1 %保定: 0.1 %北京: 0.4 %北京: 0.4 %南京: 0.1 %南京: 0.1 %宁波: 0.1 %宁波: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %德宏: 0.1 %德宏: 0.1 %成都: 0.1 %成都: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %江门: 0.1 %江门: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %漯河: 0.1 %漯河: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西安: 0.1 %西安: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %其他XX东莞九江保定北京南京宁波常州广州德宏成都桂林武汉江门济南深圳漯河衡阳西安赣州运城邯郸郑州Highcharts.com
计量
  • 文章访问数:  5634
  • HTML全文浏览数:  5634
  • PDF下载数:  112
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-05
  • 录用日期:  2021-04-26
  • 刊出日期:  2021-09-10
虢清伟, 邴永鑫, 张政科, 常莎, 陈思莉, 郑文丽, 黄大伟. 突发水环境事件中基于饮用水水源地保护目标的特征污染物容许浓度研究[J]. 环境工程学报, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072
引用本文: 虢清伟, 邴永鑫, 张政科, 常莎, 陈思莉, 郑文丽, 黄大伟. 突发水环境事件中基于饮用水水源地保护目标的特征污染物容许浓度研究[J]. 环境工程学报, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072
GUO Qingwei, BING Yongxin, ZHANG Zhengke, CHANG Sha, CHEN Sili, ZHENG Wenli, HUANG Dawei. Study on the allowable concentration of characteristic pollutant based on the protection of drinking water source during the period of water environmental emergencies[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072
Citation: GUO Qingwei, BING Yongxin, ZHANG Zhengke, CHANG Sha, CHEN Sili, ZHENG Wenli, HUANG Dawei. Study on the allowable concentration of characteristic pollutant based on the protection of drinking water source during the period of water environmental emergencies[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2875-2880. doi: 10.12030/j.cjee.202009072

突发水环境事件中基于饮用水水源地保护目标的特征污染物容许浓度研究

    通讯作者: 黄大伟(1985—),男,博士,副研究员。研究方向:突发环境事件风险评估、应急处置及技术开发。E-mail:huagndawei@scies.org
    作者简介: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术、环境风险管理、水污染治理。E-mail:guoqingwei@scies.org
  • 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所),广州 510530
基金项目:
广东省省级科技计划项目(2016B020240007);中央级公益性科研院所基本科研业务专项(PM-zx703-201803-070)

摘要: 针对发生在非集中式饮用水水源地的突发环境事件,应制定应急处置过程中能保证下游集中式饮用水水源地水质安全、缓解应急处置压力的特征污染物容许浓度标准。以下游集中式饮用水水源地水质安全为前提,提出了上游各个河段中特征污染物的最大容许浓度要求及计算方法。此容许浓度既能完全保证饮用水水源地水质安全,又比饮用水水源地的标准限值宽松,可为因地制宜地进行环境应急处置提供参考。

English Abstract

  • 据统计,2014—2019年全国共发生突发环境事件约1 900起,其中生态环境部直接调度指导处置的突发环境事件434起,水污染事件约占60%[1-2]。我国水系发达,当发生突发水环境事件时,很大程度上会影响到事发点下游集中式饮用水水源地。因环境污染造成县级城市集中式饮用水水源地取水中断的突发环境事件为重大突发环境事件;因环境污染造成设区的市级以上城市集中式饮用水水源地取水中断的突发环境事件为特别重大突发环境事件[3]。因此,当遇到可能影响到下游饮用水源地的突发环境事件时,应急处置应格外谨慎。在实际操作过程中宁紧勿松,然而这样也会使事件应急处置难度提高、时间延长、经济代价增大。

    我国《地表水环境质量标准》(GB 3838-2002)[4]的109项水质项目中,分为地表水环境质量标准基本项目、集中式饮用水地表水源地补充项目和集中式饮用水地表水源地特定项目3类,分别有24项、5项和80项。若非集中式饮用水地表水源地的地表水体中发生突发环境事件,且涉及的污染物类别属于集中式饮用水地表水源地补充项目或特定项目,影响到集中式饮用水地表水源地水质的,则存在执行标准缺失的问题;同时,《地表水环境质量标准》中个别指标严于同类型的世界卫生组织(WHO)或美国国家标准[5-7],如锑的浓度限制标准比WHO严格3倍,铊的浓度限制标准比美国严格4倍。

    本研究遵循“饮用水源地安全、资源的可持续利用、因地制宜、目标导向、严格控制”的原则,提出了在非集中式饮用水地表水源地执行的容许浓度要求及计算方法,适用于主体为河流及河流型湖库,理论上污染物类别包括所有在河流中不会发生自降解的物质。研究内容是对现行《地表水环境质量标准》(GB 3838-2002)的补充,可为环境应急管理提供参考。

  • 源强调查内容包括:1)流域内各段河流水体中特征污染物浓度采样监测;2)流域内各段河流水体中特征污染物本底值情况调查分析;3)流域各段河流河道底泥中特征污染物情况调查分析。在前述污染物源强调查分析基础上,核算出流域内各段河流特征污染物通量。

  • 1)水域概化。将天然水域概化成顺直河道与稳态水流,将污染源概化成点源,利用合适的数学模型描述水质变化规律。

    2)基础资料调查与评价。调查与评价各段水域水文资料(流速、流量、流向、水位等)和水域水质资料,收集污染物排放量与浓度资料、支流资料(支流数量、流量、流速与污染物浓度)等,并进行数据一致性分析,形成数据库。

    3)控制点选择。根据水环境功能区划和水域内的水质敏感点位置分析,确定水质控制断面的位置和浓度控制标准。

    4)水质模型建立。根据实际情况选择建立水质模型。

    5)容许浓度计算。应用设计水文条件和上下游水质限值条件进行水质模型计算,确定水域的水环境容量。充分考虑源头污染物通量、汇入支流污染物通量与河道底泥释放污染物通量等,在保证不影响下游集中式饮用水水源地水质的情况下得出实际环境管理可用的特征污染物容许浓度。

  • 以流域常规监测断面作为控制节点,将整个区域作为一个整体进行计算,将排入各河段的各种污染物作为输入条件,进行模拟演算。监测断面一定要反映环境敏感点的水质,且要保证出境水质达到下一水域的水质标准。

  • 1)零维水质模型。零维水质模型,即污染物进入河道就假设其完全混合均匀(溶解或分散),且以此均匀体为整体分散(稀释作用),将污染物泄漏点至环境敏感受体间的河道作为一个整体,污染物在这一整体河道内均匀混合。该模型适用于持久性污染物,河流为恒定流,即流量稳定、水质均匀的河流状态,此时可不考虑污染物进入水体的混合距离。具体见式(1)。

    式中:C0为污染物与河水混合均匀后的质量浓度,mg∙L−1C1为上游来水中污染物质量浓度,mg∙L−1Q为污染物泄漏点至下游某处区段内全部水量,L;q为污染物泄漏量,mg。

    2)忽略弥散的一维稳态水质模型。忽略弥散的一维稳态水质模型,即一维稳态稀释、降解综合模式,忽略污染物的纵向弥散系数(在稳态条件下,纵向弥散系数对结果影响小)。该模型适用于非持久性污染物,河流为恒定流。当污染物在河流横向上达到完全混合后,分析污染物在纵向即水流方向输移、转化的变化情况时采用此模型。具体见式(2)

    式中:C为下游某处污染物质量浓度,mg∙L−1C0为污染物初始质量浓度,mg∙L−1K为污染物的衰减速度常数,d−1L为污染物泄漏点至下游某处河流长度,m;U为河流流速,m∙s−1

    3)一维动态混合模式。非持久性污染物、非恒定流采用一维动态混合模式。该模型适用于预测任何时刻的水质状况。具体见式(3)和式(4)。

    式中:A为过水断面面积,m2u为断面平均流速,m∙s−1q为流量,m3∙s−1d为纵向弥散系数,m2∙s−1c为某污染物在x断面t时刻的质量浓度,mg∙m−3s为各种源和漏的代数和。

    从上述公式可以看出,c是一个空间与时间的函数。当已知边界浓度后(即泄漏点位置河道中污染物的浓度),可根据时间步长和空间步长一步一步向下求解,即可得到c值。

    边界浓度(cbj)与污染物泄漏入河量M、泄漏时间t、河流流量Q等有关,其计算公式见式(5)。

    式中:M为污染物泄漏入河的量,g;t为污染物泄漏时间,s;Q为泄漏点断面河道流量,m3∙s−1cbj即为c在泄漏点的表征。随着污染物在河道中向下游推移,c是变化的。

    以上3种计算数学模型为比较常见的污染物在水中的扩散模型。污染物扩散模型还有很多,比如二维、三维模型等,若是在基础数据及参数齐备的条件下,其预测的准确度会更高。但考虑到突发环境事件的特点,模型所需基础数据的收集比较困难;同时,应急处置应综合考虑最不利条件,有利于应急指挥与调度,因此,在应急处置阶段常常使用的是简单但危险性表征为最大的零维水质模型,即将特征污染物概化为保守物质或持久性污染物(如此设定可忽略特征污染物的自然衰减作用及河道其他物质对特征污染物的衰减作用,其危害性表征为最大),进入水体后视为完全均匀混合。

  • 容许浓度计算数学模型(零维模型)见式(6)~式(9)。

    式中:C为预测断面容许质量浓度,mg∙L−1T为预测断面污染物通量,kg∙d−1Q为预测断面流量,m3∙s−1T为流域污染物总通量,kg∙d−1T支流为预测河段所有汇入支流污染物通量,kg∙d−1T底泥为预测河段底泥释放污染物通量,kg∙d−1Cn为各支流污染物质量浓度,mg∙L−1Qn各支流流量,m3∙s−1n为河流的支流数。

    为满足更严格的水质要求,确保下游集中式饮用水水源地水环境安全,降低流域水环境风险,应以集中式饮用水地表水源地水质标准限值为基准,推导出上游各控制断面特征污染物最高容许浓度。同时,要求任一河段执行的容许浓度值不得直接导致其他相关河段特征污染物浓度超过其容许浓度值,当各河段特征污染物稳定低于容许浓度值后,可商请结束本次事件应急状态,解除应急响应。

  • 以我国西部地区某尾矿库尾矿砂泄漏导致下游河流突发锑污染事件为例,分析了若执行本研究方法计算出的容许浓度时的经济社会效益。

    2015年11月23日,我国西部地区某尾矿库因尾矿砂泄漏造成相关流域水体锑污染。该事件锑污染范围涉及A、B、C三省。在该事件的应急处置阶段,由于上游河流没有饮用水源地功能,而我国现行地表水环境质量标准相应功能区划中未设置锑标准,故全流域只能参照“集中式生活饮用水地表水源地特定项目标准限值”中的锑限值0.005 mg·L−1执行。而由于历史遗留原因及本次事件泄漏尾矿砂的影响,流域内有约100 km的河道因残存在河床上的尾矿砂中的锑与上覆水不断交换释放,使得各控制断面长时期处于轻度超标状态。为尽快全线达到0.005 mg·L−1的标准限值,解除应急响应状态,当地政府必须加大人力、物力、财力进行控制,加上时处隆冬季节,低温及冰冻天气给现场应急工作造成了极大不便。

    通过事后三省的环境应急监测数据分析并通过情景反演分析可知,若此次锑污染事件执行《WHO饮用水水质准则》(第4版,2011年)中关于锑的标准值0.020 mg·L−1,本次突发事件虽难以避免A与B两省省界断面超标,但可避免B和C两省省界断面超标,并可大大缩短应急响应时间。A省自启动应急响应至出省断面锑质量浓度降至0.020 mg·L−1,理论上可提前50 d解除应急响应;B省自A、B两省省界锑质量浓度超过0.020 mg·L−1至B、C两省省界锑质量浓度降至0.020 mg·L−1,理论上,B省可以提前49 d解除应急响应;C省自地表水中锑质量浓度开始超过0.020 mg·L−1至全线降至0.020 mg·L−1,理论上可以提前16 d解除应急响应。因此,若本次事件应急处置过程中执行对环境安全的WHO水质准则,与执行0.005 mg·L−1标准限值相比,本次事件理论上可提前16~50 d解除应急响应,三省均可减少一定量的人力、物力和财力投入。

    通过事后统计得知,本次事件直接经济损失总计约6×107元。其中,A省约2×107元,包括管线引水工程、应急监测费用、筑坝拆坝费用、药剂投加费用、引流河槽开挖工程、山泉水引流工程、溢流井临时封堵和加固工程、尾砂/底泥清淤工程、涵洞口应急处置工程、行政费用等10项应急处置费用和财产损失;B省约1.6×107元,包括管线引水工程费用、车辆送水、筑坝拆坝工程费用、药剂投加、水利调蓄、应急监测、应急保障、行政费用等8项应急处置费用和财产损失;C省2.4×107元,包括管线引水、水厂除锑、水源安全、应急监测、车辆送水、行政费用等6项应急处置费用和财产损失。

    通过情景反演分析,执行WHO水质准则限值的经济效益呈如下特点。

    1)对A省直接经济支出的影响较大。应急监测费用和行政费用支出按照减少的应急响应天数(减少应急天数50 d)折算,应急监测费用减少约4.5×105元,行政费用支出减少约1.2×106元;应急投药工程按照投药量减少50%计算,支出费用减少约2.65×106元。因此,直接经济损失共减少约4.3×106元。

    2)对B省直接经济支出有一定影响。应急监测费用和行政费用支出按照减少的应急响应天数(减少应急天数49 d)折算,应急监测费用减少约1.65×106元;行政费用支出减少约2.1×106元,故直接经济损失共减少约3.75×106元。

    3)对C省的应急支出的影响。理论上C省除开展入境断面的地表水水质监测和水厂除锑工艺改造外,不需要开展管线引水、水源安全、应急监测、车辆送水等应急工程;由此可减少财产损失约1.5×105元,管线饮水工程费用减少约8.9×106万元,车辆送水工程费用减少约9×105元,应急水源保障工程费用减少约4.7×106元,应急监测费用减少约2.85×106元,应急行政费用减少约8×105元。因此,直接经济损失共减少约1.83×107元。

    综上所述,如果此次事件中锑执行WHO水质准则限值0.02 mg·L−1,与执行0.005 mg·L−1标准限值相比,三省直接经济损失可减少约2.635×107元,约占实际直接经济损失(6×107元)的44%。若此次突发锑污染事件应急处置中饮用水源地上游各河段执行本研究提出的阶梯式容许浓度(浓度值0.005 0~0.120 0 mg·L−1),同样可大幅缩减应急处置时间并减少经济损失,而且此浓度范围能够保证下游集中式饮用水源地水质安全,并符合相应地区水环境功能区划要求。

  • 根据笔者所在研究团队亲历的多宗突发环境事件积累的经验,将集中式饮用水源地的污染物标准嫁接到非饮用水源地会导致标准偏于严格,因而有必要制定基于水环境风险控制的应急处置阶段的环境质量标准体系,以便最大限度地缩短应急处置时间,并降低应急处置成本。

    当突发环境事件发生时,若采用阶梯式容许浓度应对事件处置,可在大幅度缩减应急响应时间的基础上,减少应急投药量,缓解投加的药剂对河道水生生态的影响,缩短生态恢复时长,减少对人民群众生产生活的影响,更多地保障群众利益和社会和谐稳定。同时,使用阶梯式容许浓度,可促使地方政府调整产业结构、优化产业布局,充分考虑水环境承载能力,在保证产业发展前提下淘汰落后的生产工业装备和技术。

参考文献 (7)

返回顶部

目录

/

返回文章
返回