热解吸工艺放置顺序对土壤重金属稳定化效果的影响

郭丽莉, 李嘉晨, 徐宏伟, 李书鹏, 熊静. 热解吸工艺放置顺序对土壤重金属稳定化效果的影响[J]. 环境工程学报, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131
引用本文: 郭丽莉, 李嘉晨, 徐宏伟, 李书鹏, 熊静. 热解吸工艺放置顺序对土壤重金属稳定化效果的影响[J]. 环境工程学报, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131
GUO Lili, LI Jiachen, XU Hongwei, LI Shupeng, XIONG Jing. Influence of thermal desorption process placement sequence on stabilization effect of soil heavy metals[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131
Citation: GUO Lili, LI Jiachen, XU Hongwei, LI Shupeng, XIONG Jing. Influence of thermal desorption process placement sequence on stabilization effect of soil heavy metals[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131

热解吸工艺放置顺序对土壤重金属稳定化效果的影响

    作者简介: 郭丽莉(1981—),女,高级工程师。研究方向:土壤污染修复与治理。E-mail:guolili@bceer.com
    通讯作者: 熊静(1987—),女,高级工程师。研究方向:土壤污染修复与治理。E-mail:xiongjing@bceer.com
  • 基金项目:
    国家重点研发计划项目(2018YFC1802100)
  • 中图分类号: X53

Influence of thermal desorption process placement sequence on stabilization effect of soil heavy metals

    Corresponding author: XIONG Jing, xiongjing@bceer.com
  • 摘要: 为了研究热解吸工艺放置顺序对土壤重金属稳定化效果的影响,通过小试模拟的方式,对不同种类的土壤样品进行实验,对比分析了土壤的关键指标在加热前后的变化。结果表明,当热解吸工艺放置在添加稳定化药剂前时,会提高土壤的pH,也会使土壤的重金属有效态质量分数和酸浸出质量浓度增加,但仅有较低的可能性使2者超标。并且,根据不同的土壤酸碱性质,热解吸工艺对重金属形态转化产生的影响不同。当热解吸工艺放置在添加稳定化药剂后,不影响土壤重金属有效态含量和浸出浓度,并对重金属的形态转化没有影响。2种技术联用时的顺序对重金属稳定化效果的影响较小。本研究可为工程项目实施时的工艺设计提供参考。
  • 溶解性固体总量(total dissolved inorganic salt,TDS)的质量分数大于1%的含氮废水通常称为高盐含氮废水[1]。目前,高盐含氮废水排放量大且来源广泛,如腌制食品工业[2]、海产品加工[3]、皮革生产[4]等。由于来源不同,高盐含氮废水的性质复杂各异,不仅含有氮、磷等营养元素和中低碳链的有机物,也含有高浓度的SO24、Cl、Ca2+、Mg2+、Na+等无机离子,是一种污染严重且处理难度较大的废水。传统的膜分离法、电解法、离子交换法虽能去除盐度,但对污染物的降解效果甚微。

    MFCs微生物燃料电池(microbial fuel cells,MFC)是一种新型废水处理技术,因能以产电微生物作为催化剂,氧化水中污染物并且实现化学能向电能的转换而备受国内外关注。研究者们对MFCs性能的考察,最初主要集中于低盐条件下的废水处理、营养物质回收或生物传感设备。2002年,TENDER等[5]将阳极嵌入海洋沉积物中,阴极置于上覆海水中,利用沉积微生物的活动在水-沉积物表面形成电压梯度,产生电能,实现了MFC在高盐环境下产电的可能性,为高盐废水的处理提供了新思路。盐度会对MFC的性能产生影响。LIU等[6]研究发现,当离子强度由100 mmol·L−1增加到400 mmol·L−1时,以乙酸钠为碳源的单室MFC的产电性能便得以改善; TREMOULI等[7]考察了盐度对COD去除率的影响,发现当盐度从2.7 g·L−1增加至6.7 g·L−1时,COD的去除率从70%下降至52%;黄志鹏[8]研究了盐度分别对单室MFC中NH+4-N、NO3-N和NO2-N的处理效果影响,发现随着盐度的增加,NH+4-N的去除率逐渐减小,而NO3-N和NO2-N的还原速率呈现先升高后降低的趋势。目前,MFC处理高盐废水的研究大多集中于盐度对电池产电性能以及有机物去除的影响方面,而对高盐条件下同步硝化反硝化除氮的影响还鲜见报道。

    为优化以高盐含氮废水为底物的MFC的性能,并为今后MFC应用于实际废水提供参考,本研究根据实际废水的水质变化情况,设置了5组不同碳氮比(C/N分别为3∶1、4∶1、5∶1、6∶1和7∶1)的高盐模拟废水作为单室MFC的底物,探讨了碳氮比对单室MFC产电性能、COD去除率以及同步硝化反硝化脱氮的影响,同时,通过高通量测序技术对接种泥和电极生物膜进行了检测,并对优势菌种进行了分析,以进一步为高盐含氮废水的处理提供参考。

    单室无膜空气阴极MFC装置如图1所示。反应器由有机玻璃板构成,长×宽×高为60 mm×60 mm×70 mm,腔体有效体积为252 cm3。阳极采用有效面积为36 cm2的正方形碳毡,其尺寸为60 mm×60 mm。阴极采用有效面积为42 cm2的长方形碳能碳布,其尺寸为60 mm×70 mm。 阴阳极均由钛丝引出,并经铜导线与电阻箱连接构成闭合回路。外电阻设置为1 000 Ω,电池运行过程中,采用磁力搅拌器对电极液进行搅拌,并在反应器的上部预留直径为8 mm的圆孔用于电极液的更换。

    图 1  单室空气阴极MFC实验装置
    Figure 1.  Schematic diagram of single-chamber air-cathode MFC

    电极材料在使用前需进行预处理。碳布的处理步骤如下:首先在碳布的疏水侧均匀涂抹20%的聚四氟乙烯乳液,待液体凝固后,置于370 ℃的马弗炉中烘烤15min,以上步骤重复4次;其次,在碳布的亲水侧做催化处理,将20%的Pt/C催化剂、异丙醇、去离子水及Nafion黏接剂按照一定比例混合后均匀涂抹于碳布的有效范围,再在70 ℃烘箱中烘烤2 h。其中,Pt/C催化剂的使用量取决于催化剂的浓度和有效面积,本研究采用催化剂浓度为0.5 mg·cm−2,因此,Pt/C催化剂的使用量为21 mg;异丙醇、Nafion黏接剂以及去离子水的使用量与Pt/C催化剂的使用量有关, 每mg Pt/C催化剂需0.83×10−6 L异丙醇溶液、6.67×10−6 L Nafion黏接剂、3.33×10−6 L去离子水,因此,异丙醇、Nafion黏接剂和去离子水的使用量分别为69.93×10−6、140.07×10−6和17.43×10−6 L。碳毡需采用1 mol·L−1的硫酸、1 mol·L−1的氢氧化钠及无水乙醇依次浸泡12 h,以去除碳毡表面的颗粒污染物和金属离子。

    在常规的污水处理系统中,相比于进水中氮的含量,进水中有机物浓度的变化幅度更大。因此,本研究依据榨菜废水处理厂厌氧池出水中污染物的浓度变化情况,在碳氮比的设置中,固定氮的浓度,再根据不同碳氮比确定COD值。实验所采用的水样均为模拟废水,氮源由NH4Cl(0.497 g·L−1)提供、碳源由CH3COONa提供,CH3COONa的使用量依据碳氮比确定,当碳氮比分别为3∶1、4∶1、5∶1、6∶1、7∶1时,CH3COONa的使用量依次为0.50、0.67、0.83、1和1.17 g·L−1,其余成分主要包括CaCl2 0.208 g·L−1、KCl 0.1 g·L−1、MgSO4·7H2O 0.1 g·L−1、Na2SO4 0.23 g·L−1、KH2PO4 0.176 g·L−1,模拟废水均用NaCl调至TDS为15 g·L−1。配水在4 ℃的冰箱内保存。配水水质特征如表1所示。

    表 1  配水水质特征
    Table 1.  Quality of the synthetic medium
    碳氮比COD/(mg·L−1)氨氮/(mg·L−1)TN/(mg·L−1)TP/(mg·L−1)盐度/(g·L−1)pH
    3∶1397.50131.53132.3140157.0
    4∶1524.06131.56132.1840157.0
    5∶1652.19131.53132.2840157.0
    6∶1780.31131.56132.2040157.0
    7∶1911.56131.53132.3140157.0
     | Show Table
    DownLoad: CSV

    同时启动5套单室无膜空气阴极MFCs,记为1#、2#、3#、4#和5# MFC,分别以碳氮比为3∶1、4∶1、5∶1、6∶1和7∶1的模拟废水为电极液,实验采用序批式模式运行。在启动阶段,分批次向反应器中接种15 mL取自井口污水厂且经实验室培养的反硝化污泥,并使电极液充满整个反应器腔室,当电池运行电压降至50 mV以下时则视为完成1个产电周期,并及时更换新鲜电极液。若连续3个周期电池均能达到相似电压,则认为MFCs启动成功。再向反应器中接种10 mL取自榨菜废水处理厂且经实验室培养的高盐硝化污泥,待出水水质稳定,采集实验数据。为保持反应器的厌氧状态,电极液在更换前需用氮气吹脱10 min,并且换液孔需用胶带密封。

    电池输出电压(U,mV)通过PISO数据采集器(中国台湾泓格科技公司)进行采集,采集频率为1 min·次−1,并记录于存储设备;开路电压和阴阳极电势采用UT39A数字万用表测得。极化曲线和功率密度曲线通过变电阻法测得。电流、功率密度和库仑效率根据式(1)~式(3)进行计算。

    I=UR (1)
    PV=U2VAnR (2)
    CE=MO2t0IdtFbVAnD (3)

    式中:I为电流,mA;PV为功率密度,mW·m−3CE为库仑效率,%;R为外电路电阻,Ω;VAn为反应器有效体积,m3MO2为以氧为标准的有机物摩尔质量,32 g·mol−1F为法拉第常数,96 485 C·mol−1b为以氧为标准,氧化1 mol有机物需要转移的电子数,取值4 mol;D为在时间0~t内COD的变化,g·mol−1

    水质检测指标和方法包括COD(重铬酸盐法);氨氮(纳氏试剂比色法);硝态氮(氨基磺酸紫外分光光度法);亚硝氮(N-(1-萘基)-乙二胺光度法);总氮(碱性过硫酸钾消解紫外分光光度法)。盐度通过电导率仪(FE-30K,Metter-Toledo)进行检测,pH和溶解氧通过便携式仪器进行检测。

    接种污泥的取样:驯化成功后,取少量接种污泥,在4 ℃环境下以10 000 r·min−1离心15 min,然后将样品保存在−80 ℃冰箱中。电极生物膜的取样:待实验结束,将电极生物膜从单室MFC中取出,用手术刀剪裁成检测所需尺寸后,保存在−80 ℃冰箱中。使用E.Z.N.A.®土壤DNA试剂盒(Omega Bio-tek,Norcross,GA,USA)提取接种污泥和电极生物膜DNA,采用16S rRNA基因测序技术对样本进行检测并对优势菌种进行分析。接种污泥及电极生物膜样品交至上海美吉生物平台(上海,中国),由该公司通过PCR扩增技术进行高通量测序。

    以不同碳氮比的模拟废水为底物的单室MFCs的输出电压如图2所示。由图2可以看出,MFCs经换水后均可以迅速达到峰值电压并维持稳定。碳氮比分别为3∶1、4∶1、5∶1、6∶1和7∶1的单室MFCs的产电周期和峰值电压存在差异,电池的最高输出电压依次为552、576、588、606及610 mV,产电周期长依次为26、36、48、60和71 h。其原因是,碳氮比的提高使电极微生物可利用底物浓度增大,同时也使得反应器厌氧环境相应增强,电极微生物的活性提高,从而促进其对底物的利用。

    图 2  单室MFCs的输出电压
    Figure 2.  Output voltages of the single-chamber MFCs

    当电池连续稳定运行5个周期后,通过变电阻法测定电池的功率密度曲线和极化曲线,结果如图3所示。在5个碳氮比水平下单室MFCs的开路电压和内阻分别为:688 mV和90 Ω、713 mV和87.6 Ω、740 mV和81.6 Ω、749 mV和80.9 Ω、765 mV和78.4 Ω(图3(a)图3(b));相应的最大功率密度依次为5.17、5.71、6.48、6.97和7.33 W·m−3(图3(b))。黄浩斌等[9]开发的单室MFC在盐度为20 g·L−1的条件下的最大输出功率为1.11 W·m−2。系统的极化由阴阳极极化共同决定,5套MFCs系统的阳极电势均随着电流密度的增大,出现逐渐加重的极化现象,而阴极电势呈现平缓的极化现象,这说明阳极电势的改变比阴极电势更能影响单室MFCs的电压。产生以上现象的主要原因是:碳氮比的增加可有效促进溶液中离子的迁移,电极生物膜为了适应电极液底物浓度的变化,传质内阻和活化内阻降低,功率密度增大,从而造成电池性能的提升。

    图 3  单室MFCs的极化曲线和功率密度曲线
    Figure 3.  Power density and polarization curve of the single-chamber MFCs

    图4可以看出,当5组单室MFCs的进水中仅含有NH+4-N并且NH+4-N浓度保持在(131.53±1.7) mg·L−1时,电池稳定运行的周期出水中,均没有NO3-N的积累,1#、3#和4#MFCs中有少量的NO2-N,说明该单室MFC在高盐条件下可以实现同步硝化反硝化脱氮。当碳氮比为4∶1时,TN的去除效果最佳,NH+4-N和TN的去除率高达(96.98±1.8)%和(96.64±1.8)%;当碳氮比为5∶1和6∶1时,NH+4-N和TN的去除率有所下降,但仍在75%以上;而当碳氮比为7∶1时,NH+4-N和TN的去除率仅为(22.21±1.2)%和(22.18±1.3)%。

    图 4  不同形态N浓度和去除率
    Figure 4.  Concentration and removal rate of the different nitrogen forms

    导致以上现象的原因可能是:单室MFCs的接种源以好氧反硝化菌Thauera为主。有研究[10-12]表明,Thauera也能够进行异养硝化;同时,COD的增加并没有抑制NH+4-N对氧气的利用,推测除了传统的自养硝化作用,异养硝化可能是NH+4-N的主要转换途径,而有机物浓度是影响异养硝化效率的重要因素[13],高浓度的有机物有利于异养硝化菌的生长代谢;此外,产电周期过短也可能限制NH+4-N的降解。因此,当碳氮比由3∶1升至4∶1时,底物浓度增加,碳源更加丰富,产电周期延长,脱氮效果显著提高。而当碳氮比为7∶1时,NH+4-N和TN的去除率低于25%,这可能是因为系统中其他异养菌大量富集,加剧了对耗氧有机物(以COD计)的竞争作用,导致系统的脱氮功能受到抑制。

    图5(a)可得,当碳氮比从3∶1升高至4∶1时,COD的去除率从(60.93±2.1)%增加至(86.17±2.4)%,而当碳氮比继续升高至7∶1,COD的去除率分别为(82.18±2.5)%、(82.10±2.1)%、(84.68±1.8)%。这可能是因为:一方面随着碳氮比的增加,单位面积的微生物活性增强[14],降解耗氧有机物(以COD计)并且进行新陈代谢的能力也提高,但当电极微生物与底物结合的酶数量达到饱和状态,即使继续增加碳氮比,COD的去除率也不再提高;另一方面,在同时脱氮除碳的单室MFCs系统中,氮的去除过程也需要消耗有机物,而在不同碳氮比环境下,菌种间对有机物的竞争作用存在差异,从而影响有机物及氮的去除效果。乔龙胜[14]以不同浓度的人工配水为单室MFC的底物时COD的去除率仅为42.64%~55.90%。

    图 5  不同碳氮比条件下的COD去除率和库仑效率
    Figure 5.  COD removal rate and coulombic efficiency at different carbon-nitrogen ratios

    1#~5#MFCs的库仑效率分别为7.4%、4.8%、5.3%、4.9%、5.7%(图5(b))。LIU等[15]以醋酸盐作为空气阴极单室MFCs的底物时库仑效率高达28.3%,这说明在本研究的反应器中除发电以外的其他过程消耗了大量的耗氧有机物(以COD计)。对以上结果的原因分析如下:首先,5组单室MFCs均没有采用质子交换膜,为氧气的渗入提供了便利,部分有机物被氧气消耗,导致库仑效率降低,LIU等[16]的研究表明,不使用质子交换膜的MFC的氧气通量比使用质子交换膜的MFC高2.7倍;其次,1#MFC表现出比其他MFCs更高的库仑效率,这可能与电极微生物优先利用溶液中的耗氧有机物(以COD计)进行产电有关,2#、3#和4#电池库仑效率降低可能是因为部分耗氧有机物(以COD计)作为碳源被反硝化菌消耗,而5#MFC反应器中可能富集了大量其他异养菌,加剧了对耗氧有机物(以COD计)的竞争,库仑效率降低。

    在MFCs运行的一个完整周期,以4 h为间隔,对电极液水质进行检测,结果如图6所示。由图6可以看出,在不同碳氮比条件下,单室MFCs体系中DO的浓度各不相同,且对耗氧有机物(以COD计)和NH+4-N的降解过程存在差异,但污染物的变化趋势具有一致性,这说明单室MFCs可以实现电极液中有机物的自动分配。表2表3分别表示NH+4-N和耗氧有机物(以COD计)在不同运行阶段的降解速率。结果表明:在周期运行的初始阶段,电极液中底物充足,电极微生物对耗氧有机物(以COD计)的竞争作用较弱,耗氧有机物(以COD计)和NH+4-N均以较大速率降解;而随着运行时间的增加,底物浓度降低,单位面积的微生物活性减弱,降解耗氧有机物(以COD计)并且进行新陈代谢活动的能力也受到影响,导致COD的去除速率降低,同时由于系统中电极微生物对耗氧有机物(以COD计)的竞争作用逐渐加强,NH+4-N的降解速率也减缓;在周期运行的后期,COD值继续降低,一方面,产电微生物活性减弱使传递到阴极的电子数量减少,另一方面,可用于消耗通过碳布扩散进入电池的氧气的耗氧有机物(以COD计)不足,导致氧气在电池中的不断累积。詹亚力等[17]向MFC中更换含有饱和溶解氧和不含溶解氧的醋酸钠溶液,发现高含量的氧气不利于电池电能的输出,因此,氧气浓度的增加反过来又对阳极产电微生物起到一定的抑制作用。1#、2#、3#和4#MFCs在电池运行的后期出现NH+4-N降解速率的小幅提高可能与反应器中溶解氧浓度的增加有关,间接促进了NH+4-N的降解。5#电池的NH+4-N在运行的中后期以0.26 mg·(L·h)−1的速率降解,说明系统的脱氮功能受到严重的抑制作用。5组MFCs的pH始终保持稳定,是因为该实验单室MFCs系统通过同步硝化反硝化过程脱氮,硝化产生的酸度可以中和部分反硝化过程产生的碱度[18]

    图 6  5组单室MFCs在典型周期内的COD、氮浓度及pH的过程变化
    Figure 6.  Process changes of COD, nitrogen concentration and pH of five MFCs with different carbon-nitrogen ratios in a typical cycle
    表 2  5组MFCs的氨氮在不同阶段的去除速率
    Table 2.  Removal rate of ammonia in five MFCs at different stages mg·(L·h)−1
    运行阶段氨氮去除速率
    C/N=3∶1C/N=4∶1C/N=5∶1C/N=6∶1C/N=7∶1
    第1阶段5.48(0~8 h)5.31(0~12 h)4.78(0~8 h)4.14(0~8 h)0.94(0~20 h)
    第2阶段1.83(8~16 h)2.04(12~28 h)1.40(8~28 h)0.96(8~44 h)0.26(20~72 h)
    第3阶段3.18(16~24 h)3.50(28~36 h)2.24(28~48 h)1.78(44~60 h)
     | Show Table
    DownLoad: CSV
    表 3  5组MFCs的COD在不同阶段的去除速率
    Table 3.  Removal rate of COD in five MFCs at different stages mg·(L·h)−1
    运行阶段COD去除速率
    C/N=3∶1C/N=4∶1C/N=5∶1C/N=6∶1C/N=7∶1
    第1阶段18.13(0~8 h)15.63(0~16 h)15.00(0~24 h)18.68(0~28 h)14.73(0~44 h)
    第2阶段7.19(8~24 h)11.88(16~36 h)6.25(24~48 h)5.78(28~60 h)9.34(44~72 h)
     | Show Table
    DownLoad: CSV

    综上所述,单室MFCs体系中耗氧有机物(以COD计)可能参与以下4种反应:被阳极生物膜中的产电菌所利用;被渗入反应器中的氧气直接消耗;作为反硝化过程中的碳源被利用;被其他异养菌利用,即单室MFCs体系中耗氧有机物(以COD计)的去除是多种反应相互作用、相互反馈的结果,变量间的变化规律不呈单向,因此,DO与COD、C/N之间并未呈现明显的变化规律。验证上述推测还需要对电极生物膜进行高通量测序分析。

    1)门水平下微生物群落结构分析。门水平下接种物及电池阴阳极生物膜的主要菌属如图7所示。其中好氧和厌氧接种物由IA和IC表示,5种碳氮比水平对应的阴阳极生物膜由C1/A1、C2/A2、C3/A3、C4/A4和C5/A5表示。可以看出,单室MFCs的阴极碳布上也附着了大量的微生物。厌氧接种物中的优势菌种为Proteobacteria(44.62%)、Bacteroidetes(36.45%)和Firmicutes(11.69%);好氧接种物种的优势菌种为Proteobacteria(51.30%)、Bacteroidetes(18.56%)和Patescibacteria(12.91%)。在1#~5#MFC中,阴极生物膜以ProteobacteriaBacteroidetes为优势菌种,但丰度存在显著差异。其中Proteobacteria的丰度依次为75.66%(C1)、64.64%(C2)、46.25%(C3)、53.17%(C4)和44.24%(C5);Bacteroidetes的丰度分别为11.37%(C1)、23.14%(C2)、43.97%(C3)、41.42%(C4)和30.78%(C5)。C5中Planctomycetes以及Firmicutes的丰度增加,分别为3.53%和3.08%;而阳极生物膜以ProteobacteriaBacteroidetesChloroflexi为优势菌种,Proteobacteria的丰度依次为38.78%(A1)、38.28%(A2)、48.28%(A3)、60.28%(A4)和47.19%(A5);Bacteroidetes的丰度分别为45.68%(A1)、19.38%(A2)、18.33%(A3)、16.20%(A4)和26.71%(A5);Chloroflexi的丰度分别为1.43%(A1)、14.14%(A2)、20.85%(A3)、8.76%(A4)和4.02%(A5)。有研究[19]表明,ProteobacteriaBacteroidetes是高盐废水处理系统中的主要菌种;Firmicutes在一些极端环境中可以生存并且特定的属种能够进行异养硝化[20];而Actinobacteria可以进行反硝化,将NO3NO2还原为N2O气体释放[21],5组阴极生物膜中均检出了Actinobacteria,但丰度较低,依次为2.67%(C1)、1.04%(C2)、0.51%(C3)、0.52%(C4)和1.58%(C5);Chloroflexi门在有氧或无氧条件下均可以优先利用葡萄糖和N-乙酰氨基葡萄糖,但在pH较低的环境下利用率降低[22]。在门水平下,接种泥中的优势菌种在反应器中得以延续。

    图 7  门水平下接种物及生物膜中微生物群落组成
    Figure 7.  Microbial community composition of the inoculum and biofilms at the phylum level

    2)属水平下微生物群落结构分析。属水平下接种物及电池阴阳极生物膜的主要菌属如图8所示。由图8(a)图8(b)可以看出,在属水平下,厌氧接种泥的主要菌属为Thauera(37.63%)、norank_f_ML635J-40_aquatic_group(22.30%)和Lentimicrobium(5.24%);好氧接种泥的主要菌属为Thauera(26.87%)、Luteibacter(20.35%)、norank_o_Saccharimonadales(12.89%)和unclassified_o__Chitinophagales(10.60%),接种泥以Thauera为主。有研究[10-12]表明,Thauera能够在厌氧MFC中实现产电和有机物去除,并在同步硝化反硝化系统中通过异养硝化-好氧反硝化途径脱氮。

    图 8  属水平下接种物及生物膜中微生物群落组成
    Figure 8.  Microbial community composition of the inoculum and biofilms at the genus level

    5组单室MFCs的阴极、阳极生物膜的菌属在属水平下有显著差异,同时为适应高盐水质,与接种污泥相比较微生物群落更为丰富,但Thauera始终为优势菌种,其丰度分别为30.59%和25.79%(C1、A1)、32.75%和34.75%(C2、A2)、25.01%和33.89%(C3、A3)、27.67%和27.30%(C4、A4)以及17.32%和18.06%(C5、A5)。除Thauera外,不同碳氮比条件下的优势菌种各有不同。在属水平下,发现15种与脱氮相关的功能菌,包括ThaueraStappiaAcinetobacterArcobacterParacoccusRheinheimeraSedimenticolaSulfurimonasThioalbus、unclassified_f_Rhodocyclaceae、unclassified_f_RhodobacteraceaeSoehngeniaCaldithrix、unclassified_f_FlavobacteriaceaeFlavobacterium。其中,Stappia[23]Arcobacter[23]Sedimenticola[24]Thioalbus[25]Soehngenia[26]Sulfurimonas[27]为硫型自养反硝化菌,能够将底物中的硫化物氧化为高价硫,同时为硝酸盐的还原提供电子,以实现反硝化过程。有研究表明,Arcobacter[23]氧化硫化物的电子也可以提供给二氧化碳,用于合成有机物。Thauera、unclassified_f_Rhodocyclaceae[28-29]Rheinheimera[30]Acinetobacter[31]Paracoccus[32-33]、unclassified_f_Rhodobacteraceae[34]Flavobacterium[35]经证实具有异养硝化-好氧反硝化脱氮的功能,其中,Rheinheimera可以利用不同的碳源实现好氧反硝化[30]Acinetobacter能够在酸性条件下通过异养硝化-好氧反硝化过程实现了氮的去除[31]。而Caldithrix可利用分子氢或乙酸盐作为电子供体还原硝酸盐,也可以利用厌氧氨氧化过程产生的硝酸盐以实现更高的氮去除率[36]。unclassified_f_Flavobacteriaceae在溶解氧较低的条件下可以有机物为电子供体、硝酸盐或亚硝酸盐作为电子受体进行无氧呼吸代谢,若有机物充足,硝酸盐或亚硝酸盐可被还原为氮气[37]。在阴极生物膜中,具有异养硝化功能的微生物丰度依次为35.72%(C1)、46.90%(C2)、40.17%(C3)、35.63%(C4)和21.38%(C5),反硝化菌的丰度依次为47.17%(C1)、62.41%(C2)、51.28%(C3)、56.09%(C4)和21.38%(C5),其中,好氧反硝化菌的丰度分别为35.72%(C1)、52.60%(C2)、49.59%(C3)、45.08%(C4)和21.38%(C5)。值得注意的是,好氧接种物中自养硝化菌的丰度为3.07%,而该5组单室MFCs中自养硝化菌的丰度均低于<1%,说明硝化菌在与异养菌的竞争中处于劣势而逐渐被淘汰。推测异养硝化可能是该系统中氨氮转换的主要途径,同时,参与反硝化过程的菌属中,好氧反硝化菌所占比例较高,说明该单室MFCs主要通过好氧反硝化途径实现氮的去除。但由图6可见,各单室MFCs体系在周期运行的过程中,氨氮逐渐下降,同时未出现NO3-N和NO2-N的积累,即硝化和反硝化作用是同时进行的,而DO的浓度仅在周期反应的后期有小幅增加,这主要是因为氧气能够通过碳能碳布和阴极生物膜进入电极液中,但在周期反应的前期,实验监测到电极液中的DO为零,即氧气在透过阴极生物膜的时候已被完全消耗,并达成动态平衡。因此,氧气跨膜的过程,为好氧反硝化菌对硝酸盐的利用提供了良好的条件,从而实现了好氧反硝化脱氮。

    在属水平下,还发现7种硫酸盐还原菌,分别为Desulfotignum[38]Desulfomicrobium[24]Dethiosulfatibacter[39]Desulfococcus[40]Desulfuromonas[41]Desulfofustis[42]Sulfurovum[43]。KAMARISIMA等[38]研究发现,当硝酸盐浓度(1 mmol·L−1)低于硫酸盐浓度(5 mmol·L−1)时,Desulfotignum可以将硫酸盐还原成硫化物;Dethiosulfatibacter通常以硫代硫酸盐作为电子受体将其还原为低价态硫[39]Desulfuromonas能够以Fe3+作为电子受体氧化乙醇、丙醇和丁醇[41];在厌氧环境下,Desulfofustis能够利用有机物将硫酸盐还原为H2S[42]Sulfurovum可以氢为电子供体实现硫酸盐的还原,并在硫酸盐浓度较高的环境中富集[43]。在阳极生物膜中,硫酸盐还原菌的丰度为1.0%(A1)、1.0%(A2)、4.33%(A3)、20.77%(A4)和27.15%(A5),SRB的丰度随着电极液中碳氮比的升高逐渐增大,并且SRB菌种也越来越丰富,即在硫酸盐浓度极低的条件下,SRB也可以在该单室MFCs中富集,同时,可以对系统的脱氮效率产生影响。值得注意的是,在C5生物膜中也检测出了硫酸盐还原菌DesulfotignumDesulfomicrobium,丰度高达10.78%和2.39%,说明当电极液碳氮比为7∶1时,单室MFC呈现完全厌氧的状态。

    1)单室MFCs在以不同碳氮比的高盐模拟废水(盐度为15 g·L−1)为阳极液时,可实现污染物去除和同步产电。

    2)当碳氮比由3∶1依次增加至7∶1时,单室MFCs的产电性能逐渐优化,当碳氮比为7∶1时,功率密度最大,为7.33 W·m−3

    3)碳氮比不同的单室MFCs的污染物去除率存在差异。当C/N=4∶1时,耗氧有机物(以COD计)、NH+4-N和TN的去除效果最佳,去除率分别为(86.17±2.4)%、(96.98±1.8)%和(96.64±1.8)%。

    4)碳氮比不同的单室MFCs对污染物的去除过程存在差异。在稳定产电周期内,COD及NH+4-N在不同阶段表现出不同的去除速率,这主要与底物浓度有关。

    5)当接种物以Thauera为主时,单室MFCs可通过异养硝化-好氧反硝化途径实现氮的去除。

  • 图 1  热解吸工艺对北京通州土壤重金属形态转化的影响

    Figure 1.  Influence of thermal desorption process on heavy metals form of soil from Tongzhou, Beijing

    图 2  热解吸工艺对陕西商洛土壤重金属形态转化的影响

    Figure 2.  Influence of thermal desorption process on heavy metals form of soil from Shangluo, Shaanxi

    图 3  热解吸工艺对湖南湘潭土壤重金属形态转化的影响

    Figure 3.  Influence of thermal desorption process on heavy metals form of soil from Xiangtan, Hunan

    表 1  样品处理

    Table 1.  Treatment of sample

    样品代码加热温度/℃加药量/%采样地样品代码加热温度/℃加药量/%采样地
    CK-S陕西商洛LG-S20010陕西商洛
    CK-B北京通州LG-B20010北京通州
    CK-H湖南湘潭HG-S30010陕西商洛
    L-S200陕西商洛HG-B30010北京通州
    L-B200北京通州HG-H30010湖南湘潭
    H-S300陕西商洛G-S10陕西商洛
    H-B300北京通州G-B10北京通州
    H-H300湖南湘潭G-H10湖南湘潭
      注:前缀“CK”指空白对照,即样品不经加热也不添加药剂;“L”指土壤样品于200 ℃下加热;“H” 指土壤样品于300 ℃下加热;“G”指经过稳定化处理后的土壤样品;“LG”指经过稳定化处理后于200 ℃下加热的土壤样品;“HG”指经过稳定化处理后于300 ℃下加热的土壤样品;后缀“S”指土壤样品来自陕西商洛;“B”指土壤样品来自北京通州;“H”指土壤样品来自湖南湘潭。
    样品代码加热温度/℃加药量/%采样地样品代码加热温度/℃加药量/%采样地
    CK-S陕西商洛LG-S20010陕西商洛
    CK-B北京通州LG-B20010北京通州
    CK-H湖南湘潭HG-S30010陕西商洛
    L-S200陕西商洛HG-B30010北京通州
    L-B200北京通州HG-H30010湖南湘潭
    H-S300陕西商洛G-S10陕西商洛
    H-B300北京通州G-B10北京通州
    H-H300湖南湘潭G-H10湖南湘潭
      注:前缀“CK”指空白对照,即样品不经加热也不添加药剂;“L”指土壤样品于200 ℃下加热;“H” 指土壤样品于300 ℃下加热;“G”指经过稳定化处理后的土壤样品;“LG”指经过稳定化处理后于200 ℃下加热的土壤样品;“HG”指经过稳定化处理后于300 ℃下加热的土壤样品;后缀“S”指土壤样品来自陕西商洛;“B”指土壤样品来自北京通州;“H”指土壤样品来自湖南湘潭。
    下载: 导出CSV

    表 2  热解吸工艺对土壤pH的影响

    Table 2.  Influence of thermal desorption process on soil pH

    样品代码pH样品代码pH样品代码pH
    CK-S7.84±0.02 cCK-B7.56±0.03 cCK-H3.66±0.03 b
    L-S8.02±0.01 bL-B7.63±0.02 bH-H3.70±0.03 b
    H-S8.18±0.02 aH-B7.71±0.05 aG-H4.13±0.02 a
    G-S7.64±0.02 dG-B7.50±0.01 dHG-H4.21±0.03 a
    LG-S7.51±0.05 dLG-B7.62±0.08 bc
    HG-S7.88±0.08 cHG-B7.70±0.01 a
      注:使用方差分析标记字母法进行数据组之间的差异显著性分析。
    样品代码pH样品代码pH样品代码pH
    CK-S7.84±0.02 cCK-B7.56±0.03 cCK-H3.66±0.03 b
    L-S8.02±0.01 bL-B7.63±0.02 bH-H3.70±0.03 b
    H-S8.18±0.02 aH-B7.71±0.05 aG-H4.13±0.02 a
    G-S7.64±0.02 dG-B7.50±0.01 dHG-H4.21±0.03 a
    LG-S7.51±0.05 dLG-B7.62±0.08 bc
    HG-S7.88±0.08 cHG-B7.70±0.01 a
      注:使用方差分析标记字母法进行数据组之间的差异显著性分析。
    下载: 导出CSV

    表 3  热解吸工艺对土壤有机质质量分数的影响

    Table 3.  Influence of thermal desorption process on organic matter content of soil g·kg−1

    样品代码有机质含量样品代码有机质含量样品代码有机质含量
    CK-S3.07±0.03 aCK-B14.51±0.1 bCK-H2.02±0.05 a
    L-S3.06±0.06 aL-B19.06±0.4 aH-H1.95±0.1 ab
    H-S3.23±0.2 aH-B20.13±0.7 aG-H1.95±0.2 ab
    G-S2.82±0.2 aG-B15.36±1.5 bHG-H1.57±0.1 b
    LG-S2.72±0.2 aLG-B19.65±1.2 a
    HG-S3.14±0.2 aHG-B15.64±0.6 b
    样品代码有机质含量样品代码有机质含量样品代码有机质含量
    CK-S3.07±0.03 aCK-B14.51±0.1 bCK-H2.02±0.05 a
    L-S3.06±0.06 aL-B19.06±0.4 aH-H1.95±0.1 ab
    H-S3.23±0.2 aH-B20.13±0.7 aG-H1.95±0.2 ab
    G-S2.82±0.2 aG-B15.36±1.5 bHG-H1.57±0.1 b
    LG-S2.72±0.2 aLG-B19.65±1.2 a
    HG-S3.14±0.2 aHG-B15.64±0.6 b
    下载: 导出CSV

    表 4  热解吸工艺对土壤重金属有效态质量分数的影响

    Table 4.  Influence of thermal desorption process on available content of soil heavy metals

    mg·kg−1
    样品代码土壤重金属有效态质量分数
    AsCdCuPb
    CK-S 0.09±0.000 6 a 0.04±0.003 bc 1.06±0.03 b 0.90±0.07 a
    L-S 0.09±0.003 a 0.04±0.002 bc 0.94±0.06 b 0.89±0.04 a
    H-S 0.11±0.004 a 0.22±0.01 a 1.15±0.1 b 0.97±0.07 a
    G-S 0.01±0.003 b 0.06±0.02 bc 0.67±0.02 c 0.38±0.04 b
    LG-S 0.01±0.003 b 0.03±0.001 c 0.57±0.003 c 0.25±0.006 b
    HG-S 0.03±0.01 b 0.07±0.01 b 0.63±0.01 c 0.34±0.02 b
    CK-B 0.02±0.002 b 6.74±0.2 b 3.41±0.1 b 7.50±0.2 ab
    L-B 0.05±0.002 a 9.92±0.2 a 4.45±0.2 a 8.08±0.2 a
    H-B 0.06±0.002 a 9.44±0.04 a 4.57±0.2 a 7.32±0.3 b
    G-B 0.002±0.000 3 bc 5.35±0.3 c 2.98±0.1 b 4.23±0.09 c
    LG-B 0.001±0.000 1 c 5.65±0.1 c 2.9±0.09 b 3.39±0.1 d
    HG-B 0.003±0.001 b 6.12±0.3 bc 3.11±0.03 b 3.88±0.2 cd
    CK-H 2.65±0.2 a 13.4±0.31 b 14.95±0.44 a 2.46±0.24 a
    H-H 0.30±0.01 c 16.58±0.43 a 13.27±0.22 b 2.62±0.25 a
    G-H 0.98±0.01 b 3.25±0.07 c 6.90±0.07 c 0.75±0.03 b
    HG-H 0.73±0.06 b 3.75±0.29 c 7.05±0.26 c 1.08±0.05 b
    mg·kg−1
    样品代码土壤重金属有效态质量分数
    AsCdCuPb
    CK-S 0.09±0.000 6 a 0.04±0.003 bc 1.06±0.03 b 0.90±0.07 a
    L-S 0.09±0.003 a 0.04±0.002 bc 0.94±0.06 b 0.89±0.04 a
    H-S 0.11±0.004 a 0.22±0.01 a 1.15±0.1 b 0.97±0.07 a
    G-S 0.01±0.003 b 0.06±0.02 bc 0.67±0.02 c 0.38±0.04 b
    LG-S 0.01±0.003 b 0.03±0.001 c 0.57±0.003 c 0.25±0.006 b
    HG-S 0.03±0.01 b 0.07±0.01 b 0.63±0.01 c 0.34±0.02 b
    CK-B 0.02±0.002 b 6.74±0.2 b 3.41±0.1 b 7.50±0.2 ab
    L-B 0.05±0.002 a 9.92±0.2 a 4.45±0.2 a 8.08±0.2 a
    H-B 0.06±0.002 a 9.44±0.04 a 4.57±0.2 a 7.32±0.3 b
    G-B 0.002±0.000 3 bc 5.35±0.3 c 2.98±0.1 b 4.23±0.09 c
    LG-B 0.001±0.000 1 c 5.65±0.1 c 2.9±0.09 b 3.39±0.1 d
    HG-B 0.003±0.001 b 6.12±0.3 bc 3.11±0.03 b 3.88±0.2 cd
    CK-H 2.65±0.2 a 13.4±0.31 b 14.95±0.44 a 2.46±0.24 a
    H-H 0.30±0.01 c 16.58±0.43 a 13.27±0.22 b 2.62±0.25 a
    G-H 0.98±0.01 b 3.25±0.07 c 6.90±0.07 c 0.75±0.03 b
    HG-H 0.73±0.06 b 3.75±0.29 c 7.05±0.26 c 1.08±0.05 b
    下载: 导出CSV

    表 5  热解吸工艺对土壤重金属酸浸出质量浓度的影响

    Table 5.  Influence of thermal desorption process on acid leaching concentration of soil heavy metals

    mg·L−1
    样品代码土壤重金属酸浸出质量浓度
    AsCdCuPb
    CK-S 0.03±0.004 a <0.001 a <0.001 a 0.002±0.001 ab
    L-S 0.02±0.01 b 0.014±0.02 a 0.009±0.001 a 0.004±0.001 a
    H-S 0.04±0.002 a 0.007±0.001 a 0.006±0.001 a 0.001±0.001 bc
    G-S 0.002±0.004 c <0.001 a 0.004±0.000 1 a <0.001 d
    LG-S 0.01±0.003 c <0.001 a 0.007±0.001 a <0.001 cd
    HG-S 0.002±0.002 a <0.001 a <0.001 a <0.001 d
    CK-B 0.01±0.01 bc 0.002±0.001 b 0.01±0.001 b 0.003±0.004 b
    L-B 0.02±0.001 ab 0.007±0.002 a 0.03±0.001 a 0.009±0.004 b
    H-B 0.03±0.006 a 0.008±0.002 a 0.05±0.01 a 0.03±0.002 a
    G-B 0.004±0.003 c 0.001±0.000 3 b 0.008±0.004 b 0.002±0.000 5 b
    LG-B 0.005±0.001 c 0.001±0.000 1 b 0.008±0.003 5 b 0.003±0.001 b
    HG-B 0.007±0.002 c 0.001±0.000 1 b 0.01±0.003 b 0.002±0.001 b
    CK-H 0.61±0.08 b 1.61±0.05 c 2.67±0.08 b 0.62±0.1 b
    H-H 0.76±0.02 a 2.39±0.06 b 3.63±0.1 a 0.80±0.06 a
    G-H 0.10±0.01 c 3.14±0.08 a 2.28±0.1 c 0.13±0.06 c
    HG-H 0.07±0.01 c 2.44±0.14 b 1.37±0.2 d 0.07±0.01 c
    mg·L−1
    样品代码土壤重金属酸浸出质量浓度
    AsCdCuPb
    CK-S 0.03±0.004 a <0.001 a <0.001 a 0.002±0.001 ab
    L-S 0.02±0.01 b 0.014±0.02 a 0.009±0.001 a 0.004±0.001 a
    H-S 0.04±0.002 a 0.007±0.001 a 0.006±0.001 a 0.001±0.001 bc
    G-S 0.002±0.004 c <0.001 a 0.004±0.000 1 a <0.001 d
    LG-S 0.01±0.003 c <0.001 a 0.007±0.001 a <0.001 cd
    HG-S 0.002±0.002 a <0.001 a <0.001 a <0.001 d
    CK-B 0.01±0.01 bc 0.002±0.001 b 0.01±0.001 b 0.003±0.004 b
    L-B 0.02±0.001 ab 0.007±0.002 a 0.03±0.001 a 0.009±0.004 b
    H-B 0.03±0.006 a 0.008±0.002 a 0.05±0.01 a 0.03±0.002 a
    G-B 0.004±0.003 c 0.001±0.000 3 b 0.008±0.004 b 0.002±0.000 5 b
    LG-B 0.005±0.001 c 0.001±0.000 1 b 0.008±0.003 5 b 0.003±0.001 b
    HG-B 0.007±0.002 c 0.001±0.000 1 b 0.01±0.003 b 0.002±0.001 b
    CK-H 0.61±0.08 b 1.61±0.05 c 2.67±0.08 b 0.62±0.1 b
    H-H 0.76±0.02 a 2.39±0.06 b 3.63±0.1 a 0.80±0.06 a
    G-H 0.10±0.01 c 3.14±0.08 a 2.28±0.1 c 0.13±0.06 c
    HG-H 0.07±0.01 c 2.44±0.14 b 1.37±0.2 d 0.07±0.01 c
    下载: 导出CSV
  • [1] 庄绪亮. 土壤复合污染的联合修复技术研究进展[J]. 生态学报, 2007, 27(11): 4871-4876. doi: 10.3321/j.issn:1000-0933.2007.11.057
    [2] 周东美, 王玉军, 仓龙, 等. 土壤及土壤-植物系统中复合污染的研究进展[J]. 环境污染治理技术与设备, 2004, 5(10): 1-8.
    [3] 张大同, 谢爱军, 高素萍. 重金属污染土壤固化稳定化修复技术研究进展[J]. 环境保护与循环经济, 2016, 36(6): 45-48.
    [4] 吴健, 沈根祥, 黄沈发. 挥发性有机物污染土壤工程修复技术研究进展[J]. 土壤通报, 2005, 36(3): 430-435. doi: 10.3321/j.issn:0564-3945.2005.03.034
    [5] 李书鹏, 刘鹏. 钢铁企业污染场地修复经验探索: 我国钢铁企业场地污染特征及常用修复技术简介[J]. 世界环境, 2016(4): 59-62.
    [6] 杨洁, 钱赵秋, 王旌. 反复冻融与高温老化对砷污染土壤固化稳定化效果的影响[J]. 环境科学, 2017, 38(11): 400-405.
    [7] 尚小娟, 赵树兰, 多立安. 施用垃圾堆肥土壤重金属在不同温度和酸雨条件下的淋溶特征[J]. 环境工程学报, 2012, 6(3): 995-999.
    [8] BABA A, GURDAL G, SENGUNALP F, et al. Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, province of Canakkale, Turkey[J]. Environmental monitoring and assessment, 2008, 139(1/2/3): 287-298. doi: 10.1007/s10661-007-9834-8
    [9] 马晓军. 水热法处理生活垃圾焚烧飞灰中重金属和二恶英的研究[D]. 杭州: 浙江大学, 2013.
    [10] 刘亚珍, 武荣芳, 赵梦梦, 等. 温度对污泥焚烧灰中重金属迁移行为与浸出特性的影响[J]. 河南大学学报, 2018, 48(3): 93-98.
    [11] 刁韩杰. 不同热解条件对污泥炭特性及重金属行为的影响[D]. 杭州: 浙江农林大学, 2018.
    [12] 刁韩杰, 张进, 王敏艳, 等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程, 2019, 37(3): 29-34.
    [13] 中华人民共和国农业部. 土壤pH的测定: NY/T 1377-2007[S]. 北京: 中国农业出版社, 2007.
    [14] 中华人民共和国农业部. 土壤检测第6部分: 土壤有机质的测定: NY/T 11216-2006[S]. 北京: 中国农业出版社, 2006.
    [15] 中华人民共和国环境保护部. 土壤 8种有效态元素的测定二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法: HJ 804-2016[S]. 北京: 中国环境科学出版社, 2016.
    [16] 杨维, 高雅玲, 康志勇, 等. 毗邻铁矿的景区土壤重金属形态及生物有效性[J]. 环境科学与技术, 2010, 33(11): 82-86.
    [17] 中国国家环境保护总局. 固体废物 浸出毒性浸出方法硫酸硝酸法: HJ/T299-2007[S]. 北京: 中国环境科学出版社, 2007.
    [18] TESSIER A, CAMPBELL P G, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
    [19] KHARE D, KHARE P, MISHRA G. Effect of heat on nutrient release from soil under tropical dry deciduous forest[J]. Japanese Journal of Ecology, 1982, 32(1): 107-110.
    [20] MARCOS E, DE LUIS E, TARREGA R. Chemical Soil Changes in Shrubland after Experimental Fire[M]. Fire Management and Landscape Ecology.; International Association of Wildland Fire Fairfield, USA. 1998: 3-12.
    [21] BADÍA D, MARTÍ C. Plant ash and heat intensity effects on chemicaland physical properties of two contrasting soils[J]. Arid Land Research and Management, 2003, 17(1): 23-41. doi: 10.1080/15324980301595
    [22] GIOVANNINI G, LUCCHESI S. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities[J]. Soil Science, 1997, 162(7): 479-486. doi: 10.1097/00010694-199707000-00003
    [23] GIOVANNINI G, LUCCHESI S, GIACHETTI M. Beneficial and detrimental effects of heating on soil quality[C]//Fire in Ecosystem Dynamics: Mediterranean and Northern Perspectives. Hague, 1990: 95-102.
    [24] 费杨, 阎秀兰, 李永华. 铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J]. 环境科学, 2018, 39(3): 1430-1437.
    [25] VARELA M, BENITO E, KEIZER J. Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia: The role of lithology, soil organic matter content and water repellency[J]. Catena, 2010, 83(2/3): 127-134. doi: 10.1016/j.catena.2010.08.001
    [26] CHANDLER C, CHENEY P, THOMAS P, et al. Fire in Forestry. Volume 1. Forest Fire Behavior and Effects[M]. John Wiley & Sons, Inc., 1983.
    [27] 于彬, 郭彦青, 杨乐苏. 化学氧化法测定土壤有机质的研究进展[J]. 广东林业科技, 2007, 23(1): 100-103.
    [28] 周卫红, 张静静, 邹萌萌, 等. 土壤重金属有效态含量检测与监测现状、问题及展望[J]. 中国生态农业学报, 2017, 25(4): 605-615.
    [29] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境科学出版社, 2018.
    [30] 国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准 浸出毒性鉴别: GB 50853-2007[S]. 北京: 中国环境科学出版社, 2007.
    [31] SHERMAN D M, RANDALL S R. Surface complexation of arsenic (V) to iron (III)(hydr) oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4223-4230. doi: 10.1016/S0016-7037(03)00237-0
    [32] 费杨, 阎秀兰, 廖晓勇, 等. 铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究[J]. 环境科学学报, 2016, 36(11): 4164-4172.
    [33] KIM J Y, DAVIS A P, KIM K W. Stabilization of available arsenic in highly contaminated mine tailings using iron[J]. Environmental Science Technology, 2003, 37(1): 189-195. doi: 10.1021/es020799+
    [34] 荣湘民, 岳振华, 朱红梅. 湖南省几种主要菜园土铅的化学行为及其作物效应的初步研究[J]. 生态环境学报, 1996, 5(1): 27-32.
    [35] ZHAO D L, YANG X, ZHANG H, et al. Effect of environmental conditions on Pb (II) adsorption on β-MnO2[J]. Chemical Engineering Journal, 2010, 164(1): 49-55. doi: 10.1016/j.cej.2010.08.014
    [36] 曾桓兴. 铁氧体共沉淀技术净化含重金属废水[J]. 环境科学, 1983, 4(4): 68-73.
    [37] 朱丹丹, 周启星. 功能纳米材料在重金属污染水体修复中的应用研究进展[J]. 农业环境科学学报, 2018, 37(8): 1551-1564.
  • 加载中
图( 3) 表( 5)
计量
  • 文章访问数:  3885
  • HTML全文浏览数:  3885
  • PDF下载数:  85
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-24
  • 录用日期:  2021-07-08
  • 刊出日期:  2021-08-10
郭丽莉, 李嘉晨, 徐宏伟, 李书鹏, 熊静. 热解吸工艺放置顺序对土壤重金属稳定化效果的影响[J]. 环境工程学报, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131
引用本文: 郭丽莉, 李嘉晨, 徐宏伟, 李书鹏, 熊静. 热解吸工艺放置顺序对土壤重金属稳定化效果的影响[J]. 环境工程学报, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131
GUO Lili, LI Jiachen, XU Hongwei, LI Shupeng, XIONG Jing. Influence of thermal desorption process placement sequence on stabilization effect of soil heavy metals[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131
Citation: GUO Lili, LI Jiachen, XU Hongwei, LI Shupeng, XIONG Jing. Influence of thermal desorption process placement sequence on stabilization effect of soil heavy metals[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2678-2688. doi: 10.12030/j.cjee.202012131

热解吸工艺放置顺序对土壤重金属稳定化效果的影响

    通讯作者: 熊静(1987—),女,高级工程师。研究方向:土壤污染修复与治理。E-mail:xiongjing@bceer.com
    作者简介: 郭丽莉(1981—),女,高级工程师。研究方向:土壤污染修复与治理。E-mail:guolili@bceer.com
  • 1. 北京建工环境修复股份有限公司,北京 100015
  • 2. 污染场地安全修复技术国家工程实验室,北京 100015
基金项目:
国家重点研发计划项目(2018YFC1802100)

摘要: 为了研究热解吸工艺放置顺序对土壤重金属稳定化效果的影响,通过小试模拟的方式,对不同种类的土壤样品进行实验,对比分析了土壤的关键指标在加热前后的变化。结果表明,当热解吸工艺放置在添加稳定化药剂前时,会提高土壤的pH,也会使土壤的重金属有效态质量分数和酸浸出质量浓度增加,但仅有较低的可能性使2者超标。并且,根据不同的土壤酸碱性质,热解吸工艺对重金属形态转化产生的影响不同。当热解吸工艺放置在添加稳定化药剂后,不影响土壤重金属有效态含量和浸出浓度,并对重金属的形态转化没有影响。2种技术联用时的顺序对重金属稳定化效果的影响较小。本研究可为工程项目实施时的工艺设计提供参考。

English Abstract

  • 土壤中的污染情况往往以复合污染的形式出现[1]。其中,重金属-有机复合污染尤为常见[2]。目前,针对土壤重金属污染经常使用固化稳定化药剂,使土壤中的重金属改变赋存形态,从而使其迁移性、溶解性减弱,最终达到毒性降低的目的[3]。而针对有机污染物的热解吸技术则通过加热土壤至100~300 ℃,并保持20 min以上,使土壤中有机污染物以气体形式逸出[4]。在处理重金属-有机复合污染时,可以根据场地情况联合使用2种技术。

    目前,在处理重金属-有机复合污染时,通常采用先去除有机污染物,再修复重金属污染的联用方式[5];即先加热土壤进行热解吸后再添加固化稳定化药剂。但是,以这种顺序联用2种技术,一方面存在工艺流程设计不灵活、处理等待时间较长的问题;另一方面会遇到重金属污染土壤通过高温加热对重金属形态和浸出浓度产生影响的情况。例如,杨洁等[6]发现,经固化稳定化的砷污染土壤,在80 ℃条件下老化4和10 h 后,砷的不稳定形态发生了明显的提升,分别增加了71.47%和73.33%。尚小娟等[7]和BABA等[8]研究发现,在中性及酸性条件下,环境温度由10 ℃增加至30 ℃会导致重金属浸出增加,且在酸性条件下更易将重金属浸出。在采用与热解吸技术工况相似的温度时,马晓军[9]的研究指出,在高压碱性条件下反应12 h,重金属的形态出现改变,且浸出量下降;而在相似的低压状态,在500 ℃以上反应25 min的条件下,重金属的浸出率随温度升高而降低,重金属形态由酸溶态和可还原态向可氧化态和残渣态迁移[10-12]

    然而,对于在200~300 ℃微负压的热解吸技术工况下,土壤中重金属赋存形态的变化情况缺少研究。热解吸工艺在整个工艺流程中的放置顺序是否会影响重金属稳定化的效果目前并不明晰,这为复合工艺在实际工程中的联用顺序设计带来了较大的不确定性。鉴于此,本研究将通过实验确定热解吸工艺放置顺序对重金属稳定化效果的影响,以期为工程项目实施时的工艺设计提供参考。

  • 本实验供试土壤分别采自湖南湘潭、陕西商洛和北京通州。其中,陕西商洛和北京通州所采样品为农田土壤。重金属稳定化药剂为Fixall,其主要成分为硫酸钙、氢氧化铁和氧化锰;其中,硫酸钙及其水合物占比约为70%、氢氧化铁约为20%、氧化锰约为5%、pH为7.5~8.5。

  • 本实验加热土壤的设备为多段精确控温管式炉(BTF-1200C-Ⅲ,贝意克设备技术有限公司),使用硅钼棒元件加热石英管,温度在0~1 200 ℃间可调,控制精度为±1 ℃。

  • 本实验共设置16种处理工况,每种处理工况设置3次重复,以代码代指经不同工况处理后的土样(见表1)。16种处理工况每个重复样品中污染土壤重量均为150 g。热解吸加热方式为间接热交换,加热时间为30 min,从达到目标温度后开始计算。其中,需要进行稳定化处理的样品以土壤重量分数10%加药;稳定化期间,土壤含水量保持在17%,养护时间为14 d。

  • 土壤pH的测定方法采用国家农业行业标准《土壤pH的测定》(NY/T 1377-2007)[13];土壤有机质质量分数测定方法采用国家农业行业标准《土壤检测 第6部分:土壤有机质的测定》(NY/T 1121.6-2006)[14]

    重金属有效态质量分数测定方法采用国家环境保护标准《土壤 8种有效态元素的测定二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》(HJ 804-2016)[15]。重金属有效态指可被生物吸收利用的重金属形态,其主要包括可交换态、碳酸盐结合态及部分铁锰氧化物结合态与有机结合态[16]

    重金属酸浸出浓度测定方法采用国家环境保护行业标准《固体废物 浸出毒性浸出方法硫酸硝酸法》(HJ/T 299-2007)[17]

    重金属形态分级采用Tessier五步法[18]测定,将重金属形态分为可交换态(F1)、碳酸盐结合态(F2)、铁锰氧化物结合态(F3)、有机结合态(F4)和残渣态(F5),并依次分步测定。

  • 热解吸工艺对土壤pH的影响如表2所示。对3个地区获得的土壤样品进行加热均会导致其pH升高,上升幅度随温度的上升而增加。这与KHARE等[19]和MARCOS等[20]研究高温加热森林土壤后获得的结果类似。由于本实验中有机质含量变化不大,有机物氧化导致的阳离子释放可能不是唯一的原因,该结果可能也与高温导致黏土中羟基基团的流失有关[21]。然而,因为加热对不同性质土壤的pH有不同的影响,该结论不能推广到其他研究中;而且,由于加热导致的特定物质的氧化作用、表面增加暴露、胶体脱水等因素,对其他地区的土壤进行加热也许会导致pH降低[22-23]。添加稳定化药剂会影响土壤pH。例如,陕西商洛和北京通州的弱碱性土壤,添加Fixall药剂会降低其pH;而对于湖南湘潭的酸性土壤,添加Fixall药剂会升高其pH。Fixall药剂可以改变土壤pH主要是因为其中含有铁锰双金属材料,其有相当的致碱作用,可以大幅提升土壤的酸缓冲能力,同时也具有一定程度的碱缓冲能力[24]

  • 热解吸工艺对土壤有机质质量分数的影响如表3所示。对于陕西商洛的土壤,加热造成的有机质质量分数差异未达到显著性水平;对湖南湘潭场地的土壤,加热会降低土壤有机质质量分数,这与大量的实验结果保持了一致[20-22, 25]。添加稳定化药剂后加热与未添加药剂直接加热对有机质质量分数的影响类似,这说明调整热解吸工艺位置不会对土壤中有机质质量分数的变化产生影响。北京通州的土壤在经过热解吸后出现有机质质量分数增加的现象并不符合以往的实验结果;与自然条件下山火对土壤性质的影响不同,由于在本实验中并没有引入新的碳源,其土壤有机质质量分数的增加不可能是有机质在土壤中的重新分布导致的[26]。因此,该结果更有可能是取样的异质性和实验误差所导致的,此类问题也出现在了前人的研究中[25]。此外,有研究认为,测定土壤有机质质量分数使用的重铬酸钾容量法受锰离子、亚铁离子、氯离子的干扰较大[27]。而在本研究中,由于Fixall药剂中含有锰、铁等元素,故实验结果也可能与测定时受到干扰有关。

  • 实验得出的热解吸工艺对土壤重金属有效态质量分数的影响如表4所示。由表中可知,对于大多数未添加稳定化药剂的土壤样品,加热会导致土壤重金属有效态质量分数增加。将未添加药剂并以300 ℃加热的样品与空白样品相比较,As的有效态质量分数在3种土壤样品中最多增加了0.04 mg·kg−1;Cd的有效态质量分数增加了0.18~3.18 mg·kg−1;Cu的有效态含量增加了0.09~1.16 mg·kg−1;Pb的有效态质量分数增加了0.07~0.16 mg·kg−1。总体上看,加热使土壤样品中重金属有效态的质量分数增加,但增加的幅度较低,在数量级上没有差异。相较于早先的重金属有效性研究关注全量有效性,重金属有效态主要描述的是土壤中能被有机体吸收利用甚至产生中毒作用的化学形态[28]。与土壤环境质量农用地土壤污染风险管控标准(试行)(GB 15618-2018)[29]中规定的农用地土壤污染风险管制值相比,本实验中,若原样品中有效态质量分数小于管制值,有效态质量分数的增加也不会使其超过管制值。这说明,加热过程虽然理论上可能导致原本不超标的土壤有效态质量分数超标,但其可能性较低,仅在样品空白值接近管控值时存在可能。添加药剂后的土壤样本重金属有效态质量分数均有明显下降;将添加药剂未加热的样品与空白样品相比较,As的有效态含量在3种土壤样品中下降的幅度最大,达到63%~90%;Cd的有效态含量最高下降了76%;Cu的有效态含量下降了13%~54%;Pb的有效态含量下降了44%~70%。从此可以看出,药剂对降低重金属有效态质量分数有较好的作用。在添加了稳定化药剂后,土壤样品在加热前后有效态质量分数差异不显著。同时,温度高低对稳定化处理后的土壤影响也较小;对于北京通州和陕西商洛的土壤来说,在200和300 ℃下,土壤中重金属有效态含量几乎不变。这说明热解吸工艺对土壤的加热过程并不会影响土壤重金属稳定化的效果。

  • 实验得出的热解吸工艺对土壤重金属酸浸出质量浓度的影响如表5所示。由表中可知,对于3个地区中的绝大多数土壤样品,在不添加稳定化药剂的情况下,加热过程提高了其重金属浸出质量浓度,将未添加药剂并以300 ℃加热的样品与空白样品相比较,As的酸浸出质量质量浓度升高了0.01~0.15 mg·L−1;Cd的酸浸出质量浓度升高了0.006~0.830 mg·L−1;Cu的酸浸出质量浓度升高了0.005~0.960 mg·L−1;Pb的酸浸出质量浓度最高升高了0.18 mg·L−1。与有效态质量分数的变化类似,和空白样品相比,加热使土壤样品中重金属酸浸出质量浓度升高,但增加的幅度较低,在数量级上没有差异。与危险废物鉴别标准 浸出毒性鉴别 (GB 50853-2007)[30]相比,若原样品的浸出质量浓度符合标准,加热增加的酸浸出量也不会使样品的浸出质量浓度超标。这说明,加热过程虽然理论上可能导致原本不超标的土壤酸浸出质量浓度超标,但其可能性较低,仅在样品空白值接近限值时存在可能。添加药剂同样会使绝大多数样品的酸浸出质量浓度下降,以添加药剂的土壤样品与空白样品比较,As的酸浸出质量浓度最高下降了93%;Cd的酸浸出质量浓度最高下降了50%;Cu的酸浸出质量浓度最高下降了20%;Pb的酸浸出质量浓度最高下降了79%。可以看出,Fixall对重金属酸浸出质量浓度降低也有较好的作用。在添加了药剂以后,经加热的土壤样品与未经加热的土壤样品在酸浸出质量浓度上无显著差异。同时,温度的高低对稳定化处理后的土壤影响也较小。对于北京通州和陕西商洛的土壤来说,200和300 ℃下,土壤中重金属酸浸出质量浓度几乎不变。这说明,热解吸工艺对土壤的加热过程并不会影响土壤重金属稳定化的效果。

    在添加了Fixall药剂后,对土壤的加热过程并不会使重金属有效态质量分数与酸浸出质量浓度增加,这与未添加稳定化药剂前不同。这可能是由于药剂中的有效成分含有铁锰双金属材料,而铁锰双金属材料对重金属的稳定化过程依靠专性吸附和沉淀反应。对于As而言,主要通过专性吸附形成内表面螯合物[31],沉淀反应较弱。而对于Cu、Pb、Cd等重金属来说,既发生专性吸附,也出现沉淀反应,形成羟基金属离子,并能促进碳酸盐和氢氧化物沉淀的形成[32]。此外,重金属离子也可以和反应中新形成的次级氧化物发生表面共沉淀反应,该沉淀具有更低的溶解性[33]。对于专性吸附而言,其稳定性较强,高温不会减弱土壤中的专性吸附作用[34]。例如,ZHAO等[35]的研究证实,由于吸附过程中关键的水合鞘破坏过程是吸热反应,MnO2对Pb的吸附作用可以被高温增强,去除率在20~60 ℃范围内,随温度升高而升高。对于共沉淀反应,高温也可能促进反应发生。有研究指出,利用共沉淀铁氧体净化重金属时,铁氧体的颗粒大小可随反应温度升高而增大,使无定型沉淀转变为晶型沉淀从而更加稳定[36]

  • 北京通州的不同种类土壤样品重金属形态如图1所示。可以看出,对于北京通州的土样,在未添加稳定化药剂前,加热使As的残渣态质量分数降低,铁锰氧化物结合态质量分数升高;Cu的残渣态质量分数降低,有机结合态质量分数升高;Cd的残渣态质量分数降低,可交换态与铁锰氧化物结合态质量分数升高。加热会增加部分重金属的不稳定性。

    在添加稳定化药剂后,As、Cu向残渣态转化;Pb向有机结合态和残渣态转化;Cd向铁锰氧化物结合态和残渣态转化;各重金属稳定性均上升。在添加稳定化药剂后,加热对重金属的形态转化没有影响,不会影响药剂的稳定化效果。

    陕西商洛的不同种类土壤样品重金属形态如图2所示。对于陕西商洛的土样,在未添加稳定化药剂前,加热使As、Cu的有机结合态降低,铁锰氧化物结合态质量分数升高,Pb的铁锰氧化物结合态质量分数升高。加热会增加部分重金属的不稳定性。

    添加稳定化药剂后,As由铁锰氧化物结合态和有机结合态向残渣态转化;Cu向残渣态转化;Pb向有机结合态转化;各重金属稳定性均上升。同样的,在添加稳定化药剂后,加热对重金属的形态转化没有影响,不会影响药剂的稳定化效果。

    湖南湘潭的不同种类土壤样品重金属形态如图3所示。湖南湘潭的酸性土壤与陕西和北京的碱性土壤不同,在未添加稳定化药剂时进行加热,Pb与Cu重金属可交换态均有轻微降低并向残渣态转化,而As与Cd的重金属形态没有改变。

    添加稳定化药剂后,As由铁锰氧化物结合态向残渣态转化;Cu由可交换态向残渣态转化;Pb由可交换态向铁锰氧化物结合态和有机结合态转化。各重金属稳定性均上升。加热后,Cd、Pb和Cu的可交换态均有轻微降低并向残渣态转化。因此,在添加稳定化药剂后,加热对酸性土壤中重金属的形态转化有正面影响,在300 ℃下加热可以加强药剂的稳定化效果。

    在加入稳定化药剂前后,碱性土壤与酸性土壤在加热条件下呈现了不同的重金属赋存形态变化。总体上,碱性土壤中的重金属在加热后倾向于转化为更活跃的形态,而酸性土壤中的重金属在加热后倾向于转化为更稳定的形态。这可能是因为,加热轻微提高了酸性土壤的pH,使得土壤颗粒表面的负电荷增加,提升了土壤对重金属的吸附能力,固体表面结合力增强[37]。温度升高不会增加酸性土壤中重金属的不稳定性。判断热解吸工艺顺序是否影响其他药剂的重金属稳定化效果,也应从其重金属去除机理是否受高温影响的角度分析。一方面,若稳定化药剂主要依靠范德华力、静电相互作用等物理吸附方式稳定土壤中的重金属,那么很可能易受高温影响;例如,活性炭与生物碳材料。另一方面,若稳定化药剂主要依靠化学专性吸附、沉淀作用、络合反应和共沉淀作用稳定土壤中的重金属,那么可能不易受高温影响;例如,Fe、Mn、Al氧化物、磷酸盐、中性化物质如石灰等。此外,非物理吸附原理但高温下易于氧化变性的稳定化药剂也可能会受到影响;例如,纳米铁和有机聚合物等。

  • 1)在添加重金属稳定化药剂前,热解吸工艺会提高土壤的pH,并使土壤中重金属有效态质量分数、重金属浸出质量浓度增加,与土壤酸碱性无关。热解吸工艺不影响酸性土壤中的重金属稳定性,但会增加碱性土壤中重金属的不稳定性。然而,加热过程使土壤污染物质量分数超标的可能性较低,热解吸工艺的影响较小。

    2)在添加重金属稳定化药剂后,热解吸工艺对重金属有效态、重金属酸浸出质量浓度无影响。热解吸工艺对碱性土壤中药剂的稳定化效果无影响,并会加强酸性土壤中药剂的稳定化效果。

    3)热解吸工艺的放置顺序对土壤重金属稳定化效果影响较小,在工程项目实施中可以对2种工艺的联用顺序进行灵活设计。

参考文献 (37)

返回顶部

目录

/

返回文章
返回