-
随着污水厂尾水排放标准的不断提高,化学辅助除磷、介质过滤、臭氧氧化等[1-15]技术被用在深度处理中,以进一步削减污染物,降低出水水质指标。在城镇污水处理厂提标改造新标准要求下,氨氮和总氮的削减成为重点,强化脱氮技术也备受重视。目前普遍采取以下2种措施:一是改造生物反应池强化除氮,再增加深度处理工艺进一步降低氨氮、总氮等指标;二是依靠深度处理技术改造脱氮工艺[14-20]。而针对生物反应池不同改造工艺运行情况开展现场对比实验的研究报道较少,以不同工艺并联运行,进行同时间、同规模现场生产实验的研究几乎未见报道。
本研究在西安市第五污水处理厂进行。在该厂未满负荷运行、先后具备多种工艺的有利条件下,分批次开展了同时间、同规模、不同工艺的现场生产性实验,对几种工艺的运行情况进行了对比研究。西安市第五污水处理厂总设计污水处理规模为40×104 m3·d−1,设计出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)[21]中的一级A标准,采用“预处理+AAO(A系列生物池采用MBBR投加填料)+纤维转盘滤池+次氯酸钠消毒处理”工艺,现状处理水量约30×104 m3·d−1,全厂分为A、B、C、D四个系列生物反应池并联运行,单系列设计规模10×104 m3·d−1。2018年进行了B系列AAO工艺与A系列“AAO+MBBR”工艺的生产性对比实验,2019年A、B系列Ⅳ类提改造后进行了C、D系列AAO工艺与B系列五段式Bardenpho工艺的生产性对比实验。分析比选了不同工艺在强化除氮方面的优缺点,以期为国内城镇污水处理厂准Ⅳ类水质提标改造工程应用提供参考。
西安市第五污水处理厂生物反应池强化脱氮工艺的比选生产实验
Comparative in-process study on enhanced nitrogen removal processes in biological reaction tank in Xi'an No.5 wastewater treatment plant
-
摘要: 为筛选强化脱氮工艺,利用城镇污水处理厂不同系列的AAO+MBBR工艺、五段式多模式Bardenpho工艺、原有AAO工艺,在生物反应池中进行了比选生产性实验。结果表明:在同工况、同时间、同负荷、不外加碳源情况下,AAO+MBBR工艺与原有AAO工艺相比,出水氨氮相近,总氮降低0.49 mg·L−1,有一定除氮优势;Bardenpho工艺与原有AAO工艺相比,出水氨氮稳定低于1.5 mg·L−1,出水总氮降低1.14 mg·L−1;在不投加碳源情况下,第二缺氧区出现明显的二次反硝化过程。本研究结果可为城镇污水处理厂提标改造工艺的路线选择提供参考。Abstract: To select an enhanced denitrification process in a biological reaction tank, the in-process experiments of biological reaction tank were carried out by using different series of AAO+MBBR processes, the five-stage multi-mode Bardenpho process and the original AAO processes in a urban sewage treatment plant. The experimental results show that compared with the original AAO process the AAO+MBBR process has similar effluent ammonia but low total nitrogen (0.49mg. L-1 lower) under the same working conditions, load and time and without adding any carbon source. Compared with the original AAO process, the Bardenpho process can stabilize the effluent ammonia nitrogen below 1.5 mg•L-1, and the total effluent nitrogen is reduced by 1.14mg•L-1. Without the additional of carbon source, the second anoxic zone shows an obvious secondary denitrification effect. Results in this study can provide reference for the selection of process routes for upgrading and reconstruction of urban sewage treatment plants.
-
表 1 MBBR实验进水水质指标
Table 1. Influent quality of the MBBR experiment
mg·L−1 采样日期 COD NH3-N TN $ {\rm{P}}{{\rm{O}}^{3 - }_4}\text{-P}$ 2018-06-24 370 36.35 54.8 4.66 2018-06-25 609 39.55 60.8 3.42 2018-06-26 555 42.88 55.6 4.34 2018-06-27 455 31.22 55.5 4.76 2018-07-19 369 32.76 42.5 4.30 2018-07-24 551 40.06 54.1 7.87 2018-08-26 250 33.27 43.9 4.38 2018-09-23 438 37.49 47.9 5.06 2018-10-17 562 35.01 41.9 4.20 2018-10-18 757 27.72 72.7 7.80 2018-10-19 761 29.88 54.5 6.50 平均值 516.09 35.11 53.11 5.21 表 2 MBBR实验出水水质指标
Table 2. Comparison of effluent quality of the MBBR experiment of A and B series
mg·L−1 取样日期 A系列 B系列 COD NH3-N TN $ {\rm{P}}{{\rm{O}}^{3 - }_4}\text{-P}$ COD NH3-N TN $ {\rm{P}}{{\rm{O}}^{3 - }_4}\text{-P}$ 2018-06-24 18 0.847 7.505 1.75 19 0.708 3.450 0.600 2018-06-25 16 1.35 2.758 1.10 17 0.431 4.711 0.430 2018-06-26 21 0.458 5.991 1.25 22 0.347 5.380 0.890 2018-06-27 20 0.347 5.964 3.03 21 0.722 9.172 2.02 2018-07-19 21 0.236 3.394 1.65 19 0.458 5.616 1.71 2018-07-24 18 0.747 8.447 2.48 17 0.347 7.047 0.090 2018-08-26 18 0.458 10.958 4.08 18 0.458 4.825 1.13 2018-09-23 21 0.553 2.973 0.219 27 0.220 8.070 0.108 2018-10-17 15 0.980 6.988 0.044 15 0.520 7.916 0.137 2018-10-18 24 0.270 6.727 0.209 27 0.270 5.788 0.034 2018-10-19 22 1.97 8.06 0.310 22 3.46 13.18 0.024 平均值 19.45 0.747 6.342 1.466 20.36 0.722 6.832 0.652 表 3 Bardenpho实验进水水质
Table 3. Influent quality of the Bardenpho experimental
mg·L−1 取样日期 COD NH3-N TN $ {\rm{P}}{{\rm{O}}^{3 - }_4}\text{-P}$ 2019-11-19 387 40.42 48.0 6.37 2019-11-20 372 42.00 47.1 8.52 2019-11-21 399 57.79 67.9 10.9 2019-11-26 466 43.58 56.3 5.38 2019-11-27 477 42.79 54.2 9.99 2019-11-28 823 33.97 48.4 7.53 2019-12-05 259 40.55 50.9 5.61 2019-12-17 323 40.82 49.2 6.77 2019-12-20 253 45.55 55.3 5.21 平均值 417.7 43.05 53.03 7.36 表 5 Bardenpho生产性实验中各好氧区末端的DO
Table 5. Measured values of dissolved oxygen at the end of aerobic zone of the Bardenpho production experiment
mg·L−1 采样日期 B系列一段好氧区 B系列二段好氧区 C好氧区 D好氧区 2019-11-19 0.900 0.370 3.615 2.315 2019-11-20 0.710 2.020 3.595 2.985 2019-11-21 3.240 1.930 4.275 2.895 2019-11-26 1.180 1.100 3.725 1.560 2019-11-27 0.720 0.280 3.935 4.360 2019-11-28 1.200 0.420 4.390 2.720 2019-12-05 2.190 0.180 3.255 1.420 2019-12-17 — — 4.190 1.940 2019-12-20 1.960 0.130 3.770 2.275 表 6 Bardenpho生产性实验C、D系列相关参数
Table 6. Experimental parameters of C and D series Bardenpho in-process experiments
采样日期 进水温度/℃ VN/m3 进水TN/(mg·L−1) 出水TN/(mg·L−1) △Xv/(kg·d−1) VSS比例 X/(g·L−1) Kde/(kg·(kg·d)−1) 2019-11-19 19.9 23 041 48 7.00 2 413 0.5 5 458 0.021 2019-11-20 19.9 23 041 47.1 6.85 2 445 0.5 5 885 0.019 2019-11-21 19.5 23 041 67.9 7.45 2 493 0.5 6 090 0.032 2019-11-26 18.9 23 041 56.3 6.27 1 972 0.5 6 445 0.026 2019-11-27 18.8 23 041 54.2 7.69 2 774 0.5 6 465 0.020 2019-11-28 18.8 23 041 48.4 6.61 3 593 0.5 6 380 0.014 2019-12-05 18.4 23 041 50.9 5.28 3 748 0.5 6 190 0.016 2019-12-17 18.1 23 041 49.2 5.19 1 963 0.5 6 140 0.023 2019-12-20 18.0 23 041 55.3 7.21 1 990 0.5 5 920 0.027 表 4 Bardenpho实验出水水质情况对比表
Table 4. Comparison of effluent quality of Bardenpho experiment
mg·L−1 取样日期 B系列 C、D系列 COD NH3-N TN $ {\rm{P}}{{\rm{O}}^{3 - }_4}\text{-P}$ COD NH3-N TN $ {\rm{P}}{{\rm{O}}^{3 - }_4}\text{-P}$ 2019-11-19 14 0.137 3.56 0.084 16 0.111 7.00 0.132 2019-11-20 21 0.768 4.55 0.044 33 0.400 6.85 0.132 2019-11-21 16 0.347 4.47 0.264 17 0.268 7.45 0.100 2019-11-26 22 1.321 5.75 0.070 19 0.821 6.27 0.132 2019-11-27 21 0.584 5.49 0.120 20 0.295 7.69 0.153 2019-11-28 25 1.421 7.34 0.264 15 0.216 6.61 0.111 2019-12-05 19 0.611 3.90 0.224 21 0.716 5.28 0.163 2019-12-17 19 0.216 6.93 0.064 20 0.295 5.19 0.163 2019-12-20 15 1.350 7.30 0.244 22 0.189 7.21 0.163 平均值 19.11 0.751 5.477 0.153 20.33 0.368 6.617 0.139 最大值 25 1.421 7.340 0.264 33 0.821 7.690 0.163 最小值 15 0.216 3.900 0.044 15 0.189 5.190 0.100 表 7 Bardenpho实验B系列相关参数
Table 7. Experimental parameters of B series Bardenpho in-process experiments
采样日期 进水温度/℃ VN/m3 进水TN/(mg·L−1) 出水TN/(mg·L−1) △Xv/(kg·d−1) VSS比例 X/(g·L−1) Kde/(kg·(kg·d)−1) 2019-11-19 19.9 17 083 48 5.530 2 268 0.5 5 995 0.028 2019-11-20 19.9 17 083 47.1 4.870 4 460 0.5 6 160 0.015 2019-11-21 19.5 17 083 67.9 7.840 4 463 0.5 5 695 0.034 2019-11-26 18.9 17 083 56.3 11.010 2 163 0.5 5 995 0.032 2019-11-27 18.8 17 083 54.2 15.160 2 879 0.5 6 135 0.021 2019-11-28 18.8 17 083 48.4 8.820 3 363 0.5 6 355 0.018 2019-12-05 18.4 17 083 50.9 2.560 3 906 0.5 6 490 0.022 2019-12-17 18.1 17 083 49.2 14.750 4 260 0.5 6 740 0.008 2019-12-20 18.0 17 083 55.3 7.690 3 657 0.5 6 875 0.022 -
[1] 孙悦. 城镇污水处理厂尾水排放水环境影响及对策[J]. 资源节约与环保, 2019(5): 70. doi: 10.3969/j.issn.1673-2251.2019.05.065 [2] 解宇峰, 李文静, 李维新, 等. 江苏省城市污水处理厂尾水时空排放特征研究[J]. 环境工程, 2014, 32(8): 33-37. [3] 汪锋, 钱庄, 张周, 等. 污水处理厂尾水对排放河道水质的影响[J]. 安徽农业科学, 2016, 44(14): 65-68. doi: 10.3969/j.issn.0517-6611.2016.14.024 [4] 许赟溢. 污水处理厂尾水排江环境影响研究[J]. 环境与发展, 2014, 26(3): 37-39. doi: 10.3969/j.issn.1007-0370.2014.03.014 [5] 杨国钰. 以拟建杨台子污水处理厂为例谈——污水处理厂尾水排放对受纳区域水环境的影响及对策[J]. 治淮, 2009(6): 14-15. doi: 10.3969/j.issn.1001-9243.2009.06.007 [6] 吴雪, 何佳, 徐晓梅, 等. 滇池流域污水厂尾水污染负荷特征分析[J]. 中国给水排水, 2018, 34(17): 69-73. [7] 吴钦. 城镇污水处理厂尾水排放对水环境影响及对策[J]. 环境与发展, 2019, 31(6): 29. [8] 环境保护部. 水污染防治行动计划: 中英文对照[M]. 北京: 人民出版社, 2015. [9] 崔朋, 章诗璐, 万年红, 等. 高效气浮工艺深度除磷试验研究[J]. 住宅产业, 2019(11): 143-148. [10] 沈怡雯. 高效沉淀池在污水处理厂UNITANK工艺强化除磷中的应用[J]. 净水技术, 2019, 38(S1): 139-142. [11] 洪铁. V型滤池基本构造及实际运用[J]. 科技风, 2019(23): 201. [12] DINGP, CHUL, WANGJ. Advanced treatment of petrochemical wastewater by combined ozonation and biological aerated filter[J]. Environmental Science & Pollution Research, 2018, 25(4): 9673-9682. [13] LI XW, SHIH C, LI K X, et al. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1076-1083. [14] 戴仲怡, 王雪, 彭建国, 等. 曝气缺氧/多级AO工艺用于大型污水厂提标改造[J]. 中国给水排水, 2019, 35(18): 50-54. [15] 赖辉辉, 乐华斌, 胡雁新. 高浓度氨氮及总磷进水的污水厂准地表Ⅳ类提标改造工程[J]. 广东化工, 2018, 45(17): 146-147. doi: 10.3969/j.issn.1007-1865.2018.17.070 [16] 刘浩, 杨俊杰, 于宁. Bardenpho五段法/MBBR用于青岛李村河污水厂三期扩建[J]. 中国给水排水, 2016, 32(24): 62-66. [17] 杨宇星, 吴迪, 宋美芹, 等. 新型MBBR用于类地表Ⅳ类水排放标准升级改造工程[J]. 中国给水排水, 2017, 33(14): 93-98. [18] 孙欣, 崔洪升. Bardenpho+深床滤池工艺用于半地下污水处理厂工程[J]. 中国给水排水, 2017, 33(16): 82-85. [19] 胡香, 张辉, 许光远, 等. 反硝化深床滤池深度脱氮效果研究[J]. 中国给水排水, 2017, 33(21): 13-17, 24. [20] CHUDOBA P, PUJOL R. Technical solutions for upgrading high rate and mediumloaded activated sludge plants for nutrient removal.[J]. Water Science &Technology, 2000, 41(9): 131-138. [21] 国家环境保护总局, 国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准: GB18918-2002[S]. 北京: 中国环境科学出版社, 2002. [22] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [23] YANG X P, WANG S M, ZHANG D W, et al. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1[J]. Bioresource Technology, 2011, 102(2): 854-862. doi: 10.1016/j.biortech.2010.09.007