TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能

费学宁, 崔良福, 申丛丛, 张如冰. TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能[J]. 环境工程学报, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014
引用本文: 费学宁, 崔良福, 申丛丛, 张如冰. TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能[J]. 环境工程学报, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014
FEI Xuening, CUI Liangfu, SHEN Congcong, ZHANG Rubing. Photocatalytic performance of TiO2 nanoparticles for 3,4-dichloronitrobenzene in methanol-aqueous solution[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014
Citation: FEI Xuening, CUI Liangfu, SHEN Congcong, ZHANG Rubing. Photocatalytic performance of TiO2 nanoparticles for 3,4-dichloronitrobenzene in methanol-aqueous solution[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014

TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能

    作者简介: 费学宁(1957—),男,博士,教授。研究方向:废水中污染物的去除。E-mail:xueningfei@126.com
    通讯作者: 申丛丛(1990—),女,博士,讲师。研究方向:光催化材料的设计制备。E-mail:ccshen@mail.ustc.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(51778398)
  • 中图分类号: X703

Photocatalytic performance of TiO2 nanoparticles for 3,4-dichloronitrobenzene in methanol-aqueous solution

    Corresponding author: SHEN Congcong, ccshen@mail.ustc.edu.cn
  • 摘要: 在紫外光照射下,考察了混合溶剂中甲醇和水的相对含量对二氧化钛(TiO2)催化3,4-二氯硝基苯性能的影响,对3,4-二氯硝基苯的降解率以及其还原产物(3,4-二氯苯胺)的产率进行了研究。结果表明:当V甲醇V为5∶5时,在光催化反应前40 min内,3,4-二氯硝基苯的降解率可达26.81%;当V甲醇V为9∶1时,在240 min内,3,4-二氯苯胺的产率最高为78%。根据氧化还原电势和羟基自由基(·OH)荧光检测的结果,推测了可能的光催化反应机制:混合溶剂中水量越高,越有利于氧化反应的进行;甲醇的含量较高,越有利于还原反应的进行。甲醇作为溶剂和空穴捕获剂可促进3,4-二氯硝基苯的还原反应,而水作为反应介质有利于·OH的生成,进而促进氧化反应。
  • 铬金属是我国《重金属污染综合防治“十二五”规划》重点防控的重金属之一,在自然界中铬主要以三价铬Cr(Ⅲ)和六价铬Cr(Ⅵ)的形式存在. 三价铬Cr(Ⅲ)稳定、低毒,是动植物必需的微量元素之一,但是六价铬Cr(Ⅵ)具有致癌性和致畸性,可以通过食物链蓄积放大,引起人体多器官功能衰竭、坏死[13]. 根据研究报道,铬污染在世界十大最具毒性的污染问题中排名第三,根据我国《生活饮用水卫生标准》,饮用水中Cr(Ⅵ)的最大可接受限值为0.05 mg L−1 [4]. 目前常用的修复水中铬污染的方法主要有离子交换、过滤、电化学沉淀、活性炭吸附、生物修复、膜分离等,这些传统的去除方法效果差,成本较高、复杂,修复周期长[56],而纳米零价铁(nZVI)因其独特的物理化学性质、无毒和经济性,被认为是能够有效进行Cr(Ⅵ)治理和修复的材料[78]. 纳米零价铁是一种粒径在1—100 nm的颗粒,具有比表面积大、吸附性和还原性强等特点,可用于环境中的Cr(Ⅵ)污染的治理和修复[911].

    nZVI作为一种广被研究和使用的环境纳米材料,早期研究集中在其性能及应用方面,主要进行溶液反应动力学、去除负荷、简单固相表征等研究,而对nZVI使用过程中的转化和最终归趋等科学问题尚未解决[1213]. 研究纳米零价铁颗粒在水环境中的结构性质演变将有助了解nZVI去除重金属中的效能和环境归趋[14]. 基于此,本课题组前期研究了纳米零价铁在Cr(Ⅵ)水相中的结构性能演变,发现初始的溶液pH、Cr(Ⅵ)浓度、反应时间等均对其结构性能演变产生影响[15]. 研究复杂环境条件下nZVI在Cr(Ⅵ)水相中的晶相结构演变,同时探究其对其它污染物去除效能的影响,对于预测去除重金属之后的反应产物在环境中的赋存状态、最终迁移归趋等具有重要的意义.

    本文主要研究了nZVI与不同浓度Cr(Ⅵ)(0—100 mg∙L−1)在不同环境条件下的反应特性,探究初始pH(2、3、4、5、7、9、11)、无机阴离子(Cl、CO32−、SO42−、NO3)、重金属离子(Co2+、Cd2+、Ni2+、Cu2+)共存条件下的Cr(Ⅵ)对nZVI晶相转化的影响. 采用电感耦合等离子体发射光谱仪(ICP-OES)跟踪反应中重金属离子浓度变化,X射线衍射仪(XRD)研究纳米零价铁在复杂环境条件中的晶相结构变化,扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电镜的晶格衍射条纹、选区花样衍射对反应产物结构形貌、物相进行表征. 该研究为nZVI及其产物在环境中的迁移、转化、归趋等提供实验数据和理论支撑.

    主要试剂:硼氢化钠(NaBH4,分析纯)购自美国西格玛奥德里奇有限公司,六水合氯化铁(FeCl3·6H2O,分析纯)、无水乙醇(C2H5OH,分析纯)、重铬酸钾(K2Cr2O7,优级纯)、氢氧化钠(NaOH,分析纯)、盐酸(HCl,分析纯)、微米零价铁(mZVI,分析纯)、纳米二氧化(nTiO2,分析纯)、聚合硫酸铁(PFS,分析纯)均购于中国国药控股股份有限公司.

    主要仪器:pH/ORP计(PHSJ-4A,上海仪电科学仪器股份有限公司);电子天平(MS 105DU,梅特勒-托利多集团);真空干燥箱(DZF-6020,上海精宏实验设备有限公司);蠕动泵(YZ1515x,保定兰格恒流泵有限公司);电动搅拌机(D2004W,上海司乐仪器有限公司).

    采用经典液相还原法[16]将NaBH4 (0.2 mol·L−1)逐滴加至FeCl3 (0.05 mol·L−1)溶液中制备得到nZVI,滴加完后继续搅拌20 min,整个过程均通氮气,其反应方程式为:

    stringUtils.convertMath(!{formula.content}) (1)

    新鲜制备得到的nZVI使用去离子水和无水乙醇各进行多次洗涤,之后低温(4℃)保存于无水乙醇中并测量固含量以备使用.

    纳米零价铁(nZVI)、微米零价铁(mZVI)、纳米二氧化钛(nTiO2)、聚合硫酸铁(PFS)4种材料投加到模拟电镀废水中(38.4 mg∙L−1)中反应2 h后,测定溶液中剩余铬的含量.

    初始浓度为50、100、200 mg∙L−1 Cr(Ⅵ)溶液中,分别投加0.5、1、2 g·L−1的nZVI,搅拌、定时取样,反应完成后固液分离,固相物质保存在酒精中保存待测.

    1 g∙L−1 nZVI投加到Cr(Ⅵ)浓度分别为10、20、50、100 mg∙L−1的Cr(Ⅵ)溶液,控制溶液初始pH为2—11,搅拌速率为310 r∙min−1,反应至2、6 h时测量溶液中铬的剩余浓度,并分离出固体保存. 上述方法获得的nZVI与新鲜的nZVI用于去除浓度均为100 mg·L−1的Cd2+、Cu2+废液,控制nZVI的投加量均为1 g·L−1,分别反应1、6 h后,收集水样检测溶液中Cd2+、Cu2+含量.

    配置10 mg·L−1 Co2+、Cd2+、Ni2+、Cu2+与10、20、50、100 mg·L−1 Cr(Ⅵ)的双金属溶液及20、50、200 mg·L−1 SO42−、NO3、Cl、CO32−与20 mg·L−1 Cr(Ⅵ)的溶液,在500 mL烧杯中加入250 mL的混合溶液,投加1 g∙L−1的nZVI,控制pH为5左右,搅拌速率为310 r∙min−1,反应2 h后,取样分析.

    采用电感耦合等离子体发射光谱仪(ICP-OES,Agilent 720ES)对水样中重金属含量进行测量. 将固体样品使用真空干燥箱(DZF-6020, 上海精宏实验设备有限公司)烘干后,采用扫描电子显微镜(SEM,TM3000,日本日立高新公司)、透射显微镜(TEM,EM-2100F,日本岛津公司)进行形貌结构分析.

    X射线衍射仪(XRD, Bruker D8 Advance)对纳米零价铁的晶相结构进行分析,采用Cu Kα射线,LiF单色仪,测试电流在40 kV和40 mA条件下进行,扫描角度(2θ)为10°到90°,扫描速度10(°)·min−1.

    为了比较不同水处理材料的去除效能,研究了nZVI、mZVI、nTiO2、PFS对于Cr(Ⅵ)的去除效率. 水处理材料的投加量分别为1、4、10 g·L−1,从图1a可以看出,nZVI具有比其他材料更高的去除效率,分别为88.0%、95.8%、98.4%,而mZVI对铬的去除率仅在10%—15%之间,其它两种材料去除效率更低. 因此nZVI是良好的重金属Cr(Ⅵ)的去除材料.

    图 1  不同因素对铬去除效果的影响
    Figure 1.  Effects of different factors on chromium removal
    (a)不同材料: nZVI、mZVI、nTiO2、PFS); 材料投加量: 1、4、10 g·L−1; 铬初始浓度为38.4 mg·L−1; (b) nZVI投加量: 0.5、1、2 g·L−1; (c) Cr(Ⅵ)的初始浓度50、100、200 mg·L−1; (d) 溶液初始pH: 2—11
    (a) different material: nZVI、mZVI、nTiO2、PFS; dosage of materials: 1、4、10 g·L−1; Initial chromium concentration: 38.4 mg·L−1; (b) dosage of nZVI: 0.5、1、2 g·L−1; (c) initial concentration of Cr(Ⅵ): 50、100、200 mg·L−1 ; (d) Initial pH of solution: 2—11

    改变nZVI投加量对铬去除效率的研究表明(图1b),当投加量为2 g·L−1,反应10 min,溶液中的Cr(Ⅵ)完全去除,而投加量为1 g·L−1的nZVI完全去除Cr(Ⅵ)需要20 min,0.5 g·L−1的nZVI在20 min对Cr(Ⅵ)的去除率达到80%以上. 选择1 g·L−1 nZVI为投加量进行后续实验.

    探究不同的Cr(Ⅵ)初始浓度对其去除效果的影响,Cr(Ⅵ)的初始浓度分别为50、100、200 mg·L−1,如图1c. 铬的初始浓度为50、100 mg·L−1时,在200 min时nZVI对铬的去除率接近100%,而铬初始浓度为200 mg·L−1时,去除效率只能达到60%左右. 铬的初始浓度越低,反应速率越快,去除效率越高. 这可能是由于纳米零价铁修复铬的过程一般在铁表面进行,主要以吸附还原为主,暴露在表面的nZVI被氧化成Fe2+和Fe3+,再进一步发生水解反应形成钝化膜,铬浓度较低时,形成的钝化膜不足以覆盖整个铁表面,反而形成原电池促进电子转移,当铬浓度较高时,铁表面形成的钝化层,阻止了nZVI与Cr6+之间的电子传递,导致反应速率降低[17].

    图1d探究了溶液初始pH(2、3、4、5、7、9、11)对铬去除效果的影响,1 g·L−1 nZVI在pH=2下与100 mg·L−1 Cr(Ⅵ)液反应2 h,对Cr(Ⅵ)的去除率为57.9%,在pH=5时去除率为18.5%,故随着pH值逐渐变大,对铬的去除率逐渐下降. 这可能是因为在酸性条件下,有利于Fe(0)的溶解,nZVI具有更强的释放电子能力,电子易与Cr(Ⅵ)结合生成Cr(Ⅲ);在碱性条件下,nZVI表面的Fe2+/Fe3+易与OH形成铁的氢氧化物阻止反应进行. 当Cr(Ⅵ)液的浓度为20、50 mg·L−1,pH在2—5之间时,nZVI对铬的去除效率没有明显变化,而pH>5时,去除效率开始明显下降,故本研究选择在pH=5进行相关实验研究.

    图2为不同溶液初始pH的条件下nZVI与20 mg·L−1 Cr反应2 h后固体产物的XRD谱图. 当pH<5时,只能观察到γ-FeOOH的衍射峰. 当pH=5时,可以观察到γ-FeOOH和Fe(0)的衍射峰,铁氧化有所减缓. 随着pH逐渐升高,Fe(0)的峰开始出现. 在pH>7时,只能观察到Fe(0)的峰,表明酸性Cr溶液促进nZVI的腐蚀,主要腐蚀产物为γ-FeOOH[18].

    图 2  nZVI在不同初始pH(2—11)的Cr (20 mg∙L−1)液中反应2 h的XRD图(L: γ-FeOOH)
    Figure 2.  XRD patterns of nZVI in Cr (20 mg∙L−1) solution at different initial pH(2—11) for 2 h

    在20 mg·L−1的铬液中nZVI反应2 h后样品的TEM图如图3. 从图3可以看出,不同的pH下,结构形貌表现出较大的差异:新鲜nZVI呈链球状,而不同pH条件下氧化后产物出现片状和针状结构. pH=3时,Cr-nZVI中有少量链球状结构存在. 随着pH升高,不规则的链球状结构逐渐增多,球型结构由边界模糊逐渐变得分明,根据文献知悉成分是铁氧化物和CrxFe1-x(OH)3 [1920]. 根据XRD分析(图2),pH>7时,与Cr(Ⅵ)反应后Cr-nZVI主要是Fe(0)的形式.

    图 3  nZVI在不同初始pH的铬溶液(20 mg∙L−1)中氧化2 h的TEM图
    Figure 3.  TEM images of nZVI oxidized for 2 h in chromium solution (20 mg∙L−1) at different initial pH
    (a) pH=2, (b) pH=3, (c) pH=4, (d) pH=5, (e) pH=7, (f) pH=9, (g) pH=11, (h) 新鲜nZVI
    (a) pH=2, (b) pH=3, (c) pH=4, (d) pH=5, (e) pH=7, (f) pH=9, (g) pH=11, (h) fresh nZVI

    nZVI的等电位点为8.2,当溶液pH小于7时,nZVI表面带正电荷[8],有利于吸附带有负电荷的Cr(Ⅵ);此外H+可以促进HCrO4和CrO42−还原为Cr3+,且pH较低时,铁腐蚀会产生大量H+和Fe2+,可进一步促进Cr(Ⅵ)还原[2122],如反应方程式(2—7). 当溶液由酸性变为碱性时,nZVI会在铁的表面生成铁氧化物或铁络合物,阻止电子传递,导致铁氧化速率下降[23].

    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)
    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)

    为探究溶液中共存重金属对nZVI反应后晶相演变的影响,实验选取Co2+、Cd2+、Ni2+、Cu2+等4种重金属离子,研究nZVI在双金属(铬:20 mg·L−1,重金属:10 mg·L−1)体系中反应2 h的固体产物的晶相演变,XRD如图4a. 可以看出nZVI在单一铬金属中反应2 h后(pH=5),能够观察到Fe(0)和γ-FeOOH的衍射峰. 当含铬溶液中含有Cd、Co金属时,nZVI完全转化为纤铁矿;而Cr溶液中共存Ni和Cu金属时,nZVI晶相逐渐中转化为纤铁矿和针铁矿混合物. 同时,在含Cu2+的溶液中,能够观察到氧化亚铜晶相物质存在. nZVI在含铬-重金属溶液中反应2 h后表面形貌如图5所示,在未添加其它4种重金属离子时,与铬反应后固相产物主要呈球状、片状、针状结构,添加重金属后,固相产物链球状结构明显减少,片状和针状结构显著增多,重金属的存在对nZVI自身结构演变有巨大影响.

    图 4  (a) pH=5时nZVI在铬(20 mg∙L−1)与重金属(10 mg∙L−1)混合液中反应2 h的XRD(L: γ-FeOOH, G: α-FeOOH), (b) 重金属与纳米零价铁反应机制
    Figure 4.  (a) XRD patterns of nZVI in chromium (20 mg∙L−1) mixed with heavy metal (10 mg∙L−1) for 2 h (pH=5) (L: γ-FeOOH, G: α-FeOOH), (b) Mechanisms of nZVI reactions with heavy metal
    图 5  pH=5时nZVI在铬(20 mg∙L−1)与重金属(10 mg∙L−1)混合液中氧化2 h的SEM图
    Figure 5.  SEM images of nZVI oxidized for 2 h in chromium solution (20 mg∙L−1) mixed with heavy metal (10 mg∙L−1) (pH=5), (a) Cd, (b) Co, (c) Cu, (d) Ni, (e) only Cr, (f) fresh nZVI
    (a) Cd, (b) Co, (c) Cu, (d) Ni, (e) 只含Cr, (f) 新鲜nZVI

    纳米零价铁具有类金属或类配体的配位性质,这与溶液的化学性质有关. 当溶液pH低于纳米零价铁的等电点(pHzpc=8.2)时[8],铁表面带正电荷,会吸引配体(如磷酸盐),当溶液pH高于纳米零价铁的等电点时,铁表面带负电荷,能与阳离子(如金属离子)形成表面络合物. 从经典的电化学来看,铁可以作为电子供体或还原剂,还原和沉淀活性较低的金属离子,铁表面结构也随之发生变化. Fe(Ⅱ) (−0.44 V)的标准电势低于镉Cd(Ⅱ) (−0.40 V)、Co(Ⅱ) (−0.28 V)、Cu(Ⅱ) (+0.34 V)、Ni(Ⅱ) (−0.24 V),因此这些重金属很容易被nZVI还原,如图4 b,nZVI与重金属之间形成了原电池腐蚀,nZVI表面氧化层能促进重金属吸附到nZVI表面,铁作为阳极,发生氧化反应失去电子,表面被腐蚀,重金属氧化还原电位较高,作为阴极,发生还原反应得到电子,最终形成铁氢氧化物沉淀或者重金属-铁络合物,铁晶相结构发生改变.

    Cr-nZVI在不同重金属离子中的晶相转化与其氧化还原电位有关,不同重金属促进nZVI晶相转化的原理有差异. 由于Cu(Ⅱ) (+0.34 V)的标准还原电位远高于Fe(Ⅱ) (-0.44 V),在酸性条件下,能与铁形成原电池,铁作为正极发生强烈腐蚀,结构发生改变. 由于铜离子比较少,从而使得氧化亚铜的生成. nZVI与铜离子反应,会将铜离子还原成Cu和Cu2O [2425],反应方程式如下:

    stringUtils.convertMath(!{formula.content}) (8)
    stringUtils.convertMath(!{formula.content}) (9)

    图4,加入铜离子后nZVI反应产物由γ-FeOOH、α-FeOOH、Cu2O和混合相,由于针铁矿的热稳定性更高,γ-FeOOH可能在Fe2+的作用下转化为α-FeOOH[19, 26].

    由于Ni(Ⅱ) (-0.24 V)的标准还原电位略高于Fe(Ⅱ) (-0.44 V),因此nZVI对Ni(Ⅱ)的去除主要是通过还原和吸附的方式实现. 在反应初始阶段,Ni(Ⅱ)通过物理吸附被吸引到铁表面,通过化学吸附强烈结合,与nZVI表面的OH形成微溶物,通过不断消耗nZVI氧化形成的OH,促进nZVI表面腐蚀转化为铁(氢)氧化物,金属离子逐渐还原为金属镍[27],反应方程式如下:

    stringUtils.convertMath(!{formula.content}) (10)
    stringUtils.convertMath(!{formula.content}) (11)
    stringUtils.convertMath(!{formula.content}) (12)

    Co((Ⅱ) (-0.28 V)的标准还原电位略高于Fe(Ⅱ) (-0.44 V),反应机制和Ni(Ⅱ)相似. 由于Cd(Ⅱ) (-0.40 V)的氧化还原电位与Fe(Ⅱ) (-0.44 V)接近,去除Cd的反应机制不涉及还原反应,主要通过吸附或形成表面配合物去除. Cd(Ⅱ)吸附到nZVI表面,与nZVI氧化产生的OH形成Cd(OH)2沉淀,促进nZVI不断腐蚀氧化形成铁(氢)氧化物[2829].

    天然水体中往往存在Cl、CO32−、SO42−、NO3等离子,研究共存阴离子的影响对于nZVI应用于天然水体中铬污染修复具有重要意义. 本实验研究nZVI在浓度为(10、20、50、100 mg·L−1) Cr(Ⅵ)溶液中,同时共存阴离子浓度分别为20、50、200 mg·L−1,反应2 h的固相演变. nZVI在铬(10 mg∙L−1)与阴离子(50、200 mg∙L−1)反应2 h后物相图如图6a、b所示,4种阴离子对nZVI的晶相转化均有抑制作用,可以观察到Fe(0)和其它铁(氢)氧化物的衍射峰,其中CO32−抑制作用最明显,只能观察到Fe(0)的衍射峰. 4种阴离子起钝化作用,可能是形成的铁氧化物在沉降到nZVI时,会带入吸附的阴离子,从而阻塞了nZVI的还原位点,降低了nZVI的反应活性[30].

    图 6  pH=5时nZVI在铬与阴离子混合液中反应2 h的XRD
    Figure 6.  XRD patterns of nZVI reacting in a mixture of chromium and anion for 2 h (pH=5)
    (a) Cr: 10 mg∙L−1, 阴离子: 50 mg∙L−1, (b) Cr: 10 mg∙L−1, 阴离子: 200 mg∙L−1, (c) Cr: 20 mg∙L−1, 阴离子: 20 mg∙L−1, (d) Cr: 20 mg∙L−1, 阴离子: 50 mg∙L−1, (e) Cr: 50 mg∙L−1, 阴离子: 50 mg∙L−1, (f) Cr: 0、10、20、50、100 mg∙L−1 (L: γ-FeOOH, M: γ-Fe2O3/Fe3O4
    (a) Cr: 10 mg∙L−1, anion: 50 mg∙L−1, (b) Cr: 10 mg∙L−1, anion: 200 mg∙L−1, (c) Cr: 20 mg∙L−1, anion: 20 mg∙L−1, (d) Cr: 20 mg∙L−1, anion: 50 mg∙L−1, (e) Cr: 50 mg∙L−1, anion: 50 mg∙L−1, (f) Cr: 0,10,20,50,100 mg∙L−1 (L: γ-FeOOH, M: γ-Fe2O3/Fe3O4

    铬(20 mg∙L−1)与阴离子(20 mg∙L−1)反应2 h时(图6c),除CO32−外,其它3种离子的加入都在一定程度上促进Fe(0)转化为γ-FeOOH和γ-Fe2O3/Fe3O4,Fe(0)衍射峰减弱,能明显地观察到γ-FeOOH和 γ-Fe2O3/Fe3O4的衍射峰. 加入SO42−反应2 h后碱性增强,SO42−的存在可能破坏保护nZVI表面氧化膜,置换nZVI表面的OH,与铁离子形成单配位基和双配位基复合物,从而加速铁的腐蚀[3132]. NO3存在下的溶液反应后pH为6.85,呈弱酸性,NO3能被纳米零价铁还原(E0(NO3/NO2)=0.01 V),从而促进纳米零价铁的腐蚀,并对表面起到一定的剥蚀作用[33]. 当阴离子为50 mg∙L−1时(图6d),共存离子为Cl和CO32−时,只发现Fe(0)的电子衍射峰,由于阴离子不存在的条件下产生γ-FeOOH衍射峰,说明此时共存Cl和CO32−对nZVI的氧化有明显抑制作用,Cl对nZVI晶相转化的影响与浓度有关,低浓度促进nZVI 腐蚀,高浓度起钝化作用.

    当Cr≥50 mg∙L−1时,只能观察到Fe(0)的衍射峰,高浓度Cr抑制nZVI发生晶相转化,如图6e、f,根据Huang等研究,Cr(Ⅵ)浓度较低时(≤20 mg∙L−1),nZVI腐蚀速率加快,Cr(Ⅵ)浓度较高(Cr≥50 mg∙L−1)时,零价铁表面形成CrxFe1-xOOH或CrxFe1-x(OH)3钝化层,抑制nZVI腐蚀,因此铬浓度较高(Cr≥50 mg∙L−1)时,4种阴离子对nZVI的腐蚀及晶相转化作用不明显[34].

    用透射电镜对nZVI在含有200 mg∙L−1 CO32−和Cl的铬液(Cr: 10 mg∙L−1)反应2 h前后的固相产物进行了详细研究,如图7. 新鲜的纳米零价铁(图7a)呈链球状,核壳结构明显,纳米零价铁在不含阴离子的铬液(10 mg∙L−1)反应2 h后的形貌如图7b所示,呈链球状、片状和针状结构,结合图6a XRD,主要为Fe(0)和γ-FeOOH和γ-Fe2O3/Fe3O4. 在Cl存在下反应后固体的低分辨率透射电镜图谱中观察到片层状结构(图7c),高分辨率的电子显微镜显示了晶格条纹间距为0.2501、0.2467、0.2059 nm(图7d),分别对应于Fe2O3的(110)面、γ-FeOOH的(130)面、Fe(110)面. 对在Cl存在下反应后的固体进行选区电子衍射(图7e),可以观察到γ-FeOOH(040)晶面、Fe2O3(121)和(113)面、Fe(200)晶面、Fe3O4(554)晶面.

    图 7  pH=5时nZVI在铬(10 mg∙L−1)与阴离子(200 mg∙L−1)的混合液中氧化2 h的TEM图
    Figure 7.  TEM images of nZVI oxidized for 2 h in chromium solution (10 mg∙L−1) mixed with anion (200 mg∙L−1) (pH=5)
    (a) 仅有Cr, (b) 新鲜nZVI, (c) Cl存在下的nZVI低分辨率TEM图, (d) Cl存在下nZVI的高分辨率TEM图, (e) Cl存在下nZVI的TEM选区衍射图, (f) CO32−存在下的nZVI低分辨率TEM图, (g) CO32−存在下nZVI的高分辨率TEM图, (h) CO32−存在下nZVI的TEM选区衍射图
    (a) only Cr, (b) fresh nZVI, (c) Low resolution TEM images (Cl), (d) High resolution TEM images (Cl), (e) TEM-SEAD images (Cl), (f) Low resolution TEM images (CO32−), (g) High resolution TEM images (CO32−), (h) TEM-SEAD images (CO32−

    结合图6a、b,Cl能够抑制Fe(0)转化为铁氧化物. 当铬浓度为20 mg∙L−1时,Cl为20 mg∙L−1时能促进Fe(0)转化为γ-FeOOH和γ-Fe2O3/Fe3O4,Cl促进nZVI发生腐蚀而发生晶相转化,通常有两个原因,一是Cl能够击穿nZVI表面氧化膜,促进内部铁提供电子能力,进一步发生腐蚀[35];二是Cl能促进铁的局部腐蚀,形成不规则的坑形,而铁表面的坑形提供了新的反应位点,促进nZVI氧化[36]. 而当铬浓度为20 mg∙L−1时,Cl为50 mg∙L−1时能抑制Fe(0)转化为其它铁(氢)氧化物,如图6d,这可能是Cl竞争性结合nZVI的表面位点,抑制nZVI发生氧化[37]. 因此Cl对nZVI的腐蚀作用及晶相转化与浓度有关.

    在CO32−存在下反应后固体的低分辨透射电镜图谱中观察到链球状结构(图7f),在高分辨率的图谱中观察到明显的核壳结构,选区电子衍射(图7e)可以观察到Fe(110)晶面,说明此时nZVI的晶体结构仍未发生转化,CO32−对nZVI的氧化有很强的抑制作用. 加入CO32−后,反应2 h后测得溶液pH达到9.6,这可能是CO32−使溶液pH升高,OH与Fe2+/Fe3+形成了铁的氢氧化物附着在nZVI表面,形成钝化膜,CO32−也会在铁氧化物表面形成竞争吸附位点,抑制nZVI发生腐蚀[38]. 有关共存阴离子对于晶相结构转化的影响机理将在以后的工作中进一步的阐明.

    (1) nZVI的投加量、铬的初始浓度、溶液初始pH对铬的去除效率有较大影响. 随着nZVI投加量的提高,对铬的去除率也提高;随着铬初始浓度的增加和溶液初始pH的增加,对铬的去除率逐渐下降. 对于不同去除重金属的材料(nZVI、mZVI、nTiO2、PFS),nZVI是最佳去铬的实验材料.

    (2) pH对nZVI的结构演变影响很大. 不同pH条件下,nZVI氧化程度不同,酸性越强,对铬的去除率越高但nZVI的腐蚀程度也较大,主要转化为铁的氧化物和氢氧化物.

    (3) 共存重金属离子影响Cr-nZVI的结构演变. 4种重金属离子(Co2+、Cd2+、Ni2+、Cu2+)均能够加速nZVI腐蚀,在铬浓度为20 mg∙L−1时,加入Co2+和Cd2+,Fe(0)转化为γ-FeOOH,加入Ni2+、Cu2+后,产生新的α-FeOOH.

    (4) nZVI的晶相演变同时受到Cr离子的浓度和阴离子的浓度的影响. Cr浓度为10 mg∙L−1时,4种阴离子抑制nZVI氧化,Cr浓度为20 mg∙L−1时,共存的SO42−、NO3促进Fe(0)转化为γ-FeOOH和γ-Fe2O3/Fe3O4,CO32−抑制nZVI发生氧化,低浓度(20 mg∙L−1)的Cl促进nZVI氧化,高浓度(200 mg∙L−1)Cl抑制nZVI氧化为γ-FeOOH和γ-Fe2O3、Fe3O4. CO32−对nZVI的腐蚀有极强的抑制作用,高浓度的Cr抑制nZVI发生晶相转化.

  • 图 1  3,4-二氯硝基苯和3,4-二氯苯胺的浓度标准曲线

    Figure 1.  Standard curves of concentration of 3,4-dichloronitrobenzene and 3,4-dichloroaniline

    图 2  TiO2纳米颗粒的XRD、TEM、HRTEM、SAED、UV-vis 漫反射吸收光谱和粒径分布图

    Figure 2.  XRD, TEM, HRTEM, SAED, UV-vis diffuse reflectance spectra and particle-size distribution pattern of TiO2 nanoparticles

    图 3  3,4 -二氯硝基苯光催化氧化还原过程的紫外吸收光谱

    Figure 3.  UV absorption spectra during the photocatalytic oxidation-reduction process of 3,4-dichloronitrobenzene

    图 4  紫外光照射下最大紫外吸收峰随时间的变化

    Figure 4.  Changes of maximum UV absorption peaks under UV light irradiation

    图 5  甲醇-水的体积对3,4-二氯硝基苯的降解率和3,4-二氯苯胺产率的影响

    Figure 5.  Effect of volume ratios of methanol-to-water on the degradation efficiencies of 3,4-dichloronitrobenzene and the yields of 3,4-dichloroaniline

    图 6  在甲醇/水不同体积比下氧化还原电位随时间的变化

    Figure 6.  Variation of redox potential over time at different volume ratios of methanol/water

    图 7  在TiO2催化下,3,4-二氯硝基苯在混合溶剂中的光催化反应原理示意图

    Figure 7.  Photocatalytic reaction schematic diagram of 3, 4-dichloronitrobenzene in mixed solvents with TiO2 catalyst

    图 8  COU溶液的荧光强度

    Figure 8.  Fluorescence intensity of COU solution

    图 9  光催化反应动力学线性模拟曲线

    Figure 9.  Kinetic linear simulation curves of photocatalytic reaction

  • [1] TAFESH A M, WEIGUNY J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO[J]. Chemical Reviews, 1996, 96: 2035-2052. doi: 10.1021/cr950083f
    [2] CARENA L, PROTO M, MINELLA M, et al. Evidence of an important role of photochemistry in the attenuation of the secondary contaminant 3, 4-dichloroaniline in paddy water[J]. Environmental Science & Technology, 2018, 52: 6334-6342.
    [3] CÁRDENAS-LIZANA F, GÓMEZ-QUERO S, KEANE M A. Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts[J]. Applied Catalysis A: General, 2008, 334: 199-206. doi: 10.1016/j.apcata.2007.10.007
    [4] ZHENG Y F, MA K, WANG H L, et al. A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO2 catalyst passivated with a gas mixture[J]. Catalysis Letters, 2008, 124: 268-276. doi: 10.1007/s10562-008-9452-2
    [5] WANG Y C, ZHANG L, DONG L H. An overview of application and research on photocatalytic oxidation processes for wastewater advanced treatment[J]. Water Purification Technology, 2012, 31: 9-13.
    [6] LI C C, SHEN W H, CHEN X Q. Mechanism of photocatalytic oxidation reaction and its application in the treatment of wastewater from paper mills[J]. China Pulp & Paper, 2009, 28: 65-71.
    [7] ZHANG L Q, HE X, XU X W, et al. Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene[J]. Applied Catalysis B: Environmental, 2017, 203: 1-8. doi: 10.1016/j.apcatb.2016.10.003
    [8] BISHOP C A, BROOKS R J, CAREY J H, et al. The case for a cause-effect linkage between environmental contamination and development in eggs of the common snapping turtle (Chelydra S. serpentina) from Ontario, Canada[J]. Journal of Toxicology and Environmental Health, Part A, 1991, 33: 521-547. doi: 10.1080/15287399109531539
    [9] KAUR R, PAL B. Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis[J]. Applied Catalysis A: General, 2015, 491: 28-36. doi: 10.1016/j.apcata.2014.10.035
    [10] ZHANG X M, JI G B, LIU W, et al. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption[J]. Journal of Materials Chemistry C, 2016, 4: 1860-1870. doi: 10.1039/C6TC00248J
    [11] WANG C, LI Y. Preparation and characterisation of S doped TiO2/natural zeolite with photocatalytic and adsorption activities[J]. Materials Technology, 2014, 29: 204-209. doi: 10.1179/1753555714Y.0000000127
    [12] VARGAS D X M, DE LA ROSA J R, LUCIO-ORTIZ C J, et al. Photocatalytic degradation of trichloroethylene in a continuous annular rector using Cu-doped TiO2 catalysts by sol-gel synthesis[J]. Applied Catalysis B: Environmental, 2015, 179: 249-261. doi: 10.1016/j.apcatb.2015.05.019
    [13] ZARRABI M, ENTEZARI M H. Modification of C/TiO2@MCM-41 with nickel nanoparticles for photocatalytic desulfurization enhancement of a diesel fuel model under visible light[J]. Journal of Colloid and Interface Science, 2015, 457: 353-359. doi: 10.1016/j.jcis.2015.07.021
    [14] TU W G, ZHOU Y, LIU Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Advanced Functional Materials, 2013, 23: 1743-1749. doi: 10.1002/adfm.201202349
    [15] HUANG W X. Oxide nanocrystal model catalysts[J]. Accounts of Chemical Research, 2016, 49: 520-527. doi: 10.1021/acs.accounts.5b00537
    [16] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453: 638. doi: 10.1038/nature06964
    [17] WANG X, LI R G, XU Q, et al. Roles of (001) and (101) facets of anatase TiO2 in photocatalytic reactions[J]. Acta Physico-Chimica Sinica, 2013, 29: 1566-1571. doi: 10.3866/PKU.WHXB201304284
    [18] HIROSHI K, SHIN-ICHI, TSUYOSHI M, et al. Photocatalytic reduction of nitrobenzene to aniline in an aqueous suspension of titanium (IV) oxide particles in the presence of oxalic acid as a hole scavenger and promotive effect of dioxygen in the system[J]. Chemistry Letters, 2009, 38: 410-411. doi: 10.1246/cl.2009.410
    [19] FERRY J L, GLAZE W H. Photocatalytic reduction of nitro organics over illuminated titanium dioxide: Role of the TiO2 surface[J]. Langmuir, 1998, 14: 3551-3555. doi: 10.1021/la971079x
    [20] ZHAO H K, XU H, YANG Z P, et al. Solubility of 3, 4-dichloronitrobenzene in methanol, ethanol, and liquid mixtures (methanol + water, ethanol + water): Experimental measurement and thermodynamic modeling[J]. Journal of Chemical and Engineering Data, 2013, 58: 3061-3068. doi: 10.1021/je400507u
    [21] MA L, CHEN S, LU C S, et al. Highly selective hydrogenation of 3, 4-dichloronitrobenze over Pd/C catalysts without inhibitors[J]. Catalysis Today, 2011, 173: 62-67. doi: 10.1016/j.cattod.2011.06.011
    [22] FLORES S O, RIOS-BERNIJ O, VALENZUELA M A, et al. Photocatalytic reduction of nitrobenzene over titanium dioxide: By-product identification and possible pathways[J]. Topics in Catalysis, 2007, 44: 507-511. doi: 10.1007/s11244-006-0098-2
    [23] CHEN S F, ZHANG H Y, YU X L, et al. Photocatalytic reduction of nitrobenzene by titanium dioxide powder[J]. Chinese Journal of Chemistry, 2010, 28: 21-26. doi: 10.1002/cjoc.201090030
    [24] BREZOVÁ V, BLAŽKOVÁ A, ŠURINA I, et al. Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107: 233-237. doi: 10.1016/S1010-6030(96)04577-7
    [25] PERISSINOTTI L L, BRUSA M A, GRELA M A. Yield of carboxyl anion radicals in the photocatalytic degradation of formate over TiO2 particles[J]. Langmuir, 2001, 17: 8422-8427. doi: 10.1021/la0155348
    [26] KRASAE N, WANTALA K. Enhanced nitrogen selectivity for nitrate reduction on Cu-nZVI by TiO2 photocatalysts under UV irradiation[J]. Applied Surface Science, 2016, 380: 309-317. doi: 10.1016/j.apsusc.2015.12.023
    [27] SHEN C C, ZHU Q, ZHAO Z W, et al. Plasmon enhanced visible light photocatalytic activity of ternary Ag2Mo2O7@ AgBr-Ag rod-like heterostructures[J]. Journal of Materials Chemistry A, 2015, 3: 14661-14668. doi: 10.1039/C5TA02337H
    [28] ZHANG J W, PENG C, WANG H F, et al. Identifying the role of photogenerated holes in photocatalytic methanol dissociation on rutile TiO2 (110)[J]. ACS Catalysis, 2017, 7: 2374-2380. doi: 10.1021/acscatal.6b03348
    [29] LIU N, LI H J, DING F, et al. Analysis of biodegradation by-products of nitrobenzene and aniline mixture by a cold-tolerant microbial consortium[J]. Journal of Hazardous Materials, 2013, 260: 323-329. doi: 10.1016/j.jhazmat.2013.05.033
    [30] MAHDAVI F, BRUTON T C, LI Y Z. Photoinduced reduction of nitro compounds on semiconductor particles[J]. Journal of Organic Chemistry, 1993, 58: 744-746. doi: 10.1021/jo00055a033
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.6 %DOWNLOAD: 4.6 %HTML全文: 94.9 %HTML全文: 94.9 %摘要: 0.5 %摘要: 0.5 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %中卫: 0.2 %中卫: 0.2 %北京: 0.2 %北京: 0.2 %其他中卫北京Highcharts.com
图( 9)
计量
  • 文章访问数:  5898
  • HTML全文浏览数:  5898
  • PDF下载数:  72
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-03
  • 录用日期:  2021-03-04
  • 刊出日期:  2021-05-10
费学宁, 崔良福, 申丛丛, 张如冰. TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能[J]. 环境工程学报, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014
引用本文: 费学宁, 崔良福, 申丛丛, 张如冰. TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能[J]. 环境工程学报, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014
FEI Xuening, CUI Liangfu, SHEN Congcong, ZHANG Rubing. Photocatalytic performance of TiO2 nanoparticles for 3,4-dichloronitrobenzene in methanol-aqueous solution[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014
Citation: FEI Xuening, CUI Liangfu, SHEN Congcong, ZHANG Rubing. Photocatalytic performance of TiO2 nanoparticles for 3,4-dichloronitrobenzene in methanol-aqueous solution[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1509-1518. doi: 10.12030/j.cjee.202011014

TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能

    通讯作者: 申丛丛(1990—),女,博士,讲师。研究方向:光催化材料的设计制备。E-mail:ccshen@mail.ustc.edu.cn
    作者简介: 费学宁(1957—),男,博士,教授。研究方向:废水中污染物的去除。E-mail:xueningfei@126.com
  • 1. 天津城建大学理学院,天津 300384
  • 2. 天津城建大学环境与市政工程学院,天津 300384
  • 3. 天津市化工废水源头减排与资源化工程技术中心,天津 300384
基金项目:
国家自然科学基金资助项目(51778398)

摘要: 在紫外光照射下,考察了混合溶剂中甲醇和水的相对含量对二氧化钛(TiO2)催化3,4-二氯硝基苯性能的影响,对3,4-二氯硝基苯的降解率以及其还原产物(3,4-二氯苯胺)的产率进行了研究。结果表明:当V甲醇V为5∶5时,在光催化反应前40 min内,3,4-二氯硝基苯的降解率可达26.81%;当V甲醇V为9∶1时,在240 min内,3,4-二氯苯胺的产率最高为78%。根据氧化还原电势和羟基自由基(·OH)荧光检测的结果,推测了可能的光催化反应机制:混合溶剂中水量越高,越有利于氧化反应的进行;甲醇的含量较高,越有利于还原反应的进行。甲醇作为溶剂和空穴捕获剂可促进3,4-二氯硝基苯的还原反应,而水作为反应介质有利于·OH的生成,进而促进氧化反应。

English Abstract

  • 3,4-二氯硝基苯广泛应用于工业化学和医药等领域。由于3,4-二氯硝基苯具有一定毒性,对生态环境安全具有潜在风险,因而去除水环境中3,4-二氯硝基苯污染物研究受到了众多学者的关注。3,4-二氯硝基苯可以被光催化降解为CO2、H2O,也可以被催化还原为芳香胺即3,4-二氯苯胺[1]。3,4-二氯苯胺是一种重要的精细化工中间体,在偶氮染料、药品、塑料、农药、纺织印染、阻燃剂等化学工业中被广泛应用[2]。3,4-二氯苯胺的传统制备方法包括贝尚反应、加氢还原法和铁粉还原法[3]。上述反应需要在高温、高压等操作条件下进行,需要较高的生产条件并具有潜在的污染风险和安全隐患[4],因此需要探索常温、常压的清洁生产方法。光催化还原法是一种有效降解有机污染物的绿色方法,具有成本低、安全高效、原子利用率高、几乎不产生副产品等优点,已成为光催化领域备受关注的热点问题。据文献报道,目前光催化技术可处理3 000多种污染水体[5-7]。在室温下,通过二氧化钛(TiO2)光催化氧化可降解绝大多数有机污染物[8];而添加空穴清除剂时,TiO2又可将有机硝基化合物光催化还原为相应的芳香胺[9]。通过掺杂金属[10]或非金属元素[11-12],或以石墨烯、碳纳米管、分子筛作为载体等方法改性TiO2[13-14],可极大地提高TiO2的催化性能。此外,通过调节TiO2的暴露晶面来提高其光催化性能的方式也引起了广泛关注[15-17]。YANG等[16]利用TiF4作为钛源,HF作为形貌控制剂合成了具有(001)面的锐钛型TiO2单晶,其晶面的形成可有效地优化光生电子空穴的迁移路径和分离率,进而显著提高光催化效率。

    值得关注的是,反应介质是影响TiO2光催化氧化还原性能的重要因素[18-21]。因此,可通过改变反应溶剂的性质以调节氧化、还原反应之间的竞争关系。质子性有机溶剂作为空穴捕获剂可抑制系统中光生电子-空穴对的复合,从而提高催化剂表面积聚的光生电子的浓度和光催化还原活性。在甲醇、乙醇和异丙醇等质子性有机溶剂中,乙醇和异丙醇作为光催化反应溶剂时,可能会出现醛、酮等中间产物影响反应的进程[22]。甲醇作为光催化反应的溶剂具有最高的还原效率,这表明质子性溶剂的极性是影响光催化还原性能的重要影响因素之一。同时,甲醇具有饱和醇的高活性和极性,能有效吸附在TiO2表面与光生空穴迅速反应[23]。甲醇还具有低粘度和高极化率的特点[24],可以和光生空穴反应产生甲氧基自由基并进一步分解为阴离子自由基,从而为反应系统提供丰富的电子和H+以促进还原反应的进行。本研究采用溶胶-凝胶法制备了TiO2光催化剂,考察了TiO2在甲醇和水混合溶剂中光催化氧化、还原3,4-二氯硝基苯的性能,并通过羟基自由基(·OH)和氧化还原电位(Eh)[25-26]随反应进程的量化变化关系对3,4-二氯硝基苯的光催化反应机制进行进一步探讨。

  • 3,4-二氯硝基苯和3,4-二氯苯胺均购自TCI(上海)开发有限公司。无水甲醇购自天津金东天正精密化学试剂厂。盐酸由天津丰川化学试剂技术有限公司提供。香豆素(coumarin, COU)由上海源野生物科技有限公司提供。所有试剂均未进一步纯化。钛酸丁酯购于天津光复精细化工研究所。无水乙醇由天津冀纯化学试剂有限公司提供。

  • 本研究中,以钛酸丁酯为前驱体,通过溶胶-凝胶法合成了TiO2。首先,将4.26 mL 36.5%的盐酸加入一定量的乙醇中,得到0.1 mol·L−1的缓冲溶液。然后,10 mL钛酸丁酯和10 mL无水乙醇混合,在搅拌下转入分液漏斗A内;与此同时,2.1 mL去离子水和5 mL缓冲溶液混合,放置在分液漏斗B中。20 mL的缓冲溶液搅拌3 min后转移至烧杯中,然后将分液漏斗A和B中的混合物逐滴加入到烧杯中。将上述悬浮液进行磁性搅拌直到形成浅黄色透明溶胶。溶胶老化12 h后,在110 ℃的干燥箱中放置12 h,最后在500 ℃的马弗炉中煅烧2 h,最终得到纳米级TiO2光催化剂。

  • 光催化实验在具有循环冷却水的石英反应器中进行,并以300 W高压汞灯(GGZ300,上海继光特种照明电器厂,中国) 为光源。将0.3 g·L−1的3,4-二氯硝基苯和1.0 g·L−1的TiO2光催化剂分散在50 mL甲醇和水的混合溶剂中,然后悬浮液维持暗反应1 h以达到吸附/解吸平衡。混合溶剂的组成分别为V甲醇V=9∶1、8∶2、5∶5和2∶8。在240 min内,定时提取一定量的悬浮液,离心后收集1 mL滤液,将其分散在9 mL甲醇中,用紫外分光光度计(北京普析通用仪器有限公司,中国,TU-1 900型)分析。

    绘制了3,4-二氯硝基苯和3,4-二氯苯胺的浓度与相应吸光度的关系图,以甲醇作溶剂得到的线性拟合曲线如图1所示。拟合方程中CAR分别为待测有机物浓度、特征吸收峰(3,4-二氯硝基苯为269 nm,3,4-二氯苯胺为248 nm)的吸光度和可决系数。2个线性回归方程中R2均大于0.999,即吸光度与浓度的线性关系均较好。

  • 通过COU与·OH生成的在465 nm具有特征荧光峰的7-羟基香豆素(7-HC),进而测定·OH的浓度。在无3,4-二氯硝基苯情况下,在体系中加入1.0×10−3 mol·L−1的COU,以此作为对照实验。样品经紫外光照射40 min后,取5 mL悬浮液离心,在激发波长为332 nm条件下进行荧光检测。

  • 使用X射线衍射仪(BDDX330)表征TiO2粉末的晶型特征;使用JEM-2100透射电镜对TiO2进行形貌分析;使用岛津分光光度计(2501 PC)对光催化剂进行紫外-可见漫反射吸收光谱的测定,使用荧光光度计(F-7000,日立制造有限公司,日本)进行荧光分析;使用激光纳米粒度分析仪(DelsaNano C,贝克曼库尔特)进行TiO2粉末的粒径分析;使用氧化还原电位测量仪测定反应溶液的氧化还原电位。

  • 通过粉末X射线衍射(PXRD)表征TiO2粉末的晶体结构,结果如图2(a)所示。衍射峰分别对应于(101)、(004)、(200)、(105)、(211)、(204)、(116)、(220)和(215)晶面,这与锐钛矿型TiO2晶面相对应。此外,所得TiO2的XRD图谱中衍射峰是较强且锐利的峰。以上结果表明,结晶性较高的TiO2光催化剂被成功合成。透射电镜对TiO2粉末的微观结构表征结果表明,TiO2粉末是由尺寸约为10 nm的颗粒组成,如图2(b)所示。由图2(c)高分辨透射电镜图(HRTEM)可以看到,晶格条纹的间距为0.351 nm,对应于锐钛矿型TiO2的(101)晶面。为了进一步确定TiO2晶体结构,进行了选区电子衍射(SAED)实验(图2(d)),SAED图中所标注的点相对应于TiO2的(101)、(004)和(200)晶面。此外,光催化剂的紫外-可见漫反射吸收光谱表明,TiO2具有较宽的带隙且在可见光区域没有吸收(图2(e))。图2(f)中的粒径结果表明,TiO2粉末的颗粒粒径集中在150~350 nm,这可能是因为表面能较高的微小TiO2颗粒易团聚成较大的颗粒。

  • 在紫外光照射下,以不同体积比的甲醇和水混合物为溶剂,以TiO2为催化剂进行3,4-二氯硝基苯的光催化对照反应。3,4-二氯硝基苯和3,4-二氯苯胺的紫外特征吸收峰分别在269 nm和248 nm处。在不同的照射时间下,检测了225~400 nm处的紫外吸收光谱的变化(图3)。

    图3可知,溶剂组成比例会导致3,4-二氯硝基苯的光催化氧化和还原反应发生显著变化。当V甲醇V为2∶8时,3,4-二氯硝基苯在269 nm处的峰强度在240 min内随时间的延长而逐渐减弱,但没有出现3,4-二氯苯胺对应的特征吸收峰,这说明3,4-二氯硝基苯在240 min内主要进行了光催化氧化降解反应。当V甲醇V由5∶5升高到9∶1时,3,4-二氯硝基苯在前40 min内的降解过程是显而易见的,随后还原产物则逐渐增加,并且随着混合溶剂中甲醇含量越高,3,4-二氯苯胺的特征峰越为明显。这表明反应的初期主要以氧化反应为主,而反应后期主要以还原反应为主,并且甲醇相对含量越高,越有利于还原反应的发生。

    为比较240 min光照内有机物的变化情况,考察了最大紫外吸收峰随混合溶剂比V甲醇V=2∶8、5∶5、8∶2、9∶1时随反应时间的变化情况,结果如图4所示。当V甲醇V为2∶8和5∶5时,最大紫外吸收峰的变化可分为3个阶段:0~40、40~150、150~240 min。在第1阶段,最大紫外吸收峰的波长基本上维持在3,4-二氯硝基苯的特征峰处,与此同时,3,4-二氯硝基苯的峰强度不断减弱;在第2阶段,紫外吸收峰的位置由3,4-二氯硝基苯的特征峰(269 nm)移动到3,4-二氯苯胺的特征峰(248 nm),此时3,4-二氯硝基苯和3,4-二氯苯胺共存;在第3阶段,紫外吸收峰维持在248 nm处,3,4-二氯苯胺的特征峰逐渐升高。以上结果表明,3,4-二氯硝基苯后期主要经过光催化还原而生成3,4-二氯苯胺。由整个光照过程可以看出,当V甲醇V为8∶2时,3,4-二氯硝基苯主要被氧化降解;而当V甲醇V为9∶1时,3,4-二氯硝基苯主要进行还原反应。

    因此,溶剂中甲醇和水的含量对光催化氧化和还原过程具有显著的影响。混合溶剂中水的含量越高,越有利于光催化氧化反应;相对地,甲醇的含量越高,越有利于光催化还原反应。

  • 光催化降解率以及还原产物的产率是评价光催化过程的重要参数。在本研究中,3,4-二氯硝基苯的降解率、3,4-二氯苯胺的产率可按式(1)和式(2)进行计算。

    式中:CtC0分别为3,4-二氯硝基苯在一定光照时间内的残留浓度和初始浓度,mg·L−1Ct'为光照t时间内3,4-二氯苯胺的浓度,mg·L−1C'为理论上还原所得3,4-二氯苯胺的最高浓度,mg·L−1XY分别为3,4-二氯硝基苯的降解率和3,4-二氯苯胺的产率。

    图5(a)为不同甲醇-水溶剂中光催化降解3,4-二氯硝基苯的实验结果。当V甲醇V为5∶5时,3,4-二氯硝基苯的降解率最高,在40 min内达到26.81%。当V甲醇V为9∶1时,3,4-二氯苯胺的产率最高为78%;而当V甲醇V为9∶1~2∶8时,随着溶剂中含水率的增加,还原产物的产率整体为下降趋势(图5(b));但V甲醇V为2∶8时,反应的还原产率略高于在5∶5的溶剂中的还原产率,该结果与图5(a)中所示的结果一致。

  • 氧化还原电位(Eh)可以直接反映体系的氧化还原能力[27],因此,本研究在不同的V甲醇: V条件下进行了Eh测定,结果如图6所示。正电势表示系统具有氧化特性,负电势表示系统具有还原特性。在反应阶段初期所有的Eh值均为正值,可以认为在不同甲醇-水比例的溶剂中,3,4-二氯硝基苯以氧化降解反应为主。值得注意的是,当混合溶剂中V甲醇V为2∶8时,Eh值仍为正,这表明整个反应过程以氧化反应为主导。随着反应进行,混合溶剂中V甲醇V由5∶5增大至9∶1时,Eh变为负值,这说明该体系的还原特性促进了3,4-二氯硝基苯向3,4-二氯苯胺转化。

    在光催化氧化反应中,水中的溶解氧和羟基与催化剂表面的光生载流子发生反应,形成·OH[27],如式(3)~式(5)所示。

    光生空穴与H2O反应生成具有氧化性的·OH,导致3,4-二氯硝基苯进行氧化降解反应;光电子具有很强的还原性,可以将3,4-二氯硝基苯还原为3,4-二氯苯胺(图7)。因此,当反应体系中混合溶剂的水含量较低时,·OH的数量减少,氧化效果较差。反应体系(V甲醇V=2∶8)以水为主时氧化效率同样较差,这可能是由于电子空穴的复合概率增加所致。

    COU与·OH反应生成的7-羟基香豆素在465 nm处具有特征荧光峰。荧光测定实验结果表明,当V甲醇V为5∶5时,7-羟基香豆素的荧光强度最高(图8),这反映出此时该体系中·OH的浓度最高,即3,4-二氯硝基苯的氧化效果最好。·OH的浓度越高越有利于光催化降解过程,由此可推断,光催化过程中·OH对氧化反应具有较高的贡献率。

    另一方面,混合溶剂中甲醇与空穴反应形成甲氧基,可导致系统中大量激发态电子[28]被保留,进而促进还原反应进行,如式(6)~式(8)所示。

    当混合溶剂以甲醇为主时,体系可表现出良好的还原能力[29]。在V甲醇: V为5:5的体系中反应物的降解率最高,导致该体系在反应初始阶段消耗反应物最多,故而还原产物3,4-二氯苯胺的产率最低。而当体系中以水为主时,反应以氧化反应为主导[30]

  • 对不同混合溶剂条件下反应40 min内的实验结果进行了光催化氧化过程的动力学研究,根据式(9)对所得结果进行三阶动力学拟合,拟合的结果如图9所示。

    式中:C0Ct分别为3,4-二氯硝基苯的初始浓度和t时间下的浓度,mg·L−1k为速率常数,L2·(mg2·min)−1t为光催化反应时间,min。

    对比图9(a)~(d)可以看出,拟合方程的可决系数分别为0.917、0.914、0.955和0.946,说明三阶动态模型可以较好地描述3,4-二氯硝基苯的光催化氧化过程。拟合直线的斜率用来估算速率常数k。当V甲醇V为2∶8、5∶5、8∶2和9∶1时,k分别为1.85×10−7、1.66×10−7、8.92×10−8和7.82×10−8 L2·(mg2·min)−1,即当V甲醇V为2∶8和5∶5时,3,4-二氯硝基苯的光催化氧化速率较高。

  • 1) 3,4-二氯硝基苯的氧化反应发生在光照初期的40 min内,当V甲醇V为5∶5时,3,4-二氯硝基苯降解率最好,为26.81%,此时·OH的浓度最高;而3,4-二氯硝基苯的还原反应主要发生在光照60~240 min内,当V甲醇V为9∶1时,3,4-二氯苯胺的产率最高,为78%。

    2)在光照60 min后,V甲醇V为5∶5、8∶2和9∶1时,Eh为负值,反应以3,4-二氯硝基苯光催化氧化为主。

    3)三级动力学模型与氧化过程吻合较好,当V甲醇V为2∶8和5∶5时,光催化氧化速率较高。

参考文献 (30)

返回顶部

目录

/

返回文章
返回