

Chinese Journal of

@

第15卷第5期2021年5月 Vol. 15, No.5 May 2021

Environmental Engineering http://www.cjee.ac.cn

1	E-mail: ciee@rcees.ac.cn
I	

(010) 62941074 500

文章栏目:水污染防治 DOI 10.12030/j.cjee.202011014

中图分类号 X703 文献标识码

费学宁,崔良福,申丛丛,等. TiO,纳米颗粒在甲醇-水溶液中对 3,4-二氯硝基苯的光催化性能[J].环境工程学报, 2021, 15(5): 1509-1518.

FEI Xuening, CUI Liangfu, SHEN Congcong, et al. Photocatalytic performance of TiO, nanoparticles for 3,4dichloronitrobenzene in methanol-aqueous solution[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1509-1518.

TiO, 纳米颗粒在甲醇-水溶液中对 3.4-二氯硝基 苯的光催化性能

费学宁1,2,3,崔良福1,申丛丛1,*,张如冰1

1. 天津城建大学理学院, 天津 300384

2. 天津城建大学环境与市政工程学院, 天津 300384

3. 天津市化工废水源头减排与资源化工程技术中心, 天津 300384

第一作者:费学宁(1957—),男,博士,教授。研究方向:废水中污染物的去除。E-mail: xueningfei@126.com *通信作者: 申丛丛(1990—), 女, 博士, 讲师。研究方向: 光催化材料的设计制备。E-mail: ccshen@mail.ustc.edu.cn

摘 要 在紫外光照射下,考察了混合溶剂中甲醇和水的相对含量对二氧化钛(TiO2)催化3,4-二氯硝基苯性能 的影响,对3,4-二氯硝基苯的降解率以及其还原产物(3,4-二氯苯胺)的产率进行了研究。结果表明:当V_{甲醇}:V_水 为 5:5 时,在光催化反应前 40 min 内, 3,4二氯硝基苯的降解率可达 26.81%;当 V_{甲醇}: V_水为 9:1 时,在 240 min 内, 3,4-二氯苯胺的产率最高为 78%。根据氧化还原电势和羟基自由基 (·OH) 荧光检测的结果, 推测了可能的光 催化反应机制:混合溶剂中水量越高,越有利于氧化反应的进行;甲醇的含量较高,越有利于还原反应的进 行。甲醇作为溶剂和空穴捕获剂可促进3,4-二氯硝基苯的还原反应,而水作为反应介质有利于·OH的生成,进 而促进氧化反应。

关键词 TiO₂; 3,4-二氯硝基苯; 甲醇-水溶液; 光催化反应

3,4-二氯硝基苯广泛应用于工业化学和医药等领域。由于3,4-二氯硝基苯具有一定毒性,对生 态环境安全具有潜在风险,因而去除水环境中3,4-二氯硝基苯污染物研究受到了众多学者的关注。 3,4-二氯硝基苯可以被光催化降解为 CO,、H,O,也可以被催化还原为芳香胺即 3,4-二氯苯胺^[1]。 3,4-二氯苯胺是一种重要的精细化工中间体,在偶氮染料、药品、塑料、农药、纺织印染、阻燃剂 等化学工业中被广泛应用[2]。3,4-二氯苯胺的传统制备方法包括贝尚反应、加氢还原法和铁粉还原 法同。上述反应需要在高温、高压等操作条件下进行,需要较高的生产条件并具有潜在的污染风险 和安全隐患¹⁴,因此需要探索常温、常压的清洁生产方法。光催化还原法是一种有效降解有机污染 物的绿色方法,具有成本低、安全高效、原子利用率高、几乎不产生副产品等优点,已成为光催 化领域备受关注的热点问题。据文献报道,目前光催化技术可处理3000多种污染水体[5-7]。在室温 下,通过二氧化钛(TiO₂)光催化氧化可降解绝大多数有机污染物^[8];而添加空穴清除剂时,TiO₂又 可将有机硝基化合物光催化还原为相应的芳香胺^[9]。通过掺杂金属^[10]或非金属元素^[11-12],或以石墨

收稿日期: 2020-11-03; 录用日期: 2021-03-04

基金项目: 国家自然科学基金资助项目 (51778398)

烯、碳纳米管、分子筛作为载体等方法改性 TiO₂^[13-14],可极大地提高 TiO₂的催化性能。此外,通 过调节 TiO₂的暴露晶面来提高其光催化性能的方式也引起了广泛关注^[15-17]。YANG 等^[16]利用 TiF₄作为钛源,HF 作为形貌控制剂合成了具有 (001) 面的锐钛型 TiO₂单晶,其晶面的形成可有效 地优化光生电子空穴的迁移路径和分离率,进而显著提高光催化效率。

值得关注的是,反应介质是影响 TiO₂ 光催化氧化还原性能的重要因素^[18-21]。因此,可通过改 变反应溶剂的性质以调节氧化、还原反应之间的竞争关系。质子性有机溶剂作为空穴捕获剂可抑 制系统中光生电子-空穴对的复合,从而提高催化剂表面积聚的光生电子的浓度和光催化还原活 性。在甲醇、乙醇和异丙醇等质子性有机溶剂中,乙醇和异丙醇作为光催化反应溶剂时,可能会 出现醛、酮等中间产物影响反应的进程^[22]。甲醇作为光催化反应的溶剂具有最高的还原效率,这 表明质子性溶剂的极性是影响光催化还原性能的重要影响因素之一。同时,甲醇具有饱和醇的高 活性和极性,能有效吸附在 TiO₂ 表面与光生空穴迅速反应^[23]。甲醇还具有低粘度和高极化率的特 点^[24],可以和光生空穴反应产生甲氧基自由基并进一步分解为阴离子自由基,从而为反应系统提 供丰富的电子和 H⁺以促进还原反应的进行。本研究采用溶胶-凝胶法制备了 TiO₂ 光催化剂,考察 了 TiO₂ 在甲醇和水混合溶剂中光催化氧化、还原 3,4-二氯硝基苯的性能,并通过羟基自由基 (·OH)和氧化还原电位 (Eh)^[25-26] 随反应进程的量化变化关系对 3,4-二氯硝基苯的光催化反应机制进 行进一步探讨。

1 材料与方法

1.1 实验试剂和仪器

3,4-二氯硝基苯和3,4-二氯苯胺均购自TCI(上海)开发有限公司。无水甲醇购自天津金东天正 精密化学试剂厂。盐酸由天津丰川化学试剂技术有限公司提供。香豆素 (coumarin, COU)由上海源 野生物科技有限公司提供。所有试剂均未进一步纯化。钛酸丁酯购于天津光复精细化工研究所。 无水乙醇由天津冀纯化学试剂有限公司提供。

1.2 TiO₂的制备

本研究中,以钛酸丁酯为前驱体,通过溶胶-凝胶法合成了 TiO₂。首先,将4.26 mL 36.5% 的盐酸加入一定量的乙醇中,得到 0.1 mol L⁻¹的缓冲溶液。然后,10 mL 钛酸丁酯和 10 mL 无水乙醇混合,在搅拌下转入分液漏斗 A 内;与此同时,2.1 mL 去离子水和 5 mL 缓冲溶液混合,放置在分液漏斗 B 中。20 mL 的缓冲溶液搅拌 3 min 后转移至烧杯中,然后将分液漏斗 A 和 B 中的混合物逐滴加入到烧杯中。将上述悬浮液进行磁性搅拌直到形成浅黄色透明溶胶。溶胶老化 12 h 后,在110 °C 的干燥箱中放置 12 h,最后在 500 °C 的马弗炉中煅烧 2 h,最终得到纳米级 TiO₂ 光催化剂。

1.3 光催化实验

光催化实验在具有循环冷却水的石英反应器中进行,并以 300 W 高压汞灯 (GGZ300,上海继 光特种照明电器厂,中国)为光源。将 0.3 g·L⁻¹的 3,4-二氯硝基苯和 1.0 g·L⁻¹的 TiO₂ 光催化剂分散 在 50 mL 甲醇和水的混合溶剂中,然后悬浮液维持暗反应 1 h 以达到吸附/解吸平衡。混合溶剂的 组成分别为 V_{甲醇}:V_水=9:1、8:2、5:5 和 2:8。在 240 min 内,定时提取一定量的悬浮液,离心后收 集 1 mL 滤液,将其分散在 9 mL 甲醇中,用紫外分光光度计 (北京普析通用仪器有限公司,中国, TU-1 900 型)分析。

绘制了 3,4-二氯硝基苯和 3,4-二氯苯胺的浓度与相应吸光度的关系图,以甲醇作溶剂得到的线性拟合曲线如图 1 所示。拟合方程中 C、A、R 分别为待测有机物浓度、特征吸收峰 (3,4-二氯硝基苯为 269 nm, 3,4-二氯苯胺为 248 nm)的吸光度和可决系数。2 个线性回归方程中 R² 均大于 0.999,即吸光度与浓度的线性关系均较好。

Fig. 1 Standard curves of concentration of 3,4-dichloronitrobenzene and 3,4-dichloroaniline

1.4 ·OH 的测定方法

通过 COU 与·OH 生成的在 465 nm 具有特征荧光峰的 7-羟基香豆素 (7-HC),进而测定·OH 的浓度。在无 3,4-二氯硝基苯情况下,在体系中加入 1.0×10⁻³ mol·L⁻¹ 的 COU,以此作为对照实验。样品 经紫外光照射 40 min 后,取 5 mL 悬浮液离心,在激发波长为 332 nm 条件下进行荧光检测。

1.5 分析方法

使用 X 射线衍射仪 (BDDX330) 表征 TiO₂ 粉末的晶型特征;使用 JEM-2100 透射电镜对 TiO₂ 进行形貌分析;使用岛津分光光度计 (2501 PC) 对光催化剂进行紫外-可见漫反射吸收光谱的测定,使用荧光光度计 (F-7000,日立制造有限公司,日本)进行荧光分析;使用激光纳米粒度分析仪 (DelsaNano C,贝克曼库尔特)进行 TiO₂ 粉末的粒径分析;使用氧化还原电位测量仪测定反应溶液 的氧化还原电位。

2 结果与讨论

2.1 TiO₂的表征

通过粉末 X 射线衍射 (PXRD) 表征 TiO₂ 粉末的晶体结构,结果如图 2(a) 所示。衍射峰分别对 应于 (101)、(004)、(200)、(105)、(211)、(204)、(116)、(220)和(215)晶面,这与锐钛矿型 TiO₂晶面 相对应。此外,所得 TiO₂ 的 XRD 图谱中衍射峰是较强且锐利的峰。以上结果表明,结晶性较高 的 TiO₂ 光催化剂被成功合成。透射电镜对 TiO₂ 粉末的微观结构表征结果表明,TiO₂ 粉末是由尺寸 约为 10 nm 的颗粒组成,如图 2(b) 所示。由图 2(c) 高分辨透射电镜图 (HRTEM) 可以看到,晶格条 纹的间距为 0.351 nm,对应于锐钛矿型 TiO₂ 的 (101) 晶面。为了进一步确定 TiO₂ 晶体结构,进行了 选 区 电 子 衍射 (SAED) 实验 (图 2(d)), SAED 图 中所标注 的 点相对应于 TiO₂ 的 (101)、(004)和 (200) 晶面。此外,光催化剂的紫外-可见漫反射吸收光谱表明,TiO₂具有较宽的带隙且在可见光区 域没有吸收 (图 2(e))。图 2(f) 中的粒径结果表明,TiO₂ 粉末的颗粒粒径集中在 150~350 nm,这可能 是因为表面能较高的微小 TiO₂ 颗粒易团聚成较大的颗粒。

2.2 光催化氧化还原过程的紫外吸收光谱

在紫外光照射下,以不同体积比的甲醇和水混合物为溶剂,以TiO₂为催化剂进行3,4-二氯硝基苯的光催化对照反应。3,4-二氯硝基苯和3,4-二氯苯胺的紫外特征吸收峰分别在269 nm和248 nm处。在不同的照射时间下,检测了225~400 nm处的紫外吸收光谱的变化(图3)。

由图 3 可知,溶剂组成比例会导致 3,4-二氯硝基苯的光催化氧化和还原反应发生显著变化。 当 *V*_{甲醇}:*V*_{*}为 2:8 时,3,4-二氯硝基苯在 269 nm 处的峰强度在 240 min 内随时间的延长而逐渐减

Fig. 2 XRD, TEM, HRTEM, SAED, UV-vis diffuse reflectance spectra and particle-size distribution pattern of TiO₂ nanoparticles

弱,但没有出现 3,4-二氯苯胺对应的特征吸收峰,这说明 3,4-二氯硝基苯在 240 min 内主要进行了 光催化氧化降解反应。当 *V*_{甲醇}:*V*_水由 5:5 升高到 9:1 时,3,4-二氯硝基苯在前 40 min 内的降解过程 是显而易见的,随后还原产物则逐渐增加,并且随着混合溶剂中甲醇含量越高,3,4-二氯苯胺的特 征峰越为明显。这表明反应的初期主要以氧化反应为主,而反应后期主要以还原反应为主,并且 甲醇相对含量越高,越有利于还原反应的发生。

为比较 240 min 光照内有机物的变化情况,考察了最大紫外吸收峰随混合溶剂比 $V_{PPP}:V_{x}=$ 2:8、5:5、8:2、9:1 时随反应时间的变化情况,结果如图 4 所示。当 $V_{PPP}:V_{x}$ 为 2:8 和 5:5 时,最 大紫外吸收峰的变化可分为 3 个阶段: 0~40、40~150、150~240 min。在第 1 阶段,最大紫外吸收峰 的波长基本上维持在 3,4-二氯硝基苯的特征峰处,与此同时, 3,4-二氯硝基苯的峰强度不断减弱;

图 3 3.4 - 二氯硝基苯光催化氧化还原过程的紫外吸收光谱

Fig. 3 UV absorption spectra during the photocatalytic oxidation-reduction process of 3,4-dichloronitrobenzene

在第2阶段,紫外吸收峰的位置由3,4-二氯硝 基苯的特征峰 (269 nm) 移动到 3,4-二氯苯胺的 特征峰 (248 nm),此时 3,4-二氯硝基苯和 3,4-二 氯苯胺共存;在第3阶段,紫外吸收峰维持在 248 nm 处, 3,4-二氯苯胺的特征峰逐渐升高。 以上结果表明, 3,4-二氯硝基苯后期主要经过 光催化还原而生成 3.4-二氯苯胺。由整个光照 过程可以看出,当 V_{HPF} : V_{x} 为8:2时,3,4-二氯 硝基苯主要被氧化降解;而当 V_{甲醇}: V_水为 9:1 时, 3,4-二氯硝基苯主要进行还原反应。

因此, 溶剂中甲醇和水的含量对光催化氧 化和还原过程具有显著的影响。混合溶剂中水 的含量越高,越有利于光催化氧化反应;相对地,甲醇的含量越高,越有利于光催化还原反应。 2.3 溶剂比例对光催化氧化、还原反应的影响

光催化降解率以及还原产物的产率是评价光催化过程的重要参数。在本研究中, 3.4-二氯硝基 苯的降解率、3,4-二氯苯胺的产率可按式(1)和式(2)进行计算。

$$X = (1 - C_t / C_0) \times 100\%$$
⁽¹⁾

$$Y = (C_t'/C') \times 100\%$$
 (2)

式中: C_t 和 C_0 分别为 3,4-二氯硝基苯在一定光照时间内的残留浓度和初始浓度, mg·L⁻¹; C_t 为光 照 t时间内 3,4-二氯苯胺的浓度, mg·L⁻¹; C为理论上还原所得 3,4-二氯苯胺的最高浓度, mg·L⁻¹; X和 Y分别为 3,4-二氯硝基苯的降解率和 3,4-二氯苯胺的产率。

图 5(a) 为不同甲醇-水溶剂中光催化降解 3,4-二氯硝基苯的实验结果。当 V_{PP} ; V_{x} 为 5:5时, 3,4-二氯硝基苯的降解率最高,在 40 min 内达到 26.81%。当 V_{PP} ; V_{x} 为 9:1时,3,4-二氯苯胺的产率 最高为 78%;而当 V_{PP} ; V_{x} 为 9:1~2:8时,随着溶剂中含水率的增加,还原产物的产率整体为下降 趋势 (图 5(b));但 V_{PP} ; V_{x} 为 2:8时,反应的还原产率略高于在 5:5的溶剂中的还原产率,该结果 与图 5(a) 中所示的结果一致。

图 5 甲醇-水的体积对 3,4-二氯硝基苯的降解率和 3,4-二氯苯胺产率的影响 Fig. 5 Effect of volume ratios of methanol-to-water on the degradation efficiencies of 3,4-dichloronitrobenzene and the yields of 3,4-dichloroniline

2.4 3,4-二氯硝基苯光催化氧化还原反应机理

氧化还原电位 (Eh) 可以直接反映体系的氧 化还原能力^[27],因此,本研究在不同的 V_{PP} : V_x 条件下进行了 Eh 测定,结果如图 6 所示。 正电势表示系统具有氧化特性,负电势表示系 统具有还原特性。在反应阶段初期所有的 Eh 值均为正值,可以认为在不同甲醇-水比例 的溶剂中,3,4-二氯硝基苯以氧化降解反应为 主。值得注意的是,当混合溶剂中 V_{PP} : V_x 为 2:8 时,Eh 值仍为正,这表明整个反应过程以 氧化反应为主导。随着反应进行,混合溶剂中 V_{PP} : V_x 由 5:5 增大至 9:1 时,Eh 变为负值, 这说明该体系的还原特性促进了 3,4-二氯硝基 苯向 3,4-二氯苯胺转化。

在光催化氧化反应中,水中的溶解氧和羟基与催化剂表面的光生载流子发生反应,形成·OH^[27],如式(3)~式(5)所示。

$$h^+ + H_2 O \to \cdot OH + H^+ \tag{3}$$

$$e^- + O_2 \to \cdot O_2^- \tag{4}$$

$$O_2^- + H_2 O \to \cdot HO_2 + OH^-$$
(5)

光生空穴与 H₂O 反应生成具有氧化性的·OH,导致 3,4-二氯硝基苯进行氧化降解反应;光电子 具有很强的还原性,可以将 3,4-二氯硝基苯还原为 3,4-二氯苯胺 (图 7)。因此,当反应体系中混合 溶剂的水含量较低时,OH 的数量减少,氧化效果较差。反应体系 (*V*_{甲醇}:*V*_水=2:8) 以水为主时氧化 效率同样较差,这可能是由于电子空穴的复合概率增加所致。

COU与·OH反应生成的 7-羟基香豆素在 465 nm 处具有特征荧光峰。荧光测定实验结果表明,当 V_{甲醇}:V_水为 5:5 时,7-羟基香豆素的荧光强度最高 (图 8),这反映出此时该体系中·OH 的浓度最高,即 3,4-二氯硝基苯的氧化效果最好。·OH 的浓度越高越有利于光催化降解过程,由此可推断,光催 化过程中·OH 对氧化反应具有较高的贡献率。

3.5 3.0 2.5 $V_{\oplus \overrightarrow{\mathbb{R}}}:V_{\overrightarrow{\mathbb{R}}}$ 光强度 2.0 5:5 2:8 1.5 ±Κ 8:2 9:1 1.00.5 400 450 500 550 600 发射波长/nm

图 7 在 TiO₂ 催化下, 3,4-二氯硝基苯在混合溶剂中的 光催化反应原理示意图

Fig. 7 Photocatalytic reaction schematic diagram of 3, 4dichloronitrobenzene in mixed solvents with TiO_2 catalyst

另一方面,混合溶剂中甲醇与空穴反应形成甲氧基,可导致系统中大量激发态电子^[28]被保 留,进而促进还原反应进行,如式(6)~式(8)所示。

$$OH^- + CH_3OH \rightarrow CH_3O^- + H_2O \tag{6}$$

$$CH_3O^- + h^+ \rightarrow CH_3O$$
 (7)

$$CH_3O \rightarrow CH_3O^- + H^+ \rightarrow CH_2O + H^+ + e^-$$
(8)

当混合溶剂以甲醇为主时,体系可表现出良好的还原能力^[29]。在 V_{甲醇}: V_x为 5:5 的体系中反应物的降解率最高,导致该体系在反应初始阶段消耗反应物最多,故而还原产物 3,4-二氯苯胺的产率最低。而当体系中以水为主时,反应以氧化反应为主导^[30]。

2.5 光催化氧化反应动力学

对不同混合溶剂条件下反应 40 min 内的实验结果进行了光催化氧化过程的动力学研究,根据式 (9) 对所得结果进行三阶动力学拟合,拟合的结果如图 9 所示。

$$kt = 0.5 \left(1/C_t^2 - 1/C_0^2 \right) \tag{9}$$

式中: C_0 和 C_t 分别为 3,4-二氯硝基苯的初始浓度和 t时间下的浓度, mg·L⁻¹; k为速率常数, L²·(mg²·min)⁻¹; t为光催化反应时间, min。

对比图 9(a)~(d) 可以看出, 拟合方程的可决系数分别为 0.917、0.914、0.955 和 0.946, 说明三阶 动态模型可以较好地描述 3,4-二氯硝基苯的光催化氧化过程。拟合直线的斜率用来估算速率常数 *k*。当 *V*_{甲醇}:*V*_水为 2:8、5:5、8:2 和 9:1 时, *k*分别为 1.85×10⁻⁷、1.66×10⁻⁷、8.92×10⁻⁸ 和 7.82×10⁻⁸ L²·(mg²·min)⁻¹, 即当 *V*_{甲醇}:*V*_水为 2:8 和 5:5 时, 3,4-二氯硝基苯的光催化氧化速率较高。

Fig. 9 Kinetic linear simulation curves of photocatalytic reaction

3 结论

1) 3,4-二氯硝基苯的氧化反应发生在光照初期的 40 min 内,当 $V_{\text{Pp}\vec{p}}$: V_x 为 5:5 时,3,4-二氯硝基 苯降解率最好,为 26.81%,此时 OH 的浓度最高;而 3,4-二氯硝基苯的还原反应主要发生在光照 60~240 min 内,当 $V_{\text{Pp}\vec{p}}$: V_x 为 9:1 时,3,4-二氯苯胺的产率最高,为 78%。

2) 在光照 60 min 后, *V*_{甲醇}: *V*_x为 5:5、8:2 和 9:1 时, Eh 为负值,反应以 3,4-二氯硝基苯光催化 氧化为主。

3) 三级动力学模型与氧化过程吻合较好,当 V_{甲醇}: V_水为 2:8 和 5:5 时,光催化氧化速率较高。

参考文献

- TAFESH A M, WEIGUNY J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO[J]. Chemical Reviews, 1996, 96: 2035-2052.
- [2] CARENA L, PROTO M, MINELLA M, et al. Evidence of an important role of photochemistry in the attenuation of the secondary contaminant 3, 4-dichloroaniline in paddy water[J]. Environmental Science & Technology, 2018, 52: 6334-6342.
- [3] CÁRDENAS-LIZANA F, GÓMEZ-QUERO S, KEANE M A. Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts[J]. Applied Catalysis A: General, 2008, 334: 199-206.
- [4] ZHENG Y F, MA K, WANG H L, et al. A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO₂ catalyst passivated with a gas mixture[J]. Catalysis Letters, 2008, 124: 268-276.
- [5] WANG Y C, ZHANG L, DONG L H. An overview of application and research on photocatalytic oxidation processes for wastewater advanced treatment[J]. Water Purification Technology, 2012, 31: 9-13.

- [6] LI C C, SHEN W H, CHEN X Q. Mechanism of photocatalytic oxidation reaction and its application in the treatment of wastewater from paper mills[J]. China Pulp & Paper, 2009, 28: 65-71.
- [7] ZHANG L Q, HE X, XU X W, et al. Highly active TiO₂/g-C₃N₄/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene[J]. Applied Catalysis B: Environmental, 2017, 203: 1-8.
- [8] BISHOP C A, BROOKS R J, CAREY J H, et al. The case for a cause-effect linkage between environmental contamination and development in eggs of the common snapping turtle (*Chelydra S. serpentina*) from Ontario, Canada[J]. Journal of Toxicology and Environmental Health, Part A, 1991, 33: 521-547.
- [9] KAUR R, PAL B. Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and cocatalyst for Cu/TiO₂ photocatalysis[J]. Applied Catalysis A: General, 2015, 491: 28-36.
- [10] ZHANG X M, JI G B, LIU W, et al. A novel Co/TiO₂ nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption[J]. Journal of Materials Chemistry C, 2016, 4: 1860-1870.
- [11] WANG C, LI Y. Preparation and characterisation of S doped TiO₂/natural zeolite with photocatalytic and adsorption activities[J]. Materials Technology, 2014, 29: 204-209.
- [12] VARGAS D X M, DE LA ROSA J R, LUCIO-ORTIZ C J, et al. Photocatalytic degradation of trichloroethylene in a continuous annular rector using Cu-doped TiO₂ catalysts by sol-gel synthesis[J]. Applied Catalysis B: Environmental, 2015, 179: 249-261.
- [13] ZARRABI M, ENTEZARI M H. Modification of C/TiO₂@MCM-41 with nickel nanoparticles for photocatalytic desulfurization enhancement of a diesel fuel model under visible light[J]. Journal of Colloid and Interface Science, 2015, 457: 353-359.
- [14] TU W G, ZHOU Y, LIU Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO₂-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO₂ into methane and ethane[J]. Advanced Functional Materials, 2013, 23: 1743-1749.
- [15] HUANG W X. Oxide nanocrystal model catalysts[J]. Accounts of Chemical Research, 2016, 49: 520-527.
- [16] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO₂ single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453: 638.
- [17] WANG X, LI R G, XU Q, et al. Roles of (001) and (101) facets of anatase TiO₂ in photocatalytic reactions[J]. Acta Physico-Chimica Sinica, 2013, 29: 1566-1571.
- [18] HIROSHI K, SHIN-ICHI, TSUYOSHI M, et al. Photocatalytic reduction of nitrobenzene to aniline in an aqueous suspension of titanium (IV) oxide particles in the presence of oxalic acid as a hole scavenger and promotive effect of dioxygen in the system[J]. Chemistry Letters, 2009, 38: 410-411.
- [19] FERRY J L, GLAZE W H. Photocatalytic reduction of nitro organics over illuminated titanium dioxide: Role of the TiO₂ surface[J]. Langmuir, 1998, 14: 3551-3555.
- [20] ZHAO H K, XU H, YANG Z P, et al. Solubility of 3, 4-dichloronitrobenzene in methanol, ethanol, and liquid mixtures (methanol + water, ethanol + water): Experimental measurement and thermodynamic modeling[J]. Journal of Chemical and Engineering Data, 2013, 58: 3061-3068.
- [21] MA L, CHEN S, LU C S, et al. Highly selective hydrogenation of 3, 4-dichloronitrobenze over Pd/C catalysts without inhibitors[J]. Catalysis Today, 2011, 173: 62-67.
- [22] FLORES S O, RIOS-BERNIJ O, VALENZUELA M A, et al. Photocatalytic reduction of nitrobenzene over titanium dioxide: By-product identification and possible pathways[J]. Topics in Catalysis, 2007, 44: 507-511.

- [23] CHEN S F, ZHANG H Y, YU X L, et al. Photocatalytic reduction of nitrobenzene by titanium dioxide powder[J]. Chinese Journal of Chemistry, 2010, 28: 21-26.
- [24] BREZOVÁ V, BLAŽKOVÁ A, ŠURINA I, et al. Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107: 233-237.
- [25] PERISSINOTTI L L, BRUSA M A, GRELA M A. Yield of carboxyl anion radicals in the photocatalytic degradation of formate over TiO, particles[J]. Langmuir, 2001, 17: 8422-8427.
- [26] KRASAE N, WANTALA K. Enhanced nitrogen selectivity for nitrate reduction on Cu-nZVI by TiO₂ photocatalysts under UV irradiation[J]. Applied Surface Science, 2016, 380: 309-317.
- [27] SHEN C C, ZHU Q, ZHAO Z W, et al. Plasmon enhanced visible light photocatalytic activity of ternary Ag₂Mo₂O₇@ AgBr-Ag rod-like heterostructures[J]. Journal of Materials Chemistry A, 2015, 3: 14661-14668.
- [28] ZHANG J W, PENG C, WANG H F, et al. Identifying the role of photogenerated holes in photocatalytic methanol dissociation on rutile TiO₂ (110)[J]. ACS Catalysis, 2017, 7: 2374-2380.
- [29] LIU N, LI H J, DING F, et al. Analysis of biodegradation by-products of nitrobenzene and aniline mixture by a cold-tolerant microbial consortium[J]. Journal of Hazardous Materials, 2013, 260: 323-329.
- [30] MAHDAVI F, BRUTON T C, LI Y Z. Photoinduced reduction of nitro compounds on semiconductor particles[J]. Journal of Organic Chemistry, 1993, 58: 744-746.

Photocatalytic performance of TiO₂ nanoparticles for 3,4-dichloronitrobenzene in methanol-aqueous solution

FEI Xuening^{1,2,3}, CUI Liangfu¹, SHEN Congcong^{1*}, ZHANG Rubing¹

1. School of Science, Tianjin Chengjian University, Tianjin 300384, China

2. School of Environment and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China

3. Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin 300384, China *Corresponding author, E-mail: ccshen@mail.ustc.edu.cn

Abstract Under UV irradiation, the effects of the relative content of methanol and water in the mixed solvent on photocatalytic redox of 3,4-dichloronitrobenzene over titanium dioxide (TiO_2) were investigated. Photocatalytic degradation efficiencies of 3,4-dichloronitrobenzene and yields of 3,4-dichloroaniline were measured. The results showed that the degradation efficiency reached 26.81% in the first 40 minutes of photocatalytic process when the volume ratio of methanol to water was 5:5, while the yield of 3,4dichloroaniline was the highest and reached 78% in 240 minutes of photocatalytic process when the volume ratio of methanol to water was 9:1. The oxidation-reduction potential and hydroxyl radicals tests were used to reveal the photocatalytic mechanisms. High relative content of water in solvent was beneficial for oxidation, while high relative content of methanol in solvent was beneficial for reduction. As solvent of 3,4-dichloroaniline/3,4dichloronitrobenzene and photogenerated hole scavenger, methanol could promote the reduction of 3,4dichloronitrobenzene. As a reaction media, water was beneficial for hydroxyl radical production, and could promote the oxidation of 3,4-dichloronitrobenzene.

Keywords TiO₂; 3,4-dichloronitrobenzene; methanol-water solution; photocatalytic reaction

⁽责任编辑:曲娜)