-
水环境与人类生命息息相关,自然水体的水质一直受到高度关注[1-3]。我国东部河湖水网密集,亟需从时空分布和持续观测方面提升传统地面水质监测手段。随着卫星遥感技术的发展,采用高分辨率卫星遥感观测河湖水质的技术具有很大潜力和发展前景。因此,很多学者围绕湖泊水质开展了遥感技术的应用研究。黄灵光等[4]基于卫星Landsat8/OLI反演了鄱阳湖叶绿素a质量浓度;刘文雅等[5]基于辐射传输模型反演了巢湖叶绿素a质量浓度;岳程鹏等[6]基于Landsat8/OLI反演了乌梁素海浮游植物生物量;孟凡晓等[7]基于Landsat8/OLI数据反演了南海近岸悬浮泥沙与叶绿素a质量浓度。以上研究都是针对湖泊水质监测进行的,然而,关于水质变化极快的河流水质遥感监测研究尚不多见。这可能是由于与高空间分辨率卫星过境的重访频率较低,且海岸带水网密集区域常受云盖影响有关。以上两点因素导致遥感技术有效观测水质参数变化的数据有限、时间频率较低,难以满足快速变化的河流水质监测。水质遥感的机理是基于光学传感器可探测到水体组分如浮游植物色素、悬浮物的浓度变化,从而引起光吸收和散射特性的变化。然而,非光敏性质的水质参数如DO、NH3-N等一般无法直接探测到。本课题组尝试通过叶绿素a质量浓度间接反演非光敏性质的水质参数。
另外,海岸带河湖水质常受潮汐动力影响,而近年利用水质动力模型分析水质变化的方法已得到发展[8-9]。CHEN等[10]基于Delft3D模型构建了上海市淀山湖水动力和水生生态耦合模型,对淀山湖的藻华生长影响因素进行了分析。然而,水质动力模型的模拟过程较为复杂,往往需要大量实测数据作为边界条件,不易操作,更难以实际应用。
本研究拟选择卫星Landsat8/OLI数据,遥感定量反演叶绿素a质量浓度,并通过Delft3D模型模拟感潮河流-黄浦江的水动力特征,以实现水质参数DO、NH3-N和CODMn的模拟;又根据叶绿素a质量浓度表征着光能自养生物量[11]和水体富营养状况[12-14],再通过构建研究区叶绿素a与水质参数的回归模型,最终实现卫星遥感观测与定量反演感潮河流的水质参数,为类似河流水质遥感监测提供参考。
基于卫星观测及水质动力模型的感潮河流水质监测分析
Water quality analysis of tidal river based on satellite observation and dynamic model
-
摘要: 综合高分辨率卫星观测具有时空连续覆盖和水质动力模型具有高时间分辨率的优势,对感潮河段的水质进行监测。通过Lansat8/OLI卫星数据定量反演了感潮河段-黄浦江的叶绿素a质量浓度,反演结果与地面实测数据的均方根误差为4.82 mg·m−3,决定系数R2为0.68。通过水质动力模型Delft3D,模拟了黄浦江水质参数(溶解氧(DO)、氨氮(NH3-N)和高锰酸钾指数(CODMn))。结果表明:模拟水位与实测水位的均方根误差为0.22 m;水质参数DO、NH3-N、CODMn的验证均方根误差分别为0.53、0.16、0.27 mg·L−1。进一步分析后发现,2013年8月—2014年7月随着黄浦江叶绿素a质量浓度的增大,DO与NH3-N也相应增大,CODMn则相应减小。通过叶绿素a质量浓度与水质参数所构建的关系式,利用Lansat8/OLI卫星数据反演了不同时期的黄浦江DO、NH3-N、CODMn,发现感潮河段水质参数存在季节性变化。卫星观测与水质动力模型相结合的方法可为海岸带感潮河流时空快速变化的水质监测提供参考。Abstract: The advantages of continuous space-time coverage by satellite observations and high time resolution by water quality and hydrodynamic models were complemented and utilized in this study to analyze the water quality change of the tidal river. Based on the in-situ data, the chlorophyll a concentration of the tidal river-Huangpu River was quantitatively retrieved by Lansat8/OLI satellite data. The root mean square error between the inversion data and the measured data was 4.82 mg·m−3, and the determination coefficient R2 was 0.68. Based on the Delft3D model, the water quality parameters of the Huangpu River Dissolved, i.e. Oxygen (DO), Ammonia Nitrogen (NH3-N) and Potassium Permanganate Index (CODMn), were simulated. Results showed that the root mean square error of the simulated water level by the hydrodynamic module was 0.22 m, and the verified root mean square errors of DO, NH3-N, and CODMn were 0.53 mg·L−1, 0.16 mg·L−1, 0.27 mg·L−1, respectively. The correlation between chlorophyll a concentration and water quality parameters of Huangpu River from August 2013 to July 2014 was further analyzed. It was found that with the increase of chlorophyll a concentration in Huangpu River, DO and NH3-N increased while CODMn decreased. Based on the correlation between chlorophyll-a concentration and water quality parameters, the DO, NH3-N, and CODMn of Huangpu River were retrieved by using Lansat8/OLI satellite data. It was found that the water quality parameter values varied greatly with seasons for tidal river. This study demonstrated the great significance to combine satellite observation with dynamic model for water quality analysis of tidal rivers.
-
Key words:
- remote sensing inversion /
- Delft3D model /
- tidal river /
- hydrodynamic /
- water quality monitoring
-
表 1 采样点位置及数量
Table 1. Location and number of sampling points
序号 采样点坐标 已获取数据的月份 2019年7月 2019年8月 2019年9月 2019年11月 1 121°24′32″E, 31°9′53″N √ √ √ √ 2 121°24′20″E, 31°9′40″N √ — — — 3 121°24′53″E, 31°10′0″N √ √ √ √ 4 121°25′37″E, 31°9′55″N √ √ √ √ 5 121°26′16″E, 31°9′58″N √ √ √ √ 6 121°26′56″E, 31°10′24″N √ √ √ √ 7 121°27′15″E, 31°10′56″N √ √ √ √ 8 121°26′36″E, 31°8′35″N √ √ √ √ 9 121°26′34″E, 31°7′42″N √ √ √ √ 10 121°26′22″E, 31°7′52″N — √ √ √ 11 121°26′53″E, 31°7′56″N √ √ √ √ 12 121°25′19″E, 31°7′51″N √ √ √ √ 13 121°23′34″E, 31°7′39″N √ √ √ √ 14 121°22′15″E, 31°5′33″N √ √ √ √ 15 121°22′56″E, 31°4′14″N √ √ √ √ 16 121°23′13″E, 31°3′41″N √ √ √ √ 17 121°23′42″E, 31°3′52″N √ √ √ √ 18 121°27′25″E, 31°3′56″N √ √ √ √ 19 121°28′19″E, 31°2′49″N √ — √ √ 注:√表示数据已获取;—表示数据未获取。 表 2 监测站位置列表
Table 2. Monitoring station locations
监测站 经度 纬度 监测时间 吴淞水位站 121°30′30″E 31°23′30″N 逐小时 松浦大桥流量站 121°18′25″E 30°58′24″N 逐月 高桥水位站 121°33′30″E 31°19′48″N 逐小时 吴淞水质监测点 121°30′35″E 31°23′24″N 逐月 松浦大桥水质监测点 121°18′28″E 30°58′20″N 逐月 杨浦水厂水质监测点 121°29′52″E 31°14′51″N 逐月 表 3 模型参数中英文名称及取值
Table 3. Model parameter values
起始计算日期 停止计算日期 时间步长/s 谢才糙率 水平紊动黏性系数/(m·s−2) 阈值深度/m 平滑时间/min 2013-08-01 2014-07-01 30 65 1 0.1 60 -
[1] 张勇, 王云, 叶文虎. 上海市地表水水质近20年的变化[J]. 环境科学学报, 2002, 22(2): 247-251. doi: 10.3321/j.issn:0253-2468.2002.02.023 [2] YANG H J, SHEN Z M, ZHANG J P, et al. Water quality characteristics along the course of the Huangpu River(China)[J]. Journal of Environmental Sciences, 2007, 19(10): 1193-1198. doi: 10.1016/S1001-0742(07)60195-8 [3] 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2): 116-120. doi: 10.3969/j.issn.1004-8227.2009.02.004 [4] 黄灵光, 方豫, 张大文, 等. 基于Landsat-8 OLI的鄱阳湖叶绿素a浓度定量反演[J]. 江西科学, 2016, 34(4): 441-444. [5] 刘文雅, 邓孺孺, 梁业恒, 等. 基于辐射传输模型的巢湖叶绿素a浓度反演[J]. 国土资源遥感, 2019, 31(2): 102-110. [6] 岳程鹏, 李兴, 包龙山, 等. 基于Landsat8 OLI遥感数据反演乌梁素海浮游植物生物量[J]. 灌溉排水学报, 2020, 39(8): 122-128. [7] 孟凡晓, 陈圣波, 张国亮, 等. 基于Landsat-8数据南海近岸悬浮泥沙与叶绿素a浓度定量反演[J]. 世界地质, 2017, 36(2): 616-642. doi: 10.3969/j.issn.1004-5589.2017.02.029 [8] HOOS A B, WANG S H, SCHWARZ G E. Adapting a regional water-quality model for local application: A case study for Tennessee, USA[J]. Environmental Modelling & Software, 2019, 115: 187-199. [9] WANG Q, LI S, JIA P, et al. A review of surface water quality models[J]. The Scientific World Journal, 2013, 2013: 231768. [10] CHEN Y Z, LIN W Q, ZHU J R, et al. Numerical simulation of an algal bloom in Dianshan Lake[J]. Chinese Journal of Oceanology and Limnology, 2016, 34(1): 231-244. doi: 10.1007/s00343-015-4298-0 [11] 刘冬燕, 宋永昌, 陈德辉. 苏州河叶绿素a动态特征及其与环境因子的关联分析[J]. 上海环境科学, 2003, 22(4): 261-264. [12] ZHAO H J, WANG Y, YANG L L, et al. Relationship between phytoplankton and environmental factors in landscape water supplemented with reclaimed water[J]. Ecological Indicators, 2015, 58: 113-121. doi: 10.1016/j.ecolind.2015.03.033 [13] LIU Y, GUO H C, YANG P J. Exploring the influence of lake water chemistry on chlorophyll a: A multivariate statistical model analysis[J]. Ecological Modelling, 2010, 221(4): 681-688. doi: 10.1016/j.ecolmodel.2009.03.010 [14] 孙菲, 袁鹏, 程建光, 等. 宜兴市殷村港叶绿素a与影响因子的多元分析[J]. 环境工程, 2017, 35(9): 53-57. [15] PORRA R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b[J]. Photosynth Research, 2002, 73(1/2/3): 149-156. [16] VANHELLEMONT Q, RUDDICK K. Turbid wakes associated with offshore wind turbines observed with Landsat 8[J]. Remote Sensing of Environment, 2014, 145: 105-115. doi: 10.1016/j.rse.2014.01.009 [17] GORDON H R, BROWN J W, EVANS R H. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner[J]. Applied Optics, 1988, 27(5): 862-871. doi: 10.1364/AO.27.000862 [18] WANG M, SHI W. Cloud masking for ocean color data processing in the coastal regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3105-3196. [19] WANG M, SHI W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing[J]. Optics Express, 2007, 15(24): 15722-15733. doi: 10.1364/OE.15.015722 [20] TANG R G, SHEN F, PAN Y Q, et al. Multi-source high-resolution satellite products in Yangtze Estuary: Cross-comparisons and impacts of signal-to-noise ratio and spatial resolution[J]. Optics Express, 2019, 27(5): 6426-6441. doi: 10.1364/OE.27.006426 [21] SHANG P, SHEN F. Atmospheric correction of satellite GF-1/WFV imagery and quantitative estimation of suspended particulate matter in the Yangtze Estuary[J]. Sensors, 2016, 16(12): 1997-2013. doi: 10.3390/s16121997 [22] IRISH J L, WHITE T E. Coastal engineering applications of high-resolution lidar bathymetry[J]. Coastal Engineering (Amsterdam), 1998, 35(1/2): 47-71. [23] WEHR A, LOHR U. Airborne laser scanning: An introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2/3): 68-82. [24] QIAN Z, GARBOCZI E J, YE G, et al. Anm: A geometrical model for the composite structure of mortar and concrete using real-shape particles[J]. Materials and Structures, 2016, 49(1/2): 149-158. [25] 刘成, 何耘, 李行伟, 等. 上海市污水排放口污染物运动轨迹模拟[J]. 水利学报, 2003(4): 114-118. doi: 10.3321/j.issn:0559-9350.2003.04.020 [26] 陆仁强, 何璐珂. 基于Delft3D模型的近海水环境质量数值模拟研究[J]. 海洋环境科学, 2012, 31(6): 877-880. [27] DELFT3D FLEXIBLE MESH SUITE-RGFGRID_User_Manual[Z/OL]. [2021-03-09]. https://content.oss.deltares.nl/delft3d/manuals/RGFGRID_User_Manual.pdf, 2021. [28] HUYBRECHTS N, VILLARET C, LYARD F. Optimized predictive two-dimensional hydrodynamic model of the Gironde Estuary in France[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2012, 138(4): 312-322. doi: 10.1061/(ASCE)WW.1943-5460.0000129 [29] DELTARES D N. Water quality and aquatic ecology modelling suite-D-Water_Quality_User_Manual[Z/OL]. [2021-03-09]. https://content.oss.deltares.nl/delft3d/manuals/D-Water_Quality_User_Manual.pdf. 2021.