-
热处理技术常用于去除石油烃 (total petroleum hydrocarbons, TPH)、多环芳烃 (polycyclic aromatic hydrocarbons, PAHs)[1]、多氯联苯(polychlorinated biphenyls, PCBs)[2]、氯苯(chlorobenzene, CBz)[3]等土壤有机污染物。热处理技术类型的选择与污染物性质及其沸点密切相关,不同类型技术有不同的特征和适用场合(见图1)。热处理温度的高低会影响污染物的去除机制:低温热处理时,污染物主要以气相脱附(物理挥发)的形式去除;高温热处理时,污染物则以缩合转化(炭化)、氧化(燃烧)等热反应形式转移[4]。土壤热处理技术快速、高效、彻底、可控,但是有学者担忧会改变土壤结构和性质[5],破坏有机质[6]和微生物菌群[7],从而可能影响再利用特性。关于热处理中有机污染物的化学转化,特别是炭化行为,文献报道并不多见。本文将探讨、分析热处理过程中的炭化行为、炭化机理及其对土壤再利用特性的影响,以期为土壤热处理技术的科学研究与工程实践提供参考。
-
传统焦化行业的炭化反应主要包括热解炭化(pyrolysis)、水热炭化(gasification)、气化炭化(hydrothermal carbonization)和闪蒸炭化(flash carbonization)4类[8],其机理、原料及反应条件各不相同(见图2)。
1)热解炭化。热解炭化的温度范围为200~3 000 ℃,其反应过程分为传统炭化I(环化及芳构化)、传统炭化II(固相聚集及芳香族平面的成长)和石墨化炭化III(三度结构增加及晶体成长)3个阶段[9],如图3所示。热解炭化以反应时间分为慢速热解和快速热解;以加热方法分为燃料燃烧、电加热和微波热解[8];以炭化所处相态分为气相炭化、液相炭化和固相炭化[9]。土壤高温热处理过程中发生的有机污染物炭化行为主要属于热解炭化的第一阶段——传统炭化I。
2)水热炭化。水热炭化是以水为介质,将原料置于密闭的水热反应釜中,于150~350 ℃停留1 h以上,最终转化为水热炭,是一种脱水脱羧的加速煤化过程[10]。水热炭化反应经历了水解、脱水、脱羧、芳香化、缩聚等步骤[11],其低温环境导致产生的气体产量非常低,大部分原料转为棕色的煤或溶解在液体中[12]。水热技术可作为重金属(如铅、铯等)污染土壤的一种可靠修复方法[13-14],还可将生物质转化为黄腐酸和腐殖酸,从而用于土壤修复[15]。
3)气化炭化。在气化炭化过程中,在大气压或高压下,生物质在温度为800 ℃左右的气化室被部分氧化。该过程的主要产品是气体,仅形成少量焦炭和液体(炭化的结果)。气化炭化与热解炭化的主要区别在于前者转化环境需要部分氧气,而后者几乎没有氧气[8]。
4)闪蒸炭化。在压力为1~2 MPa下,从原料填充床的底部点火,火势通过炭化床向上流动,阻挡工艺中向下流动的空气。燃烧每千克原料总共约有0.8~1.5 kg空气被输送至反应器中。该方法的反应时间低于30 min,反应器中温度为300~600 ℃,主要生成气态和固态产物[8]。
综上所述,经过上述4种炭化反应制备的生物炭,均可作为土壤改良剂应用于土壤强化修复。4种炭化反应中,热解炭化是有机污染土壤热处理过程中最可能发生的炭化行为。水热炭化能将有机污染物转化为土壤中的腐殖酸类物质,其温和的反应条件或许能为高水分污染土壤的处理、土壤性质的保持和降低二次污染物的排放提供新的修复思路。闪蒸炭化的反应温度处于大部分有机污染物挥发或热转化温度区间,并且其固相产物多,具有较大改善土壤性能的潜力。因此,在污染土壤热处理中可能发生热解、水热及闪蒸炭化。4种炭化在污染土壤修复方面都有辅助意义,但水热及闪蒸炭化在土壤热处理过程中发生的可能性还应进一步展开理论研究和实验验证。
-
土壤热处理过程中有机污染物的炭化过程、炭化反应、炭化机理等相关研究,已有少量文献报道,涉及的污染物类型主要为石油烃和芳烃化合物[16-27](见表1)。
-
热解修复[16-18]和低温微波辅助修复[19]石油烃污染土壤均会发生聚合反应生成热解炭,前者修复石油烃污染物的炭化反应主要发生于400~500 ℃[28],后者主要发生在200 ℃以上[19]。热解炭的形成标志着土壤中有机污染物转变为稳定且无害的炭。此外,热处理过程中石油主要成分(饱和烃、芳香烃、胶质和沥青质)通过蒸发、裂解和聚合/炭化3种方式发生不同程度的转化。其中,饱和烃以气体或热解油形式转化,芳香烃聚合成更大的结构即热解油或少部分残炭,胶质和沥青质可能发生裂解、聚合(主要作用)及裂解-聚合反应形成大部分残炭[20]。另外,氧的存在会影响热解产物的分配比及性能,燃料油污染土壤在N2和CO2这2种热处理环境下,热解气、热解油和热解炭的总质量平衡比分别为60∶33.4∶5.6和70.2∶25.3∶4.6。氧化环境会使得炭从热解油向热解气转移,并改变所有热解产物的表面形貌[21]。
据上述文献分析可看出,对石油烃污染物炭化行为及其影响的关注较少。首先,石油烃的炭化反应与热处理方式、化合物组成和反应气氛有关,但其影响机制尚未完全明晰,缺少因果分析层面的足够理论支撑;其次,目前尚未定量石油烃的炭化产率和推测污染物的炭化路径;另外,应关注热处理过程中不同反应气氛的热解炭性能差异以及不同比例混合气氛的炭化情况,以获取修复石油烃污染土壤的最佳反应条件。
-
芳烃化合物是烃源岩、原油、煤及现代沉积物中含量仅次于饱和烃的重要有机族组分,分为常规多环芳烃、N/O/S杂环芳烃、芳香甾萜烷和脱羟基维生素E 4个系列[29]。近年来,N、O、S等杂环芳烃造成的土壤环境污染越来越受到环境治理者的关注[30-31]。从污染场地数据库获得的结果表明,杂环芳烃可能占土壤中多环芳烃总量的10%~20%[32]。因此,深化杂环芳烃基础理论研究,特别是热处理过程中的炭化行为研究,对于杂环芳烃污染土壤修复及可持续应用具有重要意义。
杂环芳烃经裂解、缩合等反应能生成焦炭,杂环芳烃的生焦趋势要显著大于其他烃类物质(烷烃、烯烃和多环芳烃等),其反应活性顺序为芴>咔唑>二苯并呋喃>苯噻吩>其他烃类[33]。芳烃聚合和分子重排是控制衍生炭结构的关键步骤,其反应的相对程度跟反应物起始结构有关,并且催化剂(促进氢转移和脱氢反应)可改变反应历程及产物性能[34],如在AlCl3催化作用下,吖啶和蒽及9,10-二氢蒽共炭化可以改善焦炭光学各向异性的发展[22]。此外,不同化合物在中间阶段的发展和炭化速率与杂原子的脱除程度和速率[23]及炭化过程中的动力学有关[24, 35]。另外,在300 ℃下,河流沉积物中PAHs会发生炭化反应转化为非挥发性产物[25],矿物基质对该反应有促进作用[26]。关于土壤中芳烃化合物的炭化研究较少,此前,本课题组开展了PAHs的聚合及炭化行为研究,分析了PAHs在气相和土壤中的热转化反应,结果显示气相中PAHs发生了去甲基、缩合及裂解反应,产生了高分子化合物,土壤表面覆盖了一层“炭膜”[27],从而证实了土壤中芳烃化合物炭化反应的发生。
芳烃化合物的炭化研究侧重于分析炭化中间过程,但炭化产率及其产物的理化特性不仅取决于中间相的发展方向,也与反应基质、反应条件及热处理技术等有关。因此,已有研究难以指导芳烃污染土壤的炭化行为影响分析。
-
生物质的炭化产物生物炭是一种土壤改良剂,对于改善土壤的理化性质和生物学特性,增加土壤肥力,提高作物产量都具有重要作用。然而,土壤有机物炭化产物对土壤再利用特性的影响研究还较少,在后续深入研究中可借鉴生物炭改良污染土壤的相关研究成果。
-
土壤热处理过程中,有机污染物在土壤表面生成的炭化产物能促进土壤再利用特性[18],可为修复有机污染土壤提供一种创新与战略手段[21]。目前,相关的研究主要集中在改善土壤理化性质和促进植物生长方面。CHEN等[36]研究了炭化土壤去除Cr(VI)的能力,结果表明反应温度200 ℃时土壤炭化形成的有机碳以及反应温度大于400 ℃时形成的芳族碳,均是还原Cr(VI)的主要因素。VIDONISH等[28]研究了快速高温热解(<500 ℃)后的炭化土壤理化特性,发现其pH维持在正常范围,对植物生长没有任何不良影响。此外,炭化土壤的孔隙率、持水能力和渗透性等都得到了提高,且植物生产量也高于污染土壤[16-17, 37]。以上研究证实了热处置土壤的炭化产物会影响土壤生态价值,但尚缺乏针对有机污染物炭化产物对土壤再利用特性的微观影响机制的研究,如炭化产物对热处理后土壤微生物群落的再繁殖(recolonization)及作物有效营养元素的影响机制等。
-
生物炭是生物质在厌氧或绝氧条件下,生物质经高温(240~700 ℃)裂解炭化而形成的一类高度芳香难熔性固态物质,具有良好的结构、巨大的比表面积和吸附力[38]以及高度的稳定性和抗微生物腐蚀能力[39];并且,其表面存在大量—OH,—COOH等含氧官能团,能增加土壤阳离子交换量(cation exchange capacity, CEC)[40],提高土壤对Ca2+、K+、Mg2+和
NH+4 等养分离子的吸持能力[41];还能锁定植物产生的CO2并改善低肥力土壤的质量[42]。因此,生物炭常用作土壤改良剂,其对土壤持水量、营养成分、pH和微生物菌落都有明显促进作用。1)提高土壤持水量。添加生物炭会增加土壤孔隙度,进而增加有效水含量、改善土壤持水能力[43]。与未改良土壤相比,生物炭改良土壤保留了更多水分(高达15%)[44]。随着生物炭施入量的增加,土壤毛管持水量增大,平均增加1.46倍[45]。不同材质生物炭保水能力不同,随着生物炭含量增加,施用小麦秸秆炭土壤含水量增幅最大(平均增幅28.74%),茶树枝条炭增幅最小(7.16%),不同生物炭改性土壤含水量提高范围为1.05%~55.77%[46]。
2)增加土壤营养成分。施用生物炭可增加土壤保持养分的能力和利用率,进而促进植物生长[47]。与未改良土壤相比,生物炭改良土壤有更高的CEC、比表面积、总氮[44]、有效Ca/K/P、有机碳[48]和植物生长产量[49]。炭化产物的养分保留潜力与炭化方式有关,热解炭吸附硝酸盐、铵盐和磷酸盐等养分的能力比水热炭强[50]。此外,不同含量生物炭对土壤养分的影响程度也不同。小麦根区土壤有机碳、全氮、全磷和全钾含量随生物质炭浓度(10~40 t·hm−2)的增加呈先增加后减少趋势,但均显著高于对照。其中,在20 t·hm−2生物炭浓度处理下,小麦根区土壤的有机碳、全氮和全钾达到最大[51]。
3)稳定土壤pH。我国南方地区存在大面积酸性土壤,一是由于养分有效性降低,二是由于铝离子等有毒物质毒性更强、使作物根系中毒或死亡。生物炭具有碱性,能提高酸性土壤的pH并降低土壤Al含量[48]。不同材料生物炭对土壤pH的影响幅度不同。与非豆科植物相比,豆科植物产生的生物炭对土壤pH影响更大[52],施用茶树枝条炭土壤pH增幅最大(平均增幅1.21个单位),小麦秸秆炭增幅最小(平均增幅0.41个单位)[46]。但生物炭的添加有时也能造成土壤pH降低。小麦根区土壤pH随生物含量的增加呈逐渐降低趋势,不同含量生物质炭处理下的小麦根区土壤pH均明显低于对照值[51]。这可能与原土壤理化性质和生物炭种类有关。
4)丰富土壤微生物群落。添加生物炭改良剂会影响土壤微生物数量和群落组成[39],不同生物炭对土壤生物丰度的影响有所差别。烟杆生物炭改良土壤的微生物种类增加了26.4%[53],辐射松生物炭改良土壤细菌群落丰度的时空变化>5%,包括根瘤菌(8%)、菌丝菌(14%)、链霉菌(6%)、嗜热单孢菌(8%)、链霉菌科(11%)和小单孢菌科(7%)[54]。小麦秸秆生物炭使得基因拷贝数的真菌和细菌比率降低,土壤有机碳和pH提高的同时抑制了真菌生长,土壤中菌类向着以细菌为主的微生物群落转变[55]。酵母和葡萄糖生物炭分别提高了农地和森林土壤的真菌丰度和革兰氏阴性菌丰度[56]。总之,生物炭能明显增加土壤微生物总数,其影响机制与土壤类型、土壤肥力、植物种类和生态环境等密切相关[51]。
因此,进行土壤改良时,应当考虑污染物类型、土质类型和目标改良特性等多种因素,选择合适的生物炭。生物炭对土壤性能的改良效果,汇总于表2。
-
生物炭、焦炭等焦化行业的炭化过程为人熟知,但是环保行业对有机污染土壤热处理过程的炭化过程关注不多,有机污染物炭化行为和机制尚不明晰,今后可重点从以下几个方面开展深入研究。
1)借鉴生物炭、焦炭等焦化行业的炭化成果及研究手段,加强土壤热处理过程炭化产物的多角度表征,评价炭化产物的二次污染特性,解析土壤中有机污染物的炭化行为机制。
2)探明有机土壤热处理炭化产物对土壤再利用特性的改善机制,甄别不同于生物质炭的有机污染物衍生炭影响特性,比如土壤养分、肥力、微生物、生态恢复功能等。
3)明确热处理工艺参数对土壤炭化产物的影响特性,从污染土壤修复效率与土壤再利用特性等角度综合考虑,选择面向目标需求的综合最优热脱附参数,以保持高效修复的同时,提升热处理技术的“绿色可持续修复”特性。
4)关注土壤热处理过程中其它炭化类型,探究水热炭化和闪蒸炭化对特征污染土壤热处理过程的贡献,揭示气化炭化和闪蒸炭化后的生物炭对土壤肥力的影响机制,明确多种炭化类型在不同场地特征热处理过程中发生的可能性。
5)在满足土壤修复目标前提下,探讨土壤有机物炭化行为对热处理耦合方案的影响特性,比如热-生物耦合,以及不同热处理耦合方案对土壤有机物炭化行为的影响机制。
有机污染土壤热处理过程中的炭化行为及其影响
Charring behaviors and their influence of organic contaminated soil during thermal treatment
-
摘要: 热处理技术在国内外均占有较高的市场份额,已成为有机污染场地的主要修复技术。尽管对热处理技术本身的研究和关注较多,包括工艺、参数、能源、效果、成本、应用等方面,但关于有机污染物热处理化学转化中炭化行为研究的报道并不多见。炭化行为可能会改善土壤再利用特性,对热处理工艺参数也可能有一定影响。指出了传统焦化行业中4种炭化反应类型及其机理过程,梳理了石油烃和芳烃化合物等污染土壤热处理过程中的炭化行为,总结了有机污染物炭化行为对土壤再利用特性的影响,并分析了生物质炭化产物对土壤肥力的促进机制。以此为基础,提出了有机污染土壤热处理炭化行为研究的几个重点关注方向。Abstract: Thermal treatment technologies occupy a high domestic/foreign market share, and have become the main remediation technology of organic contaminated sites. Though many studies and concerns are focused on the process, parameters, energy, effect, cost and application of thermal treatment, there are few literature reports on the charring behaviors in the thermochemical conversion of organic pollutants. The charring behaviors may improve reusability of soil and affect process parameters of thermal treatment. Four types of charring reactions and their mechanisms are shown in this paper, and the charring behaviors of petroleum hydrocarbons and aromatic compounds during thermal treatment are reviewed. The effects of organic pollutants charring on soil reusability is summarized, and the improvement of biochar to soil fertility is analysed. Based on the mentioned above, several important research topics of charring process during thermal treatment of organic contaminated soil are proposed.
-
传统污水处理工艺如A/O、CASS、氧化沟等采用单一污泥悬浮生长体系因其具有工艺简单、氮磷去除效果较好得到广泛应用,但采用单污泥体系的污水处理工艺在培养硝化菌、反硝化菌进行脱氮除磷过程中存在有机负荷、泥龄以及碳源需求上的竞争与矛盾,很难获得良好的污染物去除效果[1-2]。因此,在20世纪80年代JONES等[3-4]提出了构建双污泥体系工艺即A2N(厌氧/缺氧-硝化)工艺的思路,通过将硝化菌和反硝化菌分别独立培养,从而提高生物脱氮工艺对污水中碳源的利用效率,解决了硝化菌和反硝化菌泥龄矛盾等问题。
与单污泥体系的传统生物脱氮工艺相比,双污泥体系生物脱氮工艺具有污泥产量低、不同功能菌分开培养、有效利用碳源等优点[5],但是也存在固有缺陷。目前双污泥体系生物脱氮工艺包含间歇式和连续式两种模式,间歇式A2N工艺采用2座SBR(sequencing batch reactor)分别培养硝化菌和反硝化菌,工序较长,且有效污水处理时长受到污泥沉降性等因素影响,如果采用膜生物反应器,膜污染问题也会增加运行成本。而连续式A2N工艺由于处理设施较多,工艺流程与一般单污泥体系生物脱氮工艺更长,实际应用中建设成本和运行成本有所增加,同时间歇式和连续式A2N工艺均存在出水氨氮浓度较高的问题[6]。
本研究利用自主设计的实验室规模泥水分离反应器替代SBR,在反应器内截留污泥,富集培养功能微生物,将双污泥体系与A/O工艺相结合,构建缺氧和好氧污泥完全独立的双污泥生物脱氮工艺,根据运行模式特点称为A/O双污泥工艺。通过连续稳定运行实验,验证A/O双污泥工艺的脱氮性能,根据批次实验研究了工艺运行过程的氮素转化规律,并通过16S rRNA测序手段揭示了工艺运行过程中微生物群落结构对脱氮性能的影响方式。最后基于以上实验结果评估A/O双污泥工艺进一步开发研究的潜力,总结工艺需要优化的问题点,为工艺实际应用研究提供数据支撑。
1. 材料与方法
1.1 实验用水与接种污泥
缺氧池和好氧池接种污泥分别取自运行一段时间的好氧SBR和缺氧SBR。在第1阶段(1~7 d)开始前分别倒入缺氧池和好氧池启动A/O双污泥工艺,工艺启动后污泥浓度(MLSS)大约为2 000 mg·L−1。
工艺启动及运行阶段均采用模拟废水,其主要组分NH4+-N浓度为400 mg·L−1,其他组分有0.8 g·L−1 K2CO3、1.5 g·L−1 Na2HPO4、1 m L·L−1 营养液(2.5 g·L−1 FeSO4·7H2O、0.44 g·L−1 CaCl2、0.19 g·L−1 MgCl2、0.06 g·L−1 ZnCl2、0.045 g·L−1 MnSO4·H2O、0.06 g·L−1 H3BO3、0.11 g·L−1 CoSO4·7H2O、0.06 g·L−1 CuSO4·5H2O、0.04 g·L−1 NiCl2·6H2O、0.034 g·L−1 钼酸铵)[7],模拟废水碳源采用乙酸钠和蔗糖按1:1配制。
1.2 实验装置
反应器总有效体积为13.2 L,缺氧池和好氧池有效体积均为6.6 L,采用课题组设计的泥水分离反应器,反应器结构如图1(a)所示。该反应器通过搅拌桨旋转提供的升力将沉降性能良好的活性污泥截留在图1(a)黄色区域和反应器底部,废水在反应器下部完成泥水分离过程,最后从外圈出水堰进入下一构筑物。
A/O双污泥工艺流程如图1(b)所示。实验装置由有机玻璃制成,每个运行周期通过蠕动泵(Longer, BT101L,UK)从配水桶抽水进入循环桶,然后泵入缺氧池,再利用高度差重力流作用从缺氧池出水堰流入好氧池,最后在高度差重力流作用下返回循环桶,完成一次废水在工艺的内循环过程。循环桶内每个周期均预留4 L水,工艺启动及运行过程中进水体积与排水体积均为2 L。工艺运行采用时间继电器控制,每个周期总时长为8~12 h,模拟废水进水时长固定为50 min,排水时长固定为10 min,在整个运行周期内一直保持废水在工艺不同构筑物之间连续循环流动的过程。
1.3 实验条件及运行工况
第Ⅰ阶段(1~7 d),从SBR转移活性污泥至对应的泥水分离反应器,然后启动工艺。第Ⅱ阶段增大废水内循环速度,提高工艺整体的脱氮效率。第Ⅲ阶段缩短水力停留时间,增加日进水负荷,避免低负荷运行影响工艺功能菌活性,加快污泥老化。在第Ⅲ阶段结束后,设置进水NH4+-N浓度为200 mg·L−1,其他条件不变,选择乙酸钠作为碳源,在4种C/N比(5、7、9、11)条件进行批次实验,研究工艺运行过程的氮素转化规律。本研究A/O双污泥工艺启动及运行阶段运行参数详见表1。
表 1 不同阶段工艺运行条件Table 1. Conditions of process operation at different stages阶段 时间/d 运行周期/h DO/(mg·L−1) 内循环速度/(mL·min−1) C/N 氨氮负荷/(kg·(m3·d)−1) Ⅰ 1~7 12 2~4 31 4 0.073 Ⅱ 8~44 12 2~4 78 4 0.073 Ⅲ 45~80 8 2~4 78 5 0.11 1.4 分析方法
水质指标 NH4+-N、NO2−-N、NO3−-N、COD指标均采用国家规定的标准方法监测。包括纳氏试剂分光光度法(NH4+-N)、(1-萘基)-乙二胺分光光度法、(NO2−-N)和氨基磺酸紫外分光光度法(NO3−-N)、重铬酸钾法(COD)。
1.5 16S rRNA基因测序与微生物菌群分析
利用16SrRNA技术分析活性污泥微生物群落结构组成,包括微生物丰度占比及微生物多样性变化(上海美吉生物医药科技有限公司)。使用上游引物338F(5'-ACTCCTACGGGAGGCAGCAG-3')和下游引物806R (5'- GGACTACH VGGGTWTCTAAT-3')扩增细菌16S rRNA基因的V3~V4区域。扩增程序如下:95 ℃预变性3 min,25个循环(95 ℃变性30 s,55 ℃退火30 s, 72 ℃ 延伸45 s),然后72 ℃稳定延伸10 min,最后在10 ℃进行保存(PCR仪:ABI GeneAmp® 9700 型)。
聚合酶链式反应(PCR)扩增产物利用Illumina MiSeq测序仪(中国上海美吉生物医药科技有限公司所有)进行测序,将高通量测序结果得到的有效序列进行聚类分析,利用Uparse平台(版本7.1)按照97%相似性对非重复序列进行OUT(operational taxonomic units)聚类,然后利用Silva数据库对不同的OTU代表性序列进行标注和评价。
2. 结果与讨论
2.1 反应器运行效果分析
图2反映了工艺运行过程中泥水分离反应器的运行效果。在理想状态下,污水从进水管流入内筒与污泥混合,在泥水混合液向外筒扩散过程中,搅拌桨旋转提供向上升力将大部分污泥截留在内筒,最后在到达外筒底部时,剩余污泥在自身重量作用下被截留在底部半球形区域运动,仅有极少量衰亡或活性变差的污泥与水一起流入出水堰到达下一反应器。由图2(b)中所示的反应器实际运行效果来看,大部分污泥能够被截留在内筒进行培养,经过取样检测,缺氧池出水SS保持在44 mg·L−1,好氧池出水SS保持在40 mg·L−1,大幅减少了混合回流液中污泥的含量。以上结果证明实际运行效果基本符合理想状态下设计该反应器的运行目标,但出水SS与一级出水A标准仍有一定差距,后续反应器需要进一步优化,降低出水SS。
2.2 A/O双污泥工艺的脱氮性能
图3反映了A/O双污泥工艺在不同运行阶段各项水质指标变化过程,不同阶段运行参数如表1所示。阶段Ⅰ(0~7 d)是在进水NH4+-N浓度为400 mg·L−1、C/N为4条件下启动工艺,在工艺启动前分别对好氧池和缺氧池污泥进行一段时间的驯化恢复操作,因此,阶段Ⅰ(0~7 d)工艺的NH4+-N、TN出水浓度和出水COD快速下降,NH4+-N和COD去除率达到80%以上,TN去除率达到60%,这说明工艺已具有一定污染物去除能力。阶段Ⅱ(8~44 d)将内循环速度提高至78 mL·min−1,TN出水浓度由超过60 mg·L−1降至40 mg·L−1,出水COD值从68 mg·L−1降至29 mg·L−1,由于进水采用模拟废水,NH4+-N出水浓度整体较低,因此,TN出水浓度主要与缺氧池的反硝化脱氮效率有关,与传统A/O工艺相比,本研究采用泥水分离反应器可以减少好氧池出水混合液回流时含有的污泥量,从而降低回流液携带的溶解氧,因此,单座反应器的水力停留时间可以从3.55 h缩短至1.41 h,回流比提高至4以上,让缺氧池单位时间内流入的TN浓度、COD值更高,从而提升缺氧池反硝化细菌的有机物利用效率。阶段Ⅲ(45~80 d)将C/N从4提高至5,运行周期从12 h缩短至8 h,出水NH4+-N浓度和COD值与阶段Ⅱ基本一致,有机负荷和氨氮负荷提高并未对反应器内功能菌活性造成冲击。这表明泥水分离反应器可以通过截留污泥保持污泥浓度,为功能菌生长提供稳定的环境,保证工艺对负荷提高产生的冲击具有良好的耐受性。同时工艺的运行模式对高氨氮进水能够产生一定稀释作用,能够降低高氨氮废水中游离氨的浓度,减轻游离氨对好氧池硝化细菌脱氮效率的抑制作用,让A/O双污泥工艺在80 d运行过程中始终保持较高的氨氮去除效率。这表明A/O双污泥工艺运行模式在高氨氮废水处理方面具有一定应用潜力。
经过80 d的稳定运行,A/O双污泥工艺在进水氨氮负荷为0.11 kg·(m3·d)−1、C/N比为5、内循环速度为78 mL·min−1条件下,COD和NH4+-N去除率均达到90%以上,TN去除率超过80%,因此,上述运行参数可以认为是保持工艺高去除效率的适宜条件。
A/O双污泥工艺脱氮性能对比如表2所示。与表中文献报道的A2/O(anaerobic/anoxic/oxic)、A/O等工艺相比,A/O双污泥工艺的氨氮负荷和氮去除负荷更高,无需二沉池,没有污泥回流路径,同时采用泥水分离反应器构建独立培养功能菌的双污泥体系,极大减少了污水循环流动过程中混合的污泥量,降低了污水快速流动过程中污泥携带溶解氧对缺氧区环境的影响。与采用SBR的双污泥体系工艺(A2NSBR工艺)相比,A/O双污泥工艺采用泥水分离反应器精简了SBR的控制流程,提高了工艺处理污水的有效时间,在C/N更低的条件下达到更高的处理负荷。在高浓度氨氮废水处理应用方面,总计80 d的水质指标表明工艺具有一定应用价值,但与已有研究相比,还应进一步研究反应器结构优化及调控运行参数,在工艺最优运行参数下,通过提升进水负荷来判断工艺能够达到的处理负荷上限从而准确评估在高浓度氨氮废水处理实际应用的潜力。综上所述,表2脱氮性能数据对比说明采用泥水分离反应器搭建的A/O双污泥工艺在生活污水处理方面具有进一步开发的价值和潜力。
表 2 泥水分离反应器脱氮性能对比Table 2. Comparing the nitrogen removal performance of sludge-water separating reactors工艺 进水水质 NH4+-N进水/(mg·L−1) TN进水/(mg·L−1) C/N 氮容积负荷/(kg·(m3·d)−1) 氮去除负荷/(kg·(m3·d)−1) 来源 A/O双污泥 合成废水 400 400 5 0.11 0.089 本研究 A/O 合成废水 60 83 9 0.083 0.071 [8] A2NSBR 生活污水 35.31 37.28 6~7 0.074 0.061 [9] MBBR 合成废水 50 100 10 0.2 0.16 [10] MBR 生活污水 85~115 — 6~10 0.11~0.15 0.0847~0.12 (仅氨氮) [11] A2/O 合成废水 31 31 >10 0.124 0.074 [12] A/O 合成废水 45 45 6~7 0.12 0.1056 [13] UMSR 猪场废水 393 394 0.93 0.179 0.164 [14] A2/O 猪场废水 (575±116) (688±143) (2.83±0.67) (0.057±0.012) (0.037±0.003) [15] 2.3 A/O双污泥工艺氮素转化规律分析
图4为以乙酸钠为碳源时,A/O双污泥工艺在不同C/N条件下脱氮过程的指标变化。图4(a)~(f)反映了不同反应器NH4+-N、NO2−-N浓度变化,在4种C/N条件下,循环桶出水区、缺氧池NH4+-N浓度变化无显著差异,好氧池在C/N为9、11时出现NH4+-N、NO2−-N短暂积累。这说明C/N较高时对好氧池脱氮功能菌产生抑制作用,因为乙酸钠结构简单,通过三羧酸循环即可参与细胞代谢[16],碳源过量时无法在缺氧池被完全分解利用流入了好氧池,造成异养菌能够利用碳源迅速增殖与脱氮功能菌竞争溶解氧[17],导致水中溶解氧浓度不足,在好氧池出现NH4+-N、NO2−-N浓度短暂积累的现象。
图4(g)~(i)反映了NO3−-N浓度随时间在不同反应器的变化过程。从最终产物浓度在不同反应器的分布情况来看,反硝化过程是限制工艺体系脱氮效率提高的关键因素。随着C/N升高,出水NO3−-N浓度下降幅度逐渐减小,说明过多有机物加入超出了反硝化菌的代谢能力,过量碳源被其他代谢途径消耗,无法参与反硝化过程;而在C/N较低的条件下,有机物在C/N比为5、7、9时,仅需4 h即在缺氧池降至较低水平,无法平均分配到整个工艺运行过程,导致运行周期后半段有机物不足,NO3−-N浓度升高。因此,优化碳源投加方式是提高缺氧池反硝化菌对有机物利用效率的有效途径之一。A/O双污泥工艺在运行过程中采用乙酸钠加蔗糖的复合碳源组合,利用高分子有机物分解代谢时间较长的特点,让每个周期运行后半段仍有一定比例的碳源能被反硝化细菌利用。但在实际应用时面对水质有机物组成复杂,C/N低的条件,还应考虑其他优化方式,例如,延长碳源投加时间,避免一次性投加过量,保证碳源投加过程中主要在缺氧池被反硝化功能菌快速利用去除NO3−-N,避免单位时间投加碳源量超出功能菌承受能力,导致碳源被其他代谢途径消耗。
2.4 微生物群落结构变化分析
图5为工艺缺氧池和好氧池取样得到不同阶段的微生物群落指标。由图5(a)表示的门水平微生物群落结构可知,变形菌门(Proteobacteria)在所有样品中均保持优势,是传统污水处理厂最常见、丰度最高的细菌之一[18],对有机物和氮元素具有良好的去除效果。绿弯菌门(Chloroflexi) 、拟杆菌门(Bacteroidota)和放线菌门(Actinobacterota)的细菌可以将难降解有机物进行降解[19-22],分解成易于微生物利用的简单有机物,放线菌门(Actinobacterota)除了可以分解有机物,门下某些细菌也会参与到反硝化脱氮过程中[23]。在好氧池的硝化螺旋杆菌门(Nitrospirota)则是硝化反应常见的硝化菌种,在运行阶段丰度减少可能与变形菌门包含的好氧脱氮菌竞争有关。与其他研究[24-25]相比,变形菌门(Proteobacteria)在工艺体系下没有大幅度高于其它菌门的原因可能是,投加碳源为乙酸钠加蔗糖的复合碳源,蔗糖分解需要其他微生物参与,而工艺采用的泥水分离反应器为截留富集不同种类微生物提供了有利条件,因此,产生了多种菌门相对丰度与主要脱氮菌种变形菌门(Proteobacteria)丰度比较接近的现象。
从属水平分析,经过88 d的运行,缺氧池具有反硝化功能或反硝化潜力的菌属包括副球菌 (Paracoccus)、陶厄氏菌(Thauera)以及Caldilineaceae菌[26-28]在缺氧池的相对丰度升高,其中Caldilineaceae菌属相对丰度达到了38.47%,这可能是因为其属于具有分解有机物能力的绿弯菌门(Chloroflexi),对蔗糖类高分子碳源适应性更强,在竞争中逐渐占据优势。在好氧池中与硝化相关的菌属有硝化螺菌(Nitrospira)和副球菌(Paracoccus) ,目前,副球菌(Paracoccus)已有关于异养硝化-好氧反硝化菌种被报道,ZHENG等、MEDHI等[29-30]研究中利用副球菌(Paracoccus)细菌实现了同步硝化反硝化过程,减少了脱氮所需碳源。本研究利用泥水分离反应器有效富集了全程硝化功能菌硝化螺菌(Nitrospira)[31-32]和实现异养硝化-好氧反硝化过程的副球菌(Paracoccus),这可能是工艺能够实现氨氮去除率达到90%以上的重要原因。因此,通过设计新型反应器,调整运行工况培养富集脱氮所需功能菌群是A/O双污泥工艺实现较低C/N比条件下高效处理高氨氮废水,NH4+-N、COD去除率超过90%、TN去除率超过80%的原因之一。
2.5 工艺的不足及展望
经过80 d的运行实验,A/O双污泥工艺在较低C/N条件下表现出良好的脱氮性能,与传统脱氮工艺相比,具有一定实际应用的潜力,但在实际中试前也存在以下需要改进的问题。首先是现有反应器结构存在有效体积在总体积占比不足的问题,反应器总体积为11 L,有效体积只有6.6 L;其次,反应器出水SS浓度与一级出水A标准还有一定差距,上述2个问题需要研究其它方法来解决,比如筛选合适的填料、利用CFD软件进行模拟实验来优化结构等;同时在“双碳”背景下,急需开发节能降耗的污水处理工艺,面对污水C/N比低的处理难题,还应该将泥水分离反应器与新型脱氮技术相结合,如短程硝化、短程反硝化及厌氧氨氧化等,进一步降低脱氮所需碳源,同时保持高效的脱氮效率以及氮去除负荷。
3. 结论
1)结合双污泥体系的A/O双污泥工艺与传统A/O、A2/O等工艺相比,可以在更低的C/N比下保持良好的TN去除率,与采用SBR的A2N工艺相比,采用泥水分离反应器的A/O双污泥工艺精简了处理工序,简化了操作流程,取消了污泥回流过程,具有进一步开发优化的潜力。
2)根据工艺运行过程的氮素转化规律表明,A/O双污泥工艺脱氮效能主要受反硝化过程脱氮效率限制,应考虑改变碳源投加方式或进水方式提高有机物在缺氧池的停留时间,优化工艺体系利用有机物的效率。
3)微生物群落结构分析结果表明,A/O双污泥工艺的主要功能菌包括变形菌门、绿弯弧菌门、拟杆菌门在门水平上相对丰度占比较高,在属水平上缺氧池反硝化相关菌属相对丰度较高,好氧池既存在硝化相关菌属,还存在主导异养硝化-好氧反硝化过程的副球菌(Paracoccus),这种异养硝化-好氧反硝化过程可能是工艺维持较高TN去除率的原因之一。
4)泥水分离反应器和A/O双污泥工艺还存在较大优化空间,在后续研究中应结合流场模拟技术、新型脱氮技术等手段向节能降耗、智能化调控的方向继续发展。
-
表 1 热处理过程中有机污染物的炭化反应过程相关研究情况
Table 1. Related research on charring reaction of organic pollutants during thermal treatment
序号 污染物 反应基质 污染物浓度/(mg·kg−1) 热处理温度/℃ 热处理时间/min 反应气氛 载气流速/(L·min−1) 去除效率/% 炭化产物 文献 1 原油 模拟土壤 − 300~400 30~60 N2 − − char [16] 2 柴油 模拟土壤 6 271 100~350 5~120 N2 1.2 28~99 carbon [17] 3 TPH 实际土壤 16 000, 19 000 420 180 N2 1 >99.98, >98.47 char [18] 4 TPH 实际土壤 95 300 80~300 20 − − 40~99.52 char [19] 5 TPH 实际土壤 49 500 250~600 0.5, 30 N2 0.2 >67.3 char [20] 6 燃料油 模拟土壤 − 30~900 <80 CO2 0.5 − char [21] 7 杂环芳烃 − − 100~350 <120 Ar − − coke [22] 8 硫杂环芳烃 − − ≤600 <120 Ar − − coke [23] 9 蒽 − − 440~480 30~360 − − − mesophase [24] 10 菲 − − 540~560 60~300 − − − mesophase [24] 11 PAHs 河流沉积物 − 300 60 He − 95 char [25-26] 12 甲基萘 模拟土壤 40 000 200~400 10~120 N2 0.1~0.38 85.08 char [27] 注:−为文中无准确信息;“char”和“coke”表示“焦炭”,“carbon” 表示“碳”,“mesophase” 表示“液晶”。液晶指从液相到固相变化系统中间生成的中间相。 表 2 生物炭对土壤性能的改良效果
Table 2. Effects of biochar on improving soil properties
序号 生物炭原料 炭化方式 土壤类型 生物炭含量 实验类型 生物炭对土壤性能的影响 文献 1 柳树 热解炭化 壤土 2% 盆栽实验 C、N矿化分别减少了10%和75%,pH值升高了0.17个单位,总细菌、革兰氏阴性菌和放线杆菌分别增加了28%、27%和62% [39] 2 橡树和山核桃树 热解炭化 壤土 5~20 g·kg−1 土柱实验 C含量增加了17.6%~68.8%,总N含量增加了0.6%~6.9%,含水量增加了10%~15%,CEC增加了4%~30%,比表面积增加了约18%,pH增加了约1个单位 [44] 3 花生壳 热解炭化 砂质壤土 10~60 g·kg−1 盆栽实验 毛管持水量增加了1.2~1.69倍 [45] 4 牧草秸秆、茶树枝条、果树枝条、小麦秸秆 热解炭化 山地黄壤 10~80 t·hm−2 田间实验 含水量提高1.05%~55.77%,pH 值提高0.03~1.68 个单位,微生物生物量碳含量提高10.24%~90.94% [46] 5 花生壳、松木屑 热解炭化 砂质壤土 22 t·hm−2 田间实验 CEC分别提高了15%、5% [47] 6 山核桃壳 热解炭化 砂质壤土 2% 土柱实验 Ca、K分别增加了58%和106%,C增加了11.8 g·kg−1 [48] 7 猪粪 热解炭化 沙姜黑土 0.5%~2% 盆栽实验 植物产量提高了26.50%~49.98%,氮素偏生产力提高 119.32%~162.81%,植物可溶性蛋白质和维C含量增加了33.11%~42.93%和15.16%~46.06%,硝酸盐含量降低了 17.80%~22.08% [49] 8 芒草 水热炭化 砂质壤土 100 t·hm−2 田间实验 吸附量增加了25%NO−3 [50] 9 芒草 热解炭化 砂质壤土 100 t·hm−2 田间实验 吸附量增加了58%,NO−3 增加了40%NH+4 [50] 10 农业秸秆 热解炭化 棕壤 10~40 t·hm−2 室内大田实验 含水量提高了13.92%~74.14%,pH值降低了6.61%~23.97%,TOC提高了25.41%~70.92%,TN提高了25.51%~102.04%,TK提高了33.20%~108.26%,微生物总量提高了59.62%~132.69%,细菌提高了23.53%~41.43%,真菌降低了8.33%~37.12% [51] 11 烟杆 热解炭化 红壤土 40 t·hm−2 田间实验 微生物种类提高了26.4% [53] 12 辐射松 热解炭化 砂质壤土 10% 盆栽实验 微生物活性增加了15%,细菌群落丰度的时空变化>5% [54] 13 小麦秸秆 热解炭化 砂质壤土 20 t·hm−2 田间实验 16S rRNA基因拷贝数分别增加了28%,18S rRNA基因拷贝数分别减少了35% [55] 14 小麦秸秆 热解炭化 砂质壤土 40 t·hm−2 田间实验 16S rRNA基因拷贝数分别增加了64%,18S rRNA基因拷贝数分别减少了46%,嗜甲基和嗜氢菌科丰度下降了70%,厌氧菌科丰度增加了45% [55] 15 酵母 水热炭化 农田和森林土壤 30% 温室实验 真菌增加了16%,革兰氏阳性菌和革兰氏阴性菌减少了7%~14% [56] 16 葡萄糖 水热炭化 农田和森林土壤 30% 温室实验 土壤革兰氏阴性菌和革兰氏阳性菌增加了2.1‰~4.7‰ [56] -
[1] 赵涛, 马刚平, 周宇, 等. 多环芳烃类污染土壤热脱附修复技术应用研究[J]. 环境工程, 2017, 35(11): 178-181. [2] LIU J, ZHANG H, YAO Z, et al. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln[J]. Chemosphere, 2019, 220: 1041-1046. doi: 10.1016/j.chemosphere.2019.01.031 [3] 蒋村, 孟宪荣, 施维林, 等. 氯苯污染土壤低温原位热脱附修复[J]. 环境工程学报, 2019, 13(7): 1720-1726. [4] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036. [5] VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation[J]. Engineering, 2016, 2(4): 426-437. doi: 10.1016/J.ENG.2016.04.005 [6] KIERSCH K, KRUSE J, REGIER T Z, et al. Temperature resolved alteration of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS[J]. Thermochimica Acta, 2012, 537: 36-43. [7] BÁRCENAS-MORENO G, BÅÅTH E. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities[J]. Soil Biology and Biochemistry, 2009, 41(12): 2517-2526. doi: 10.1016/j.soilbio.2009.09.010 [8] MEYER S, GLASER B, QUICKER P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review[J]. Environmental Science & Technology, 2011, 45(22): 9473-9483. [9] 蒋文忠. 炭素工艺学[M]. 北京: 冶金工业出版社, 2009. [10] 刘亦陶, 魏佳, 李军. 废弃生物质水热炭化技术及其产物在废水处理中的应用进展[J]. 化学与生物工程, 2019, 36(1): 1-10. [11] 吴倩芳, 张付申. 水热炭化废弃生物质的研究进展[J]. 环境污染与防治, 2012, 34(7): 70-75. [12] MALGHANI S, JÜSCHKE E, BAUMERT J, et al. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study[J]. Biology and Fertility of Soils, 2015, 51(1): 123-134. doi: 10.1007/s00374-014-0980-1 [13] ISLAM M N, PARK J. Immobilization and reduction of bioavailability of lead in shooting range soil through hydrothermal treatment[J]. Journal of Environmental Management, 2017, 191: 172-178. [14] CHEN Y, JING Z, CAI K, et al. Hydrothermal conversion of Cs-polluted soil into pollucite for Cs immobilization[J]. Chemical Engineering Journal, 2018, 336: 503-509. doi: 10.1016/j.cej.2017.11.187 [15] YANG F, ZHANG S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment, 2019, 686: 1140-1151. doi: 10.1016/j.scitotenv.2019.06.045 [16] KANG C, KIM D, KHAN M A, et al. Pyrolytic remediation of crude oil-contaminated soil[J]. Science of the Total Environment, 2020, 713: 136498. doi: 10.1016/j.scitotenv.2020.136498 [17] REN J, SONG X, DING D. Sustainable remediation of diesel-contaminated soil by low temperature thermal treatment: Improved energy efficiency and soil reusability[J]. Chemosphere, 2020, 241: 124952. [18] VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science & Technology, 2016, 50(5): 2498-2506. [19] LUO H, WANG H, KONG L, et al. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation[J]. Journal of Hazardous Materials, 2019, 377: 341-348. doi: 10.1016/j.jhazmat.2019.05.092 [20] LI D, XU W, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science & Technology, 2018, 52(9): 5330-5338. [21] LEE T, NAM I, KIM J, et al. The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery[J]. Journal of CO2 Utilization, 2018, 28: 367-373. doi: 10.1016/j.jcou.2018.10.017 [22] MOCHIDA I, ANDO T, MAEDA K, et al. Catalytic carbonization of aromatic hydrocarbons: X: Cocarbonization of heterocyclic compounds with anthracene and 9, 10-dihydroanthracene catalyzed by aluminium chloride[J]. Carbon, 1980, 18(5): 319-328. doi: 10.1016/0008-6223(80)90003-2 [23] MOCHIDA I, ANDO T, MAEDA K, et al. Catalytic carbonization of aromatic hydrocarbons: IX: Carbonization mechanism of heterocyclic sulfur compounds leading to the anisotropic coke[J]. Carbon, 1980, 18(2): 131-136. doi: 10.1016/0008-6223(80)90021-4 [24] SASAKI T, JENKINS R G, ESER S, et al. Carbonization of anthracene and phenanthrene. I. Kinetics and mesophase development[J]. Energy & Fuels, 1993, 7(6): 1039-1046. [25] KOPINKE F, REMMLER M. Reactions of hydrocarbons during thermodesorption from sediments[J]. Thermochimica Acta, 1995, 263: 123-139. doi: 10.1016/0040-6031(94)02419-O [26] REMMLER M, KOPINKE F. Thermal conversion of hydrocarbons on solid matrices[J]. Thermochimica Acta, 1995, 263: 113-121. doi: 10.1016/0040-6031(94)02420-S [27] HE L, SANG Y, YU W, et al. Polymerization and carbonization behaviors of 2-methylnaphthalene in contaminated soil during thermal desorption[J]. Water, Air, & Soil Pollution, 2020, 231(10): 1-10. [28] VIDONISH J E, ALVAREZ P J, ZYGOURAKIS K. Pyrolytic remediation of oil-contaminated soils: Reaction mechanisms, soil changes, and implications for treated soil fertility[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3489-3500. [29] 马军, 李水福, 胡守志, 等. 芳烃化合物组成及其在油气地球化学中的应用[J]. 地质科技情报, 2010, 29(6): 73-79. doi: 10.3969/j.issn.1000-7849.2010.06.012 [30] TIAN Z, VILA J, WANG H, et al. Diversity and abundance of high-molecular-weight azaarenes in PAH-contaminated environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14047-14054. [31] CHIBWE L, MANZANO C A, MUIR D, et al. Deposition and source identification of nitrogen heterocyclic polycyclic aromatic compounds in snow, sediment, and air samples from the Athabasca oil sands region[J]. Environmental Science & Technology, 2019, 53(6): 2981-2989. [32] IDOWU O, SEMPLE K T, RAMADASS K, et al. Analysis of polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial heritage city of Australia[J]. Science of the Total Environment, 2020, 699: 134303. doi: 10.1016/j.scitotenv.2019.134303 [33] 仝配配, 王子军. 石油加工过程中焦炭形成的原因、类型及影响因素[J]. 化工进展, 2016, 35(S1): 101-108. [34] GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1): 83-96. [35] SASAKI T, JENKINS R G, ESER S, et al. Carbonization of anthracene and phenanthrene. 2. Spectroscopy and mechanisms[J]. Energy & Fuels, 1993, 7(6): 1047-1053. [36] CHEN K Y, LIU J C, CHIANG P N, et al. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures[J]. Environmental Pollution, 2012, 162: 151-158. doi: 10.1016/j.envpol.2011.10.036 [37] LIU Y, ZHANG Q, WU B, et al. Hematite-facilitated pyrolysis: An innovative method for remediating soils contaminated with heavy hydrocarbons[J]. Journal of Hazardous Materials, 2020, 383: 121165. doi: 10.1016/j.jhazmat.2019.121165 [38] CHEN L, ZHANG Q, YANG X, et al. Research progress of biochar in soil restoration of lead and cadmium composite contaminated soil[J]. Hans Journal of Soil Science, 2018, 6(4): 108-114. [39] PRAYOGO C, JONES J E, BAEYENS J, et al. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure[J]. Biology and Fertility of Soils, 2014, 50(4): 695-702. doi: 10.1007/s00374-013-0884-5 [40] 王典, 张祥, 姜存仓, 等. 生物质炭改良土壤及对作物效应的研究进展[J]. 中国生态农业学报, 2012, 20(8): 963-967. [41] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779-785. [42] EVANGELOU M W H, BREM A, UGOLINI F, et al. Soil application of biochar produced from biomass grown on trace element contaminated land[J]. Journal of Environmental Management, 2014, 146: 100-106. [43] KINNEY T J, MASIELLO C A, DUGAN B, et al. Hydrologic properties of biochars produced at different temperatures[J]. Biomass and Bioenergy, 2012, 41: 34-43. doi: 10.1016/j.biombioe.2012.01.033 [44] LAIRD D A, FLEMING P, DAVIS D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3): 443-449. [45] 勾芒芒, 屈忠义. 土壤中施用生物炭对番茄根系特征及产量的影响[J]. 生态环境学报, 2013, 22(8): 1348-1352. [46] 王成己, 王义祥, 刘岑薇, 等. 不同材料生物质炭施用对果园土壤性状及活性有机碳的影响[J]. 福建农业科技, 2019(3): 66-70. [47] GASKIN J W, SPEIR A, MORRIS L M, et al. Potential for pyrolysis char to affect soil moisture and nutrient status of a loamy sand soil, 2007[C]//2007 Georgia Water Resources Conference. Proceedings of the 2007 Georgia Water Resources Conference. University of Georgia, 2007: 1-3. [48] NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. doi: 10.1097/SS.0b013e3181981d9a [49] 孙雪, 刘琪琪, 郭虎, 等. 猪粪生物质炭对土壤肥效及小白菜生长的影响[J]. 农业环境科学学报, 2016, 35(9): 1756-1763. [50] GRONWALD M, DON A, TIEMEYER B, et al. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils[J]. Soil, 2015, 1(1): 475-489. doi: 10.5194/soil-1-475-2015 [51] 郑子乔, 祝经伦. 生物质炭对小麦根区土壤养分和微生物特征的影响[J]. 水土保持研究, 2019, 26(3): 35-41. [52] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x [53] 王成己, 陈庆荣, 陈曦, 等. 烟秆生物质炭对烟草根际土壤养分及细菌群落的影响[J]. 中国烟草科学, 2017, 38(1): 42-47. [54] ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309-320. [55] CHEN J, LIU X, ZHENG J, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44. doi: 10.1016/j.apsoil.2013.05.003 [56] STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology and Biochemistry, 2009, 41(6): 1301-1310. doi: 10.1016/j.soilbio.2009.03.016 -