Processing math: 100%

颗粒物对滤膜浓缩/密度梯度分离荧光抗体法检测贾第鞭毛虫和隐孢子虫的影响

张艳芬, 李红岩, 刘明洋, 郑蓓. 颗粒物对滤膜浓缩/密度梯度分离荧光抗体法检测贾第鞭毛虫和隐孢子虫的影响[J]. 环境工程学报, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138
引用本文: 张艳芬, 李红岩, 刘明洋, 郑蓓. 颗粒物对滤膜浓缩/密度梯度分离荧光抗体法检测贾第鞭毛虫和隐孢子虫的影响[J]. 环境工程学报, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138
ZHANG Yanfen, LI Hongyan, LIU Mingyang, ZHENG Bei. Influence of particles on the detection of Giardia and Cryptosporidium by membrane concentration/density gradient separation and immunofluorescence method[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138
Citation: ZHANG Yanfen, LI Hongyan, LIU Mingyang, ZHENG Bei. Influence of particles on the detection of Giardia and Cryptosporidium by membrane concentration/density gradient separation and immunofluorescence method[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138

颗粒物对滤膜浓缩/密度梯度分离荧光抗体法检测贾第鞭毛虫和隐孢子虫的影响

    作者简介: 张艳芬(1991—),女,博士,工程师。研究方向:水中微生物检测。E-mail:yanfenzhang@rcees.ac.cn
    通讯作者: 李红岩(1976—),女,博士,正高级工程师。研究方向:水质分析。E-mail:hyli@rcees.ac.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2018ZX07502-001-012)
  • 中图分类号: X832

Influence of particles on the detection of Giardia and Cryptosporidium by membrane concentration/density gradient separation and immunofluorescence method

    Corresponding author: LI Hongyan, hyli@rcees.ac.cn
  • 摘要: 滤膜浓缩/密度梯度分离荧光抗体法因具有成本低廉和性能稳定的特点,目前已列入《城镇供水水质标准检验方法》(CJ/T 141-2018)用于水源水和城镇供水中贾第鞭毛虫和隐孢子虫(简称两虫)的检测。针对实际生产中,水中颗粒物会影响该方法回收率和稳定性的情况,在前期研究的基础上,结合颗粒物大小,进一步探索了浑浊度对滤膜浓缩/密度梯度分离荧光抗体法检测水中两虫的影响。结果表明,颗粒物大小仅对隐孢子虫回收率有影响,对贾第鞭毛虫无显著影响。其中,隐孢子虫在5 μm为主要颗粒物的水中获得最高回收率。浑浊度是影响两虫回收率的主要因素,20 NTU以下浑浊度水样适合采用滤膜浓缩法富集浓缩其中的两虫,尤其是3~5 NTU;20 NTU及其以上浑浊度的水样可采用沉淀浓缩法,在30~50 NTU时有最佳回收率。
  • 水污染和水资源短缺严重阻碍着社会和经济的可持续发展[1-2]。膜法水处理技术因具有处理效率高、出水水质好、占地面积小等优点[3],在水处理领域获得广泛关注。作为低压膜分离技术的典型代表,超/微滤技术已被广泛应用于给水处理、污水回用以及海水淡化预处理等领域[4-5]。然而,膜污染问题始终制约着膜分离技术的进一步发展[6]

    现阶段针对膜污染的控制方法主要包括膜前水质调控、膜清洗以及膜材料改性等[7]。其中,水质调控的效果较大程度上依赖于进水水质和前处理工艺参数的选择,在实际工程中控制难度较大。膜清洗是目前实际工程中控制膜污染的常规手段,无论是水/气冲刷,水力反冲洗,还是化学清洗,均可在一定程度上减缓膜污染的发展。但是,膜清洗额外增加的药剂和操控成本,以及其对出水水质和膜寿命等的影响,并不利于膜技术的可持续发展[3]。膜污染本质上是一种界面现象,是待过滤料液中的溶解性有机物、胶体和颗粒物质等与膜表面之间相互作用的结果[3]。因此,膜的界面性质,如带电属性、粗糙度以及亲疏水性等,主导着膜污染的产生和发展。大量研究[5-7]表明,膜的亲疏水性是影响膜污染发展的最核心因素之一,而制备超亲水膜是从根本上控制膜污染的有效途径。

    纳米材料和纳米技术的发展为新型超亲水膜的研制提供了诸多途径。氧化石墨烯(GO)作为一种表面富含羧基(—COOH)、羟基(—OH)等活性位点的二维纳米材料,已被广泛应用于水处理领域[8-10]。纳米SiO2具有易化学修饰的特点,可基于硅烷化反应灵活制备出性能丰富的有机/无机复合材料,已被广泛用于对传统有机膜材料的亲水改性[11-12]。本研究以不锈钢网[13]为基底,以GO和氨基修饰的纳米SiO2为膜材料,利用GO表面的—COOH与纳米SiO2表面的氨基(—NH2)之间的自组装共价键反应,开展了多种新型GO/SiO2无机复合膜的制备研究。对4种制膜方法,即真空抽滤、多巴胺辅助抽滤、热辅助法和高温煅烧辅助抽滤法进行了对比,结合对所得膜的表面官能团组成、表面形貌、表面粗糙度和亲水性的系统表征,以复合膜的亲水性和稳定性为评价指标,对超亲水GO/SiO2复合膜的制备方法进行了优选,可为超亲水无机复合膜的制备提供技术支撑。

    复合膜基底选用不锈钢网(SSM,316L型,中国安平金属有限公司),丝径为10 μm,厚度为70 μm,经5 mol·L−1硫酸溶液浸泡30 min后,用超纯水充分冲洗,于60 ℃烘干备用。制膜原材料选用2 mg·L−1 GO悬浮液(片径<500 nm,南京先丰纳米材料科技有限公司)和粒径为20 nm的SiO2纳米颗粒(Ludox HS-30,Sigma–Aldrich,美国),其中SiO2纳米颗粒经硅烷化反应修饰后制得表面含有氨基基团的SiO2(M-SiO2)[11]。M-SiO2的制备流程如下:即将含有102 g·L−1纳米SiO2和35.6 g·L−1 3-氨基丙基(三甲氧基硅烷)(APTMS,97%,Sigma-Aldrich,美国)pH为5的混合溶液在氮气氛围保护下于70 ℃加热反应24 h,随后透析纯化48 h后制得M-SiO2悬浮液,保存于4 ℃备用。其他辅助制膜的药品为:盐酸多巴胺(Dopamine,98%)、三(羟甲基)-氨基甲烷盐酸盐(Tris-HCl,99%)、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基丁二酰亚胺(NHS,≥97%)以及2-(N-吗啉基)乙磺酸4-吗啉乙磺酸(MES,≥99%)。

    将经酸洗处理后的SSM安置在抽滤器中,依次采用10 mL 0.4 mg·L−1的M-SiO2悬浮液和10 mL 2 mg·L−1的GO悬浮液作为进水进行真空抽滤,重复4次后SSM表面即形成一层GO/SiO2复合层,即得到v-GO/SiO2复合膜。

    首先将酸洗处理后的SSM浸泡于含有2 g·L−1多巴胺的Tris-HCl溶液中4、16、24 h,(记为d-4、d-16和d-24)后,将负载有聚多巴胺的SSM安置在抽滤器中,按照1.2小节中所述方法进行抽滤制膜,即得到d-GO/SiO2复合膜。

    将酸洗处理后的SSM至于底部安置有一层聚二甲基硅氧烷软模板的玻璃容器中,倒入50 mL 1 mg·L−1 GO悬浮液,于30 ℃烘箱中静置烘干;倒入100 mL含有2 mmol·L−1 EDC、5 mmol·L−1 NHS和10 mmol·L−1 MES的催化剂溶液,静置15 min后倒出催化剂溶液;立即加入50 mL 0.4 mg·L−1 M-SiO2悬浮液,于30 ℃下静置反应至表面干燥;重复上述操作1次,即可制得h-GO/SiO2复合膜。

    将经酸洗处理后的SSM安置在抽滤器中,采用50 mL原生SiO2纳米颗粒(HS-30)悬浮液为进水进行抽滤,将所得预负载有纳米SiO2的SSM在氮气氛围中于500 ℃煅烧4 h;随后按照1.2小节中所述方法进行抽滤制膜,即得到c-GO/SiO2复合膜。

    膜表面微观形貌采用场发射扫描电子显微镜(FE-SEM,JSM-7001F,日本日立)进行观察;膜表面立体形貌和粗糙度采用原子力显微镜(AFM,Multimode 8,布鲁克,德国)进行观测;膜表面纯水接触角采用视频光学接触角测定仪(OCA 20,德菲,德国)测定。测定接触角时,先将样品平整地贴在玻璃薄片上,然后将2 μL超纯水滴在干燥的膜表面,并记录液滴在膜表面的形态变化视频,从液滴震颤停止后(一般液滴低落后约0.5 s之后)开始计算膜–水接触角。膜表面官能团采用傅里叶变换红外光谱仪(FT-IR,VERTEX 70,布鲁克,德国)进行分析。膜的纯水通量采用一套半死端过滤系统进行测定,系统由超滤杯(Amicon 8010,有效过滤面积为4.1 cm2,密理博,美国)、电子天平(ML4002,梅特勒,瑞士)、数据记录单元以及压力输出和控制装置组成。纯水通量测试步骤为:在20 kPa恒压条件对膜进行预压过滤20 min(期间膜通量逐渐趋于稳定),随后在10 kPa条件下过滤10 min,根据式(1)计算膜的纯水通量。

    J=dVAΔPdt (1)

    式中:J为纯水通量,m·(s·kPa)−1V为过滤液体积,m3;∆P为跨膜压差,kPa;t为过滤时间,s。

    膜表面的亲疏水性由膜自身化学组成和表面微纳结构共同决定,通常使用表面纯水接触角表征膜的亲疏水性质,一般认为,膜表面纯水接触角θ<90°为亲水界面;θ<5°(或液滴能快速在膜表面铺展)为超亲水界面[15]图1所示为SSM(酸洗处理前后)和v-GO/SiO2复合膜的水接触角动态变化。原生SSM的初始接触角为114.8°,在120 s内下降至103.8°,呈较高的疏水性,其接触角下降可能主要归因于水滴的逐渐蒸发[11]。当SSM经过酸洗预处理后,表面吸附的低表面能油类等物质被去除,其初始接触角有所降低(106.4°),但仍呈现较高的疏水性。这主要是由于SSM表面的“内凹型”微纳结构容易滞留空气,致使水滴与SSM以Cassie–Baxter模式相接触,从而呈现出较高的疏水性[15]。相比之下,v-GO/SiO2复合膜的初始接触角显著降低至55.0°,约为原生SSM的一半,这主要归因于2点原因:GO与纳米SiO2表面富含—COOH、—OH和—NH2等亲水官能团,具有较高的表面能;部分GO和纳米SiO2填充在SSM的低洼位置,减少了空气的滞留空间,从而使水滴与SSM的接触模式转换为Wenzel模式,从而呈现出亲水性[10-14]。但是,v-GO/SiO2复合膜的亲水性较低,在120 s后依然维持在35.9°;且GO/SiO2层与SSM之间的附着较差,强度较低。

    图 1  原生SSM、酸洗的SSM和v-GO/SiO2复合膜的接触角变化
    Figure 1.  Variation of contact angle over time for the SSM (before and after acid treatment) and v-GO/SiO2 composite membrane

    多巴胺是1种同时具有氨基和领苯二酚基官能团的生物神经物质,能在湿态条件下发生氧化自聚且可在固体表面附着[16],常被用于有机膜的亲水改性研究[17]。本研究预在SSM表面预负载多巴胺以促进GO/SiO2层的粘附。图2(a)~(c)分别为酸洗后的SSM浸泡在0.2 g·L−1多巴胺溶液中4、16和24 h的表面SEM照片。由图2可知,经4 h浸泡的SSM表面含有一定量的多巴胺自聚产物(即聚多巴胺),而随着时间的增长,SSM表面聚多巴胺的增加并不明显。

    图 2  SSM浸泡在多巴胺溶液中不同时间后的表面SEM图
    Figure 2.  Surface SEM images of the SSM soaked in the dopamine solution at different times

    聚多巴胺的附着使SSM的亲水性明显提升。图3(a)所示为不同浸泡时间(4、16和24 h)后SSM的表面接触角对比。SSM表面接触角均显著减小,尤其是在4 h多巴胺溶液浸泡下,SSM的初始接触角为29.5°,并在7 s后完全铺展于SSM表面(即接触角为0°),表现出较强的亲水性,这可能是因为SSM表面紧密附着聚多巴胺所致,经4 h多巴胺溶液浸泡的SSM表面形貌(图2(a))已直观地证明了这一点。分别经16 h和24 h浸泡后,SSM表面的初始接触角虽然略有差别,但是60 s后,均趋近于20°左右。图3(b)为不同时间浸泡后,SSM表面的红外图谱,1 558 cm−1处的吸收峰为—NH2变角震动(1 590~1 650 cm−1)吸收峰,由于芳环C=C伸缩(1 370~1 610 cm−1)和—NH2变角震动重合存在,该处的吸收峰相对较弱,但也在一定程度上证实了SSM表面聚多巴胺的存在。该图谱中并没有呈现出明显的有机官能团吸收峰,这可能是因为多巴胺层太薄或者附着量过少的缘故。

    图 3  SSM浸泡在多巴胺溶液中不同时间后的接触角动态变化和红外图谱
    Figure 3.  Variations of contact angle and FT-IR spectra of the SSMs soaked in the dopamine solution at different times

    基于优选的4 h浸泡的SSM制备出d-GO/SiO2复合膜。图4为d-GO/SiO2复合膜与4 h多巴胺浸泡的SSM接触角动态变化的对比。所得d-GO/SiO2复合膜的初始接触角为50.7°,显著高于SSM。这主要归因于GO相对较低的表面能以及较为平整的表面结构。SSM的表现网状纹理有利于水滴的快速铺展与吸收。虽然,与v-GO/SiO2复合膜(图1)相比,d-GO/SiO2复合膜的初始接触角更低且下降速率更高,表明亲水性有所提高,但是,v-GO/SiO2复合膜的亲水性仍然较低。

    图 4  d-GO/SiO2复合膜和4 h多巴胺浸泡的SSM接触角动态变化对比
    Figure 4.  Comparison of contact angle variation between the d-GO/SiO2 composite membrane and 4-h-soaked SSM in the dopamine solution

    综合上述结果发现,SSM的网状结构和钢丝的光滑表面不利于物质的附着。为了促进GO与纳米SiO2在SSM表面的附着,提升成膜负载量,研究采用热辅助法和GO/纳米SiO2层层接枝堆叠法制备出h-GO、h-GO/SiO2、h-GO/SiO2/GO、h-GO/SiO2/GO/SiO2 4种堆叠成分和层数不同的复合膜。图5(a)为4种膜的接触角变化。4种膜的接触角对比趋势呈现出明显的规律性,即随着GO层和SiO2层的依次叠加,接触角依次逐渐降低。其中,H-GO膜的接触角最高(初始接触角为65.2°),呈相对疏水性。这是因为GO表面或边缘虽然含有一定量的—OH和—COOH等亲水官能团[9-10],但碳材料本身的表面能较低,导致亲水性有限[8]。当h-GO膜表面继续自组装接枝一层M-SiO2纳米颗粒后,所得h-GO/SiO2膜的亲水性显著提升(初始接触角降至32.5°),这主要归因于纳米M-SiO2的超亲水特性[14]。随着接枝层数的增加,膜表面亲水性获得进一步提升,但仍未达到超亲水级别[19-20]

    图 5  不同接枝结构和层数的h-GO/SiO2的接触角变化和红外谱图
    Figure 5.  Variation of contact angle and FTIR spectra of different H-GO/SiO2 membranes

    图5(b)为4种复合膜的红外谱图,1 100 cm−1处的吸收峰为Si—O—Si键的非对称震动吸收峰[21],1 600 cm−1处的吸收峰为—COOH官能团中—C=O的伸缩震动(1 660~1 760 cm−1)吸收峰。此外,可能是由于GO表面—COOH与氨基化SiO2表面—NH2发生了共价键合,导致了—C=O的吸收峰向低波长方向发生了偏移。综合上述,h-GO/SiO2复合膜表面亲水性有所提升,但仍未达到超亲水级别,且经烘干后膜的机械强度较弱,不利于实际应用。

    上述多巴胺和热辅助制膜法均难以制得稳定的超亲水GO/SiO2复合膜,这两种改性策略面临一个共性问题,即复合膜难以稳定地附着在SSM上。针对这一问题,研究提出预先在SSM表面抽滤附着一次原生纳米SiO2颗粒(HS-30),随后经高温煅烧以加强对后续成膜的附着强度,制得c-GO/SiO2复合膜。

    图6(a)为预负载纳米SiO2颗粒并煅烧后所得SiO2膜和c-GO/SiO2的接触角动态变化的对比。结果显示,SiO2膜的初始接触角为27.3°,并在45 s内降至12.5°,表现出较高的亲水性。由图7(a)图7(b)可见,SiO2膜呈现出具有多层级微纳结构的复合形貌,即在SSM波浪形纹理(微米级结构)的表面覆盖着一层致密的SiO2纳米颗粒(微米级结构)。由图6(b)可知,SiO2膜中的Si—O—Si键的吸收峰(1 100 cm−1)也证实了表面覆盖的纳米颗粒为纳米SiO2。在SiO2膜基础上制备的c-GO/SiO2复合膜则表现出超亲水特性,其表面水滴初始接触角仅为6.1°,且2 s内实现完全铺展,这主要归因于膜表面的多层级微纳结构(图7(c))和超亲水M-SiO2纳米颗粒(图7(d))超亲水特性的协同作用。一方面,复合膜表面含有的大量超亲水M-SiO2纳米颗粒,显著改变了膜表面的化学构成,使表面能显著提升;另一方面,多层级微纳结构也有利于水滴的吸收和铺展,从而以Wenzel接触模式强化膜表面亲水性[15]

    图 6  SiO2膜和c-GO/SiO2复合膜的接触角变化和红外谱图
    Figure 6.  Variation of contact angle and FT-IR spectra of SiO2 membrane amd c-GO/SiO2 composite membrane
    图 7  SiO2膜和c-Si-GO/SiO2复合膜表面SEM图
    Figure 7.  SEM images of the SiO2 membrane and c-Si-GO/SiO2 composite membrane

    此外,c-GO/SiO2复合膜的红外谱图(图6(b))具有明显的碳材料谱图特征,表明GO的存在。由图7(d)可知,片状GO与颗粒状M-SiO2也在纳米级尺度内复合形成了一定的粗糙结构,这也为膜表面亲水性的提升起到了关键的作用。

    图8(a)图8(b)分别为SSM和c-GO/SiO2复合膜的表面AFM三维形貌图。SSM和c-GO/SiO2复合膜的表面均呈现出周期性的织网状结构。由于GO和M-SiO2颗粒在表面的附着,c-GO/SiO2复合膜的平均粗糙度Ra由1 540 nm降低至364 nm,可以有效避免空气的滞留,从而有利于膜表面亲水性和过滤性能的改善。此外,由于预负载的纳米SiO2颗粒具有较高的表面能,使得制得的c-GO/SiO2复合膜与SSM基底紧密附着,具有良好的整体性和机械强度。

    图 8  SSM和c-GO/SiO2复合膜的表面AFM三维形貌图
    Figure 8.  Surface AFM morphology of the SSM and c-GO/SiO2 composite membrane

    c-GO/SiO2复合膜作为一种新型无机复合膜,具有良好的应用前景。本研究以获得普遍应用的聚偏氟乙烯(PVDF)有机膜材料制备了2种有机膜(PVDF超滤膜和超亲水改性的SiO2/PVDF复合超滤膜[14]),并额外选用一种孔径为0.22 μm的有机商业膜进行对比研究,纯水通量对比结果如图9所示。相比之下,超亲水c-GO/SiO2复合膜的纯水通量最高,为6.88 ± 0.79 m·(s·kPa)−1,是0.22 μm有机商业膜的1.22倍,是普通PVDF超滤膜的3.21倍,是超亲水SiO2/PVDF复合膜的11.10倍。导致c-GO/SiO2复合膜较高纯水通量的原因可归纳于以下2点:一方面,复合膜表面具有较高的孔隙率;另一方面,复合膜的超亲水性使膜得以快速润湿,有利于膜过滤阻力的降低。

    图 9  不同膜的纯水通量对比
    Figure 9.  Comparison of water permeability among different membranes

    1)研究对比了4种GO/SiO2复合膜的制备方法,其中真空抽滤法、多巴胺辅助抽滤法和热辅助法均难以制备出超亲水GO/SiO2复合膜,且成膜机械强度较弱,不利于实际应用。

    2)高温煅烧辅助抽滤法可以有效地制备出具有超亲水特性的GO/SiO2复合膜,所得成膜的初始接触角仅为6.1°,且在2 s内实现完全铺展,这主要归因于表面纳米材料的高表面能和多层级微纳结构的协同效应。

    3)超亲水c-Si-GO/SiO2复合膜具有较高的纯水通量,分别为普通PVDF有机超滤膜、超亲水SiO2/PVDF复合膜和0.22 μm商业膜水通量的3.21、11.10和1.22倍。

  • 图 1  颗粒物大小对隐孢子虫回收率的影响

    Figure 1.  Effect of particle size on Cryptosporidium recovery

    图 2  浑浊度对滤膜浓缩法检测贾第鞭毛虫的影响

    Figure 2.  Effect of turbidity on the detection of Giardia by membrane filtration concentration

    图 3  浑浊度对滤膜浓缩法检测隐孢子虫的影响

    Figure 3.  Effect of turbidity on the detection of Cryptosporidium by membrane filtration concentration

    图 4  浑浊度对沉淀浓缩法检测贾第鞭毛虫回收率的影响

    Figure 4.  Influence of turbidity on the recovery of Giardia by precipitation concentration

    图 5  浑浊度对沉淀浓缩法检测隐孢子虫回收率的影响

    Figure 5.  Influence of turbidity on the recovery of Cryptosporidium by precipitation concentration

    表 1  不同颗粒物大小以及不同浑浊度下两虫的回收率

    Table 1.  Recoveries of Giardia and Cryptosporidium under different particle sizes and turbidity

    原虫类型浑浊度/NTU2.5 μm颗粒物5 μm颗粒物11 μm颗粒物
    回收率均值/%RSD/%回收率均值/%RSD/%回收率均值/%RSD/%
    贾第鞭毛虫559.334.2461.334.1033.334.58
    1032.676.3732.339.4563.333.97
    2029.678.4818.3313.7320.3310.24
    4016.673.4615.006.6722.004.55
    6013.0015.3817.0015.569.0022.22
    隐孢子虫515.3319.9227.674.174.6753.93
    1020.6710.0731.003.2330.676.79
    2019.005.2616.339.3515.679.75
    4014.007.1412.6712.065.0040.00
    6012.339.3611.679.902.6794.37
    原虫类型浑浊度/NTU2.5 μm颗粒物5 μm颗粒物11 μm颗粒物
    回收率均值/%RSD/%回收率均值/%RSD/%回收率均值/%RSD/%
    贾第鞭毛虫559.334.2461.334.1033.334.58
    1032.676.3732.339.4563.333.97
    2029.678.4818.3313.7320.3310.24
    4016.673.4615.006.6722.004.55
    6013.0015.3817.0015.569.0022.22
    隐孢子虫515.3319.9227.674.174.6753.93
    1020.6710.0731.003.2330.676.79
    2019.005.2616.339.3515.679.75
    4014.007.1412.6712.065.0040.00
    6012.339.3611.679.902.6794.37
    下载: 导出CSV

    表 2  颗粒物大小和浑浊度对贾第鞭毛虫回收率的主体间效应检验

    Table 2.  Intersubjective effects of particle size and turbidity on the recovery of Giardia

    方差来源Ⅲ型平方和自由度均方FP
    校正模型13 708.444a14979.175211.8410.000
    截距39 308.889139 308.8898 504.3270.000
    粒径16.17828.0891.7500.191
    浑浊度9 947.11142 486.778538.0050.000
    粒径 * 浑浊度3 745.1568468.144101.2810.000
    误差138.667304.622
    总计53 156.00045
    校正的总计13 847.11144
    注:a表示 R2 =0.990(调整 R2 =0.985)。
    方差来源Ⅲ型平方和自由度均方FP
    校正模型13 708.444a14979.175211.8410.000
    截距39 308.889139 308.8898 504.3270.000
    粒径16.17828.0891.7500.191
    浑浊度9 947.11142 486.778538.0050.000
    粒径 * 浑浊度3 745.1568468.144101.2810.000
    误差138.667304.622
    总计53 156.00045
    校正的总计13 847.11144
    注:a表示 R2 =0.990(调整 R2 =0.985)。
    下载: 导出CSV

    表 3  颗粒物大小和浑浊度对隐孢子虫回收率的主体间效应检验

    Table 3.  Intersubjective effects of particle size and turbidity on the recovery of Cryptosporidium

    方差来源Ⅲ型平方和自由度均方FP
    校正模型3 246.578a14231.89871.4760.000
    截距11 456.089111 456.0893 530.9860.000
    粒径498.3112249.15676.7950.000
    浑浊度1 909.6894477.422147.1510.000
    粒径 * 浑浊度838.5788104.82232.3080.000
    误差97.333303.244
    总计14 800.00045
    校正的总计3 343.91144
    注:a表示 R2=0.971(调整R2 =0.957)。
    方差来源Ⅲ型平方和自由度均方FP
    校正模型3 246.578a14231.89871.4760.000
    截距11 456.089111 456.0893 530.9860.000
    粒径498.3112249.15676.7950.000
    浑浊度1 909.6894477.422147.1510.000
    粒径 * 浑浊度838.5788104.82232.3080.000
    误差97.333303.244
    总计14 800.00045
    校正的总计3 343.91144
    注:a表示 R2=0.971(调整R2 =0.957)。
    下载: 导出CSV
  • [1] Water Health Organization. Guidelines for Drinking Water Quality[M]. Forth Edition. London: IWA Publishing, 2011.
    [2] 张冬青, 李红岩, 李栋, 等. 密度梯度分离纯化/免疫荧光技术检测饮用水中两虫[J]. 中国给水排水, 2009, 25(2): 78-80. doi: 10.3321/j.issn:1000-4602.2009.02.022
    [3] 陈智敏, 张昱, 杨敏, 等. 密度梯度分离/免疫荧光技术检测再生水中隐孢子虫和贾第鞭毛虫[J]. 环境工程学报, 2011, 5(5): 982-986.
    [4] 林涛, 王磊磊, 陈卫, 等. 饮用水处理中颗粒物数量变化及粒径分布规律[J]. 河海大学学报(自然科学版), 2008, 36(3): 326-329.
    [5] 黄源. T市供水管网浑浊度特性的研究及其风险评估的应用[D]. 哈尔滨: 哈尔滨工业大学, 2013.
    [6] 韩明毅. 贾第鞭毛虫、隐孢子虫共感染的风险评价及控制策略研究[D]. 北京: 中国科学院大学, 2019.
    [7] 高云亮, 闫雷. 北方某水源水中金属元素与浑浊度的相关性分析[J]. 中国给水排水, 2017, 33(9): 66-68.
    [8] 孙程. 渭河陕西段水环境污染和水环境容量的计算模拟[D]. 西安: 西安建筑科技大学, 2004.
    [9] 徐鸿凯, 高炜, 高乃云, 等. 浅议某自来水厂的黄浦江原水和出厂水质之十年变迁[J]. 城镇供水, 2011(1): 45-49.
    [10] 刘丽君, 吴芳, 张金松, 等. 南方12城市水源水质特征分析与评价[J]. 中国建设信息(水工业市场), 2007(2): 57-60.
    [11] 李青松, 高乃云, 陈国光, 等. 贾第虫与隐孢子虫与饮用水浑浊度的关系[J]. 哈尔滨工业大学学报, 2008, 40(6): 985-988. doi: 10.3321/j.issn:0367-6234.2008.06.034
    [12] FENG Y Y, ONG S L, HU J Y, et al. Effect of particles on the recovery of Cryptosporidium oocysts from source water samples of various turbidities[J]. Applied and Environmental Microbiology, 2003, 69(4): 1898-1903. doi: 10.1128/AEM.69.4.1898-1903.2003
    [13] DIGIORGIO C L, GONZALEZ D A, HUITT C C. Cryptosporidium and Giardia recoveries in natural waters by using environmental protection agency method 1623[J]. Applied and Environmental Microbiology, 2002, 68(12): 5952-5955. doi: 10.1128/AEM.68.12.5952-5955.2002
    [14] FRANCY D S, SIMMONS O D, WARE M W, et al. Effect of seeding procedures and water quality on recovery of Cryptosporidium oocysts from stream water by using U.S. Environmental protection agency method 1623[J]. Applied and Environmental Microbiology, 2004, 70(7): 4118-4128.
    [15] KUHN R C, OSHIMA K H. Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples[J]. Canadian Journal of Microbiology, 2002, 48(6): 542-549. doi: 10.1139/w02-049
    [16] BORCHARDT M A, SPENCER S K. Concentration of Cryptosporidium, microsporidia and other water-borne pathogens by continuous separation channel centrifugation[J]. Journal of Applied Microbiology, 2002, 92(4): 649-656. doi: 10.1046/j.1365-2672.2002.01570.x
    [17] MCCUIN R M, BUKHARI Z, SOBRINHO J, et al. Recovery of Cryptosporidium oocysts and Giardia cysts from source water concentrates using immunomagnetic separation[J]. Journal of Microbiological Methods, 2001, 45(2): 69-76. doi: 10.1016/S0167-7012(01)00250-0
    [18] 张金凤, 王琴, 马放, 等. 高岭土悬液絮凝形态研究[J]. 图书情报导刊, 2008, 18(24): 132-133. doi: 10.3969/j.issn.1005-6033.2008.24.074
    [19] 蒋雪. FSS及PFS混凝影响因素及机理研究[D]. 武汉: 华中科技大学, 2016.
    [20] 黄淦. 联用强化混凝与化学沉淀法去除水中重金属离子的研究[D]. 长沙: 湖南大学, 2008.
    [21] 焦淑芳, 李瑾, 马启敏. 羧甲基壳聚糖两性混凝剂对高岭土的混凝特性[J]. 环境科学与技术, 2013, 36(11): 22-25.
    [22] 李永红, 张伟, 张晓健, 等. 浸没式中空纤维超滤膜处理高浊度地表水的试验研究[C]//中国土木工程学会, 中国工业经济联合会, 上海市供水行业协会. 中国土木工程学会水工业分会全国给水深度处理研究会年会. 2010.
    [23] 张友宏, 陈萌萌, 王郑, 等. 聚合氯化铝对高浊度水源水的絮凝效果及机理研究[J]. 化工技术与开发, 2016, 45(12): 39-42. doi: 10.3969/j.issn.1671-9905.2016.12.010
    [24] 吴俊奇, 李庚, 马龙友. 运用双因素方差分析法分析水处理实验数据[J]. 实验技术与管理, 2015, 32(5): 42-44. doi: 10.3969/j.issn.1002-4956.2015.05.012
    [25] HSU B M, YEH H H. Removal of giardia and cryptosporidium in drinking water treatment: A pilot-scale study[J]. Water Research, 2003, 37(5): 1111-1117. doi: 10.1016/S0043-1354(02)00466-9
    [26] 张彤, 胡洪营, 宗祖胜. 污水再生处理系统中隐孢子虫和贾第鞭毛虫检测方法的优化[J]. 环境科学, 2006, 27(12): 2547-2552. doi: 10.3321/j.issn:0250-3301.2006.12.032
    [27] 刘美霞, 杨忠委, 王华然, 等. 混凝沉淀法富集分离水中隐孢子虫卵囊的实验研究[J]. 环境与健康杂志, 2013, 30(2): 102-104.
    [28] VESEY G, SLADE J S, BYRNE M, et al. A new method for the concentration of Cryptosporidium oocysts from water[J]. Journal of Applied Bacteriology, 1993, 75(1): 82-86. doi: 10.1111/j.1365-2672.1993.tb03412.x
    [29] 周美芝, 于建伟, 安伟, 等. 碳酸钙沉淀法检测混浊原水中两虫的研究[J]. 中国给水排水, 2013, 29(7): 37-40. doi: 10.3969/j.issn.1000-4602.2013.07.009
  • 加载中
图( 5) 表( 3)
计量
  • 文章访问数:  4978
  • HTML全文浏览数:  4978
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-18
  • 录用日期:  2020-12-21
  • 刊出日期:  2021-04-10
张艳芬, 李红岩, 刘明洋, 郑蓓. 颗粒物对滤膜浓缩/密度梯度分离荧光抗体法检测贾第鞭毛虫和隐孢子虫的影响[J]. 环境工程学报, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138
引用本文: 张艳芬, 李红岩, 刘明洋, 郑蓓. 颗粒物对滤膜浓缩/密度梯度分离荧光抗体法检测贾第鞭毛虫和隐孢子虫的影响[J]. 环境工程学报, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138
ZHANG Yanfen, LI Hongyan, LIU Mingyang, ZHENG Bei. Influence of particles on the detection of Giardia and Cryptosporidium by membrane concentration/density gradient separation and immunofluorescence method[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138
Citation: ZHANG Yanfen, LI Hongyan, LIU Mingyang, ZHENG Bei. Influence of particles on the detection of Giardia and Cryptosporidium by membrane concentration/density gradient separation and immunofluorescence method[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1458-1464. doi: 10.12030/j.cjee.202009138

颗粒物对滤膜浓缩/密度梯度分离荧光抗体法检测贾第鞭毛虫和隐孢子虫的影响

    通讯作者: 李红岩(1976—),女,博士,正高级工程师。研究方向:水质分析。E-mail:hyli@rcees.ac.cn
    作者简介: 张艳芬(1991—),女,博士,工程师。研究方向:水中微生物检测。E-mail:yanfenzhang@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,中国科学院饮用水科学与技术重点实验室,北京 100085
  • 2. 天津城建大学环境与市政工程学院,天津 300384
基金项目:
国家水体污染控制与治理科技重大专项(2018ZX07502-001-012)

摘要: 滤膜浓缩/密度梯度分离荧光抗体法因具有成本低廉和性能稳定的特点,目前已列入《城镇供水水质标准检验方法》(CJ/T 141-2018)用于水源水和城镇供水中贾第鞭毛虫和隐孢子虫(简称两虫)的检测。针对实际生产中,水中颗粒物会影响该方法回收率和稳定性的情况,在前期研究的基础上,结合颗粒物大小,进一步探索了浑浊度对滤膜浓缩/密度梯度分离荧光抗体法检测水中两虫的影响。结果表明,颗粒物大小仅对隐孢子虫回收率有影响,对贾第鞭毛虫无显著影响。其中,隐孢子虫在5 μm为主要颗粒物的水中获得最高回收率。浑浊度是影响两虫回收率的主要因素,20 NTU以下浑浊度水样适合采用滤膜浓缩法富集浓缩其中的两虫,尤其是3~5 NTU;20 NTU及其以上浑浊度的水样可采用沉淀浓缩法,在30~50 NTU时有最佳回收率。

English Abstract

  • 鉴于饮用水在隐孢子虫和贾第鞭毛虫(简称两虫)传播以及其在大规模爆发流行病中的明确作用,两虫不仅被公共卫生部门关注,更是日益受到各国水行业专家的广泛关注和高度重视,并被世界卫生组织(WHO)作为原生动物病原体明确纳入《饮用水水质准则》[1]。我国于2006年将两虫纳入了《生活饮用水卫生标准》(GB 5749-2006),并规定每10 L水中检出不得超过1个。目前,被广泛认可和使用的水中两虫检测方法是美国环境保护署(EPA)的方法1623,即免疫磁分离荧光抗体法,我国《生活饮用水标准检验方法》(GB/T 5750. 12-2006)亦采用此法。但由于该方法耗材和设备成本较高,难以在一般水质监测单位或实验室推广并广泛应用。本团队在借鉴日本2007年颁布的《水道水指示菌及隐孢子虫等检测方法》(健水发第0330006号)的基础上,使用醋酸纤维膜代替滤囊/滤芯过滤样品、膜溶解法代替淘洗浓缩样品、密度梯度离心代替免疫磁分离纯化样品,建立了基于膜溶解-密度梯度分离的两虫检测方法[2-3]。该方法在保障美国EPA 1623号方法和国标方法回收率的基础上,可降低耗材成本85%,同时还可降低设备投入成本75%。目前,该方法已列入住房与城乡建设部行业标准《城镇供水水质标准检验方法》(CJ/T 141-2018)。

    在行业应用和实际生产过程中,饮用水及其水源水中通常含有一定量的颗粒物质[4]。作为反映水中颗粒物的综合参数,浑浊度是水质检测中的常规指标[5]。我国水厂出水的浑浊度中值为0.26 NTU,95%置信区间为0.07~0.87 NTU[6]。水源水根据区域具有不同的浑浊度特征,北方地区如松花江为水源水的冬季浑浊度低于20 NTU,夏季浑浊度高达120 NTU[7];中西部地区以渭河为代表的水源水浑浊度高达150 NTU[8];而南方水源水具有低浊的特点,以长江、东江、闽江等12处水源地的调查研究结果显示[9-10],其78.6%的水源水浑浊度平均值在50 NTU以下。因此,我国水厂进水的浑浊度变化范围较宽,中值为11.00 NTU,95%置信区间则为0.81~208.80 NTU [6]。水体中颗粒物可通过吸附沉降或者团聚包裹等影响两虫检测方法的准确性和稳定性[11-12]。有研究发现,高浑浊度水样的两虫回收率均小于低浑浊度水样[13],且隐孢子虫卵囊的回收率与浑浊度呈负相关[14-15],这说明高浓度颗粒物不利于两虫的检测。但FENG等[12]研究发现颗粒物的添加可以提高隐孢子虫的回收率。同时,也有部分研究认为,浑浊度对两虫的回收率无显著影响[16-17]。因此,水中颗粒物对两虫检测回收率的具体影响有待进一步细致深入的研究。

    根据我国水质浑浊度状况,本研究结合颗粒物大小进行了双因素实验,分析了颗粒物大小和浑浊度对滤膜浓缩/密度梯度分离荧光抗体法检测两虫影响,并在此基础上分析了适用于滤膜浓缩/密度梯度分离荧光抗体法检测两虫的浑浊度条件,以期为实际水样的两虫检测提供参考。

  • 天然水体中造成浊度的胶体颗粒主要是黏土[18]。高岭土作为一种黏土矿物,具有良好的吸附能力,是模拟水样浑浊度最常用的物质,目前已广泛用于实验室内模拟生活饮用水以及水源水等水样的颗粒物研究[19-23]。本研究根据两虫大小(贾第鞭毛虫孢囊椭圆形,长为8~14 μm,宽为7~10 μm;隐孢子虫卵囊圆形,直径2~6 μm),选用粒径2.5、5、11 μm的高岭土(麦克林,上海)和纯水配置成10 L浑浊度分别为5、10、20、40、60 NTU的悬液。2100Q便携式浑浊度仪(哈希,美国)用于水中浑浊度的测定。100个贾第鞭毛虫孢囊和100个隐孢子虫卵囊(Waterborne,美国)加入上述不同浑浊度的水样,每个浑浊度水平的样品制备3个平行。两虫检测使用滤膜浓缩/密度梯度分离荧光抗体法进行检测,步骤参考CJ/T 141-2018 10.1。

  • 使用5 μm粒径的高岭土(麦克林,上海)和纯水配置10 L浑浊度分别为0.26、1、3、5、10、20、40、60 NTU的悬液。浑浊度使用2100Q便携式浑浊度仪(哈希,美国)测定。100个贾第鞭毛虫孢囊和100个隐孢子虫卵囊(Waterborne,美国)加入上述不同浑浊度的水样,每个浑浊度水平的样品制备6个平行。滤膜浓缩步骤以及密度梯度分离荧光抗体染色步骤参考CJ/T 141-2018 10.1。

  • 使用粒径5 μm的高岭土(麦克林,上海)和纯水配置10 L浑浊度分别为15、20、30、50、75、100 NTU的悬液。浑浊度使用2100Q便携式浑浊度仪(哈希,美国)测定。100个贾第鞭毛虫孢囊和100个隐孢子虫卵囊(Waterborne,美国)加入上述不同浑浊度的水样,每个浑浊度水平的样品制备6个平行。沉淀浓缩步骤以及密度梯度分离荧光抗体染色步骤参考CJ/T 141-2018 10.1。

  • 统计学分析使用PASW Statistics 18软件进行。对颗粒物粒径与浑浊度双因素实验的结果进行双因素方差分析,比较各因素对两虫回收率影响的大小及其显著性。图形绘制使用OriginPro 2017软件进行。

  • 不同颗粒物大小和浑浊度下水中两虫检测的结果如表1所示。贾第鞭毛虫的回收率为9.00%~63.33%,隐孢子虫的回收率在2.67%~31.00%。其中,在2.5 μm大小颗粒物构成的浑浊水样中,浑浊度5 NTU时贾第鞭毛虫有最佳回收率59.33%,浑浊度10 NTU时隐孢子虫有最佳回收率20.67%,相对标准偏差(RSD)分别为4.24%和10.07%。在5 μm大小颗粒物构成的浑浊水样中,浑浊度5 NTU时贾第鞭毛虫有最佳回收率61.33%,浑浊度10 NTU时隐孢子虫有最佳回收率31.00%,RSD分别为4.10%和3.23%。在11 μm大小颗粒物构成的浑浊水样中,浑浊度10 NTU时贾第鞭毛虫有最佳回收率63.33%,浑浊度10 NTU时隐孢子虫有最高回收率30.67%,RSD分别为3.97%和6.79%。综合以上结果可以看出,该方法在低浑浊度水样中两虫检测时可获得相对较高的回收率和稳定性,且在相同浑浊度下对不同颗粒物大小所对应两虫的回收率存在差异。

    通过双因素方差分析的结果(表2)可以看出,贾第鞭毛虫的回收率受浑浊度的影响(P=0.00)和颗粒物大小与浑浊度交互作用的影响(P=0.00)均为显著(P <0.05),而受颗粒物大小的影响不显著(P=0.19>0.05);根据主体间效应检验后F值的大小[24],可以看到,浑浊度对回收率的影响要大于颗粒物大小与浑浊度的交互作用。

    隐孢子虫的回收率经过双因素方差分析之后(表3),可以看到其受浑浊度、颗粒物大小及颗粒物大小与浑浊度的交互作用的影响均显著(P<0.05);根据三者的F值可以看出,浑浊度对隐孢子虫回收率的影响最大,颗粒物大小的影响次之,颗粒物大小与浑浊度的交互作用影响最小。

    综合以上结果可知,浑浊度是影响两虫回收率的主要因素,颗粒物大小仅对隐孢子虫的回收率有显著影响,在颗粒物大小对隐孢子虫回收率的影响中,粒径为5 μm的颗粒物对隐孢子虫回收率要显著高于2.5 μm和11 μm的颗粒物(图1)。在HSU等[25]的研究中发现,粒径为3~10 μm的微粒与隐孢子虫卵囊的检出显著相关,但与贾第鞭毛虫包囊的检出不相关,这种相关性则很可能来自于水样中颗粒物的大小对隐孢子虫检测回收率的影响。

  • 将浑浊度对滤膜浓缩/密度梯度分离荧光抗体法检测两虫的影响进行进一步研究,结果表明,不同浑浊度下两虫检测的回收率随着浑浊度的升高呈现先增加后降低的趋势(图2图3)。贾第鞭毛虫的回收率在5 NTU时有最高值46%,并在0.26~20 NTU内保持在20%以上,在高浑浊度40 NTU和60 NTU下的回收率分别降至17%和12%。隐孢子虫的回收率在3 NTU时有最高值(50%),在0.26~10 NTU内保持在20%以上,在20 NTU时的回收率降为16%,在高浑浊度40 NTU和60 NTU下的回收率分别降至10%和7%。以上结果说明,滤膜浓缩/密度梯度分离荧光抗体法较适合浑浊度小于20 NTU的低浑浊度水样两虫检测,尤其在浑浊度3~5 NTU时具有较高的两虫回收率。这一结果与文献中通过提高水样浑浊度至4 NTU来有效提高低浑浊度水样的浓缩回收率[26]的结果相一致,这说明一定浓度颗粒物的存在有利于两虫附着,使两虫在离心浓缩时更容易被富集[26],而颗粒物浓度过高则容易堵塞滤膜,从而使回收率降低。而我国饮用水的浑浊度一般较低,因此,推荐采用此方法进行两虫检测,并且可通过在检测时添加5 μm的颗粒物将浑浊度调整至3~5 NTU以提高回收率。

  • 为进一步探索高浑浊度水中两虫检测的适用方法,本研究采用沉淀浓缩/密度梯度分离荧光抗体法进行检测,并考察了不同浑浊度对两虫检测回收率的影响,实验结果如图4图5所示。在15~100 NTU内贾第鞭毛虫和隐孢子虫的回收率均随着浑浊度的升高而呈现先增加后降低的趋势。贾第鞭毛虫在浑浊度50 NTU时有最高的回收率28%,并在20~75 NTU内保持回收率20%以上,100 NTU时的回收率为10%。隐孢子虫在30 NTU时有最高的回收率42%,并在15~75 NTU内保持回收率20%以上,100 NTU时的回收率为18%。

    综上分析可知,高浑浊度水样适合采用沉淀浓缩/密度梯度分离荧光抗体法进行检测,尤其在30~50 NTU内可获得较好的检测回收率,并且可在20 NTU时获得与滤膜浓缩/密度梯度分离荧光抗体法相近的贾第鞭毛虫回收率,以及显著(P<0.05)高于滤膜浓缩/密度梯度分离荧光抗体法的隐孢子虫回收率。沉淀浓缩法对高浊度水样的检测优势与沉淀浓缩过程中的混凝作用相关,高浊度水样中的离子间碰撞概率增大,有利于两虫在碳酸钙沉淀的生成过程中被裹挟着沉积下来[27-28]。周美芝等[29]采用此方法对40 NTU水样进行检测,获得的两虫回收率也均高于20%。在实际水样检测中,水源水的浑浊度范围较宽,建议在检测两虫之前先测定水样浑浊度,根据水样浑浊度选择相应的检测方法,20 NTU以下水样采用滤膜浓缩/密度梯度分离荧光抗体法,20 NTU及其以上浑浊度水样建议采用沉淀浓缩/密度梯度分离荧光抗体法。

  • 1)与两虫大小相近的颗粒物大小对贾第鞭毛虫的检测回收率无显著影响,对隐孢子虫回收率的影响较为显著,其中5 μm大小颗粒物有利于提高隐孢子虫检测回收率。

    2)浑浊度是影响两虫回收率的主要因素。滤膜浓缩/密度梯度分离荧光抗体法适用于浑浊度小于20 NTU的低浑浊度水样的检测,尤其对于3~5 NTU 时有最佳回收率;20 NTU及其以上浑浊度的水样适合采用沉淀浓缩/密度梯度分离荧光抗体法,并在30~50 NTU时可获得最佳回收率。

    3)根据我国水质浑浊度状况,建议采用滤膜浓缩密度梯度分离荧光抗体法检测生活饮用水,并可在浓缩水样前通过约5 μm颗粒物调节浑浊度至3~5 NTU来提高方法回收率;检测水源水中两虫含量时,可根据实际浑浊度值选择相应的方法进行检测。

参考文献 (29)

返回顶部

目录

/

返回文章
返回