-
氯代烃类化合物是一种重要的化工原料,常被应用于塑料制品、染料、润滑油、橡胶制品、农药、电子电器等产品的生产过程中。但该类化合物具有致癌、致畸、致突变的“三致”效应,可经生物体的呼吸道、消化道和皮肤为机体所吸收,造成机体的急、慢性中毒。近年来,我国大部分大中城市对重污染工业企业进行了关闭和搬迁,因此,产生了包括氯代烃污染在内的大量工业企业遗留场地,具有生态和环境风险,不适合作为正常建设开发用地亟需修复治理[1-2]。原位电阻热脱附(ISERH)是有机污染场地修复工程中常用的修复技术之一,是将电极插入土壤,以土壤为导体,通电将电能转换成热能,使土壤升温,将土壤中水分和污染物逐渐转化成气体并抽出系统外的一个过程[3]。ISERH可以处理挥发性有机化合物(volatile organic compounds, VOCs)、氯化挥发性有机化合物(chlorinated volatile organic compounds, CVOCs)、轻非水相液体(light non-aqueous phase liquid, LNAPL)、重非水相液体(dense non-aqueous phase liquid, DNAPL)和有机农药等污染[4-5]。
利用ISERH修复土壤时,主要通过2种机制将污染物从土壤和水中分离:一是产生的蒸汽驱使锁定在低渗透性的泥沙和粘土中的污染物离开土壤;二是蒸汽作为载气将污染物运输至抽提区域抽提。ISERH显著增加了污染物物理去除的速度和效率[6]。HEGELE等[7]的研究表明,水-三氯乙烯共沸产生的气体在低温区冷凝,当加热温度达到水的沸点时,能够促使气体从污染物存在的位置传输到抽提区,从而降低污染物气体在传输过程中被低温区捕获而在土壤中重新分配的可能。HAN等[8]研究了ERH修复PAH污染土壤的影响因素,结果表明,影响PAH去除效果的主要因素为水分和盐度。在我国,热脱附技术的研究主要以异位热脱附为主,针对原位热脱附技术的研究较少。已报道的异位热脱附技术研究结果表明,土壤粒径、温度和保温时间等对污染物的转化和脱附有较大影响,污染物含量对污染物去除没有明显影响,污染物的脱附效果与其沸点具有较大关联性[9-10]。蒋村等[11]研究了热传导原位热脱附技术对氯苯污染土壤修复影响因素,结果表明,当土壤设定温度为100 ℃时,90%土壤样品氯苯去除率达99%以上。土壤粒径、土壤含水率对土壤氯苯热脱附去除效果也有较大影响。
目前,针对ISERH技术的基础性研究的报道较少,对修复过程中基础参数、修复机理等了解不足,亦缺少对ISERH设备的研究。因此,本研究拟通过自主研发的ISERH设备,开展ISERH修复氯代烃污染土壤研究,分析热脱附过程中土壤温度变化及设定温度、加热时间、污染物种类、吸附时间等因素对污染物热脱附去除效果的影响及其作用机制,以期为ISERH技术基础研究和氯代烃污染场地修复工程设计提供参考。
原位电阻热脱附修复氯代烃污染土壤
Remediation of chlorohydrocarbon contaminated soil by in-situ electrical resistance heating
-
摘要: 针对原位电阻热脱附(ISERH)技术基础性研究不足、缺乏小试设备研发等问题,利用自主研发ISERH设备,以1,2-二氯乙烷和氯苯为目标污染物,探究了ISERH过程中土壤温度变化及设定温度、加热时间、污染物种类、老化时间对污染物热脱附效果的影响。结果表明,在热脱附过程中氯代烃污染土壤的主要阴离子
${{\rm{SO}}_4^{2 - }}$ 和Cl−含量分别提高了121.92和49.82 mg·kg−1,土壤电阻降低,土壤升温速度呈先快后慢的趋势。设定温度72 ℃(1,2-二氯乙烷和水共沸点)、加热时间12 h时,污染物去除效果不佳;提高设定温度至95 ℃,延长加热时间至36 h时,1,2-二氯乙烷去除率可达78.29%~100%。在修复效果的比较上,浅层土壤优于深层土壤;在能量利用率的比较上,间歇加热抽提优于连续加热抽提。污染物性质及土壤对污染物的吸附作用是影响污染物热脱附效果的主要因素,单一污染土壤的1,2-二氯乙烷去除率高于氯苯;在先加入1,2-二氯乙烷后再加入氯苯的复合污染土壤中,氯苯去除率高于1,2-二氯乙烷;老化时间越长,污染物热脱附去除效果越差。本研究结果可为ISERH技术修复氯代烃化工污染场地的工程设计提供参考。Abstract: The present research was to study the remediation of chlorohydrocarbon for contaminated soil by in-situ electrical resistance heating (ISERH) with independent designed ISERH equipment due to the lack of basic research and development of laboratory scale test equipment of ISERH. 1,2-dichloroethane and chlorobenzene were selected to be targeted contaminants to study the effects of temperature, heating time, pollutant species and aging time on the removal efficiency of contaminants during the ISERH process. The results showed that the content of${\rm{SO}}_4^{2 - }$ and Cl− in chlorohydrocarbon contaminated soil increase 121.92 mg·kg−1 and 49.82 mg·kg−1 respectively during ISERH process, resulting in a reduction of soil electric resistance, and a fast followed by slow tendency of soil temperature. Contaminants could not be removed effectively when temperature was at azeotropic point 72 ℃ and heat for 12 h. Whereas the 1,2-dichloroethane removal efficiency increased to 78.29%~100% when the temperature increased to 95 ℃ and heating time lengthened to 36 h. In the aspect of remediation effect, shallow soil layer was superior to deep soil layer. And on the energy-efficient side, the manner of intermittent heating and extraction possess an advantage over the continuous mode. Contaminant nature and absorption between contaminant and soil are the main factors affecting removal efficiency. The removal efficiency of 1,2-dichloroethane is higher than chlorobenzene, while which is invers in the combined pollution soil of pre-filled 1,2-dichloroethane and post-added chlorobenzene. The longer the aging time, the worse the thermal desorption efficiency. The experimental results can provide references for the engineering design of ISERH technology to industrial site remediation of chlorohydrocarbon. -
表 1 目标污染物理化性质
Table 1. Physico-chemical properties of target contaminants
污染物 密度/(kg·m−3) 沸点(101.3 kPa)/℃ 辛醇-水分配系数 与水的共沸点/℃ 溶解度/(g·L−1) 电导率(25 ℃)/(S·m−1) 1,2-二氯乙烷 1.256 83.483 1.48 72 0.87(水,20 ℃) 3×10−8 氯苯 1.106 131.687 2.84 90 0.048 8(水,30 ℃) 7×10−11 表 2 不同污染体系中氯苯和1,2-二氯乙烷去除率
Table 2. Removal efficiency of chlorobenzene and 1,2-dichloroethane in different pollutted systems
样品
编号复合污染体系 单一污染体系 1,2-二氯乙烷
含量/(mg·kg−1)氯苯
去除率/%1,2-二氯乙烷
去除率/%a1 0 96.69 100.00 a2 0 94.82 100.00 a4 37.94 75.77 60.06 b1 0 90.35 100.00 b2 0 89.87 100.00 b3 0 78.95 90.12 b4 13.54 83.23 66.66 c1 0 92.23 100.00 c2 0 93.40 97.72 c3 28.10 77.23 33.63 -
[1] 张学良, 李群, 周艳, 等. 某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J]. 环境科学学报, 2018, 38(7): 2868-2875. [2] 李玉双, 胡晓钧, 宋雪英, 等. 城市工业污染场地土壤修复技术研究进展[J]. 安徽农业科学, 2012, 40(10): 6119-6122. doi: 10.3969/j.issn.0517-6611.2012.10.141 [3] OBERLE D, CROWNOVER E, KLUGER M. In situ remediation of 1,4-dioxane using electrical resistance heating[J]. Remediation Journal, 2015, 25(2): 35-42. doi: 10.1002/rem.21422 [4] 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报, 2018, 49(4): 993-1000. [5] KUEPER B H, STROO H F, VOGEL C M, et al. Chlorinated Solvent Source Zone Remediation[M]. Springer New York, 2014: 528-530. [6] JOHNSON P, DAHLEN P. KINGSTON J T, et al. Critical evaluation of etate-of-the-art in situ thermal treatment technologies for dnapl source zone treatment. State-of-the-practice overview[EB/OL].[2020-08-01]. https://www.researchgate.net/publication/235135930. [7] HEGELE P R, MUMFORD K G. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene[J]. Journal of Contaminant Hydrology, 2014, 165: 24-36. doi: 10.1016/j.jconhyd.2014.07.002 [8] HAN Z Y, JIAO W T, YAO T, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: Removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 239: 1-8. [9] 王瑛, 李扬, 黄启飞, 等. 污染物浓度与土壤粒径对热脱附修复DDTs污染土壤的影响[J]. 环境科学研究, 2011, 24(9): 1016-1022. [10] 勾立争, 刘长波, 刘诗诚, 等. 热脱附法修复多环芳烃和汞复合污染土壤实验研究[J]. 环境工程, 2018, 36(2): 184-187. [11] 蒋村, 孟宪荣, 施维林, 等. 氯苯污染土壤低温原位热脱附修复[J]. 环境工程学报, 2019, 13(7): 1720-1726. doi: 10.12030/j.cjee.201810082 [12] 徐文杰, 赵泉林, 张振中, 等. 2, 6-二硝基甲苯在土壤中的吸附行为[J]. 环境工程学报, 2017, 11(4): 2542-2547. doi: 10.12030/j.cjee.201601048 [13] 宋守鑫. 哈尔滨周边地区土壤中27种挥发性有机物的测定[D]. 长春: 吉林大学, 2013 [14] 吕亮, 刘帅. 离子色谱法测定土壤中氯离子的含量[J]. 农学学报, 2011, 1(9): 39-42. [15] 曹建涛, 张海洋. 离子色谱法测定土壤中氯离子与传统方法的比较[J]. 科技资讯, 2010(11): 161. doi: 10.3969/j.issn.1672-3791.2010.11.133 [16] 刘冰冰, 刘佳, 张辰凌, 等. 离子色谱法同时测定地下水中8种无机阴离子[J]. 化学分析计量, 2020, 29(6): 28-32. [17] 张辉, 陈太聪. NAPLs污染土壤电阻率影响因素研究[J]. 工业安全与环保, 2017, 43(2): 5-10. doi: 10.3969/j.issn.1001-425X.2017.02.002 [18] BEYKE G, FLEMIGN D. In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating[J]. Remediation Journal, 2005, 15(3): 5-22. doi: 10.1002/rem.20047 [19] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036. doi: 10.12030/j.cjee.201905138 [20] 王磊, 孙成, 龙涛. 反应时间对对硝基氯苯在土壤上的吸附与解吸行为的影响[J]. 土壤, 2015, 47(5): 973-978. [21] 张坤峰, 何江涛, 刘明亮, 等. 土壤中有机碳含量对三氯乙烯的吸附影响实验[J]. 岩石矿物学杂志, 2009, 28(6): 649-652. doi: 10.3969/j.issn.1000-6524.2009.06.024 [22] HEO J H, LEE D H, KOH D C, et al. The effect of ionic strength and hardness of trichloroethylene-contaminated synthetic groundwater on remediation using granular activated carbon[J]. Geosciences Journal, 2007, 11(3): 229-239. doi: 10.1007/BF02913936