芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响

王杰, 陈钰, 赵玉婷, 何李文泽, 刘颖. 芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响[J]. 环境工程学报, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033
引用本文: 王杰, 陈钰, 赵玉婷, 何李文泽, 刘颖. 芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响[J]. 环境工程学报, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033
WANG Jie, CHEN Yu, ZHAO Yuting, HE Liwenze, LIU Ying. Effect of Fenton’s reagent and CaO system combined with DDBAC on sludge dewaterability[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033
Citation: WANG Jie, CHEN Yu, ZHAO Yuting, HE Liwenze, LIU Ying. Effect of Fenton’s reagent and CaO system combined with DDBAC on sludge dewaterability[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033

芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响

    作者简介: 王杰(1996—),男,硕士研究生。研究方向:污泥处理与利用技术。E-mail:1045463710@qq.com
    通讯作者: 陈钰(1979—),女,博士,高级工程师。研究方向:水处理技术。E-mail:chenyu1123@swjtu.edu.cn
  • 基金项目:
    中央高校基本科研业务费专项资金资助(2682016CX080)
  • 中图分类号: X703

Effect of Fenton’s reagent and CaO system combined with DDBAC on sludge dewaterability

    Corresponding author: CHEN Yu, chenyu1123@swjtu.edu.cn
  • 摘要: 在pH为3和5的条件下,研究了芬顿氧化钙体系联合十二烷基二甲基苄基氯化铵(DDBAC)对污泥破解效果及脱水性能的影响,以期减少CaO的用量并同时提高芬顿反应的适用pH。以脱水泥饼含水率(WC)、毛细吸水时间(CST)、过滤时间(TTF)、污泥沉降比(SV)和胞外聚合物(EPS)中蛋白质(PN)与多糖(PS)的含量作为评价指标,对DDBAC投加量做单因素分析,找出其最佳投加量;并比较在不同pH条件下,DDBAC对污泥脱水性能的影响。结果表明,在pH为3条件下,H2O2、Fe2+、CaO、DDBAC投加量分别为60、30、60、60 mg·g−1(DS)时,污泥脱水效果最佳,其WC为68.57%、CST为24 s、TTF为44 s、SV为72%。最佳脱水条件污泥EPS中的PN、PS总量大幅降低,其中T-EPS含量变化相较于S/L-EPS与污泥脱水性能的变化有更强的联系。在pH为5的条件下,该联合体系也有较好的脱水效果,对芬顿体系在弱酸性环境下使用有一定的参考价值。该联合体系能有效降低CaO的用量,同时能避免处理后的污泥pH过高、易板结的问题,且不会造成二次污染。
  • 随着时代不断发展,城市内涝频繁发生,排水管网淤堵问题备受人们关注。排水管道沉积物是污水中的可沉降颗粒物,在排水管网运行过程中,这些颗粒物在适当条件下发生沉降并逐渐积累,形成底层沉淀物沉积在排水管道中[1]。沉积堵塞排水管网的物质主要包括有机物、无机物以及固体垃圾[2]。管网沉积物中所含的有机质一般是复杂的高分子物质,如脂类、糖类、蛋白质、动植物腐殖质以及微生物等[3]。也有研究将管网沉积物分为3类:底层粗颗粒沉积物、有机层和生物膜[4]。其中,生物膜通常形成于水面附近的管壁,或受扰动作用较小的沉积物表面上,由覆盖在有机质上的微生物构成[5]。胞外聚合物(extracellular polymeric substances, EPS)作为微生物的重要组成部分,其主要成分为多糖、蛋白质、核酸、脂肪、胞外 DNA 等[6],具有粘性和吸附性,对排水管道的淤积及冲刷具有重要影响。传统的管网机械清淤方法均存在人工消耗量大,施工过程中影响道路交通等问题。因此,探究生物或化学方法来减缓管网中沉积物的沉积速率,降低管网清淤与维护频率是解决排水管网淤堵问题新的研究方向。

    相关研究表明,利用纤维素酶或蛋白酶可破坏污泥EPS,促使污泥颗粒变得细小分散,污泥颗粒比表面积增大,酶与细胞接触面积增加,并且EPS 的分解还降低了其对污泥细胞的保护作用,进而提高了酶对污泥的水解效率[7]。YANG等[8]研究发现经酶解后,污泥细胞破解,胞内物质流出,大大提高了污泥后续厌氧消化的效率并缩短了污泥消化时间。此外,LU等[9]报道了酸性处理过程中污泥内部酶(蛋白酶和α-葡萄糖苷酶)的释放也可以增强厌氧发酵污泥的破解。

    同时,在污泥处理方面,表面活性剂也有其不可或缺的作用。表面活性剂的增溶作用和分散作用[10]使胞外聚合物脱离污泥溶于液相[11];而表面活性剂结构中自带的疏水烷基可与细胞壁相互作用,导致细胞溶解,破坏细胞结构和EPS[12]。王怡等[13]研究表明,添加SDS(十二烷基硫酸钠)可以促进剩余污泥水解,EPS中溶解性蛋白质和多聚糖含量大幅增加,污泥的粒径变小、比阻变大。WANG等[14]研究发现阴离子表面活性剂SDS可以增加体系中的负电荷,EPS与SDS之间的静电排斥和疏水相互作用使污泥中的EPS大量释放。LUO等[15]研究了SDS与酶制剂联合作用对剩余污泥水解酸化的影响,结果表明,组合体系比单一SDS和单一酶体系更能有效促进污泥水解,SDS和复配酶体系优于SDS和单一酶体系的水解性能。由于表面活性剂联合生物酶技术不仅反应条件温和,对管道无腐蚀和破坏性,并且两者联合对管网中有机沉积物具有较好的水解作用,有利于降低沉积物间的黏性,促进有机质从固相向液相转移,强化其冲刷性能,从而为解决排水管网淤堵问题提供新的解决方法,但目前尚未有关于该方面的报道。

    基于对排水管网中沉积物的性质分析,根据课题组前期研究结果,本研究在确定复配酶(α-淀粉酶∶中性蛋白酶=2∶3)投加量的质量百分比为8%的条件下,探究不同SDS投加量、反应温度、初始pH(7.28±0.3)和反应时间对SDS+复配酶体系对沉积物水解效果的影响,根据反应前后沉积物EPS、三维荧光、粒径和SEM(scanning electron microscope)表征结果对其水解沉积物的机理进行了深入分析;采用高通量测序技术对经复配酶(α-淀粉酶∶中性蛋白酶=2∶3)、SDS+复配酶(α-淀粉酶∶中性蛋白酶=2∶3)水解后的排水管网沉积物中微生物群落结构与功能菌群的影响进行了分析,探讨了不同方法对微生物群落结构的影响。

    实验所用管网沉积物取自天津市某排水管道检查井,取回的污泥样品封装于样品袋中,存放在4 ℃冰箱内里冷藏待用。该沉积物样品的相关特性指标为:有机质含量为 (56.39±0.81)%,pH=7.28±0.3;沉积物上清液中SCOD(soluble chemical oxygen demand)值为 (206.9±16.9) mg·L−1、氨氮为 (85.03±2.53) mg·L−1、多糖为 (18.14±2.16) mg·L−1、蛋白质为 (0.08±0.01) mg·mL−1

    所用试剂主要包括中性蛋白酶、α-淀粉酶、SDS、氯化钠、COD专用耗材、氢氧化钠、苯酚、氯化氢、无水乙醇、纳氏试剂等。其中,实验所用酶制剂基本性质及来源见表1,其他化学试剂均为分析纯,实验用水为去离子水。

    表 1  生物酶基本性质
    Table 1.  Basic properties of biological enzymes
    生物酶种类 酶活性/(U·g−1) 适宜温度/ ℃ 适宜pH 来源
    中性蛋白酶 2×105 50~55 6.0~7.0 合肥博美生物科技有限公司
    α-淀粉酶 4 000 60~70 6.0~7.0 上海源叶生物科技有限公司
     | Show Table
    DownLoad: CSV

    实验主要仪器包括 YH-3BS远红外线恒温干燥箱(天津中环);SX-GO7103马弗炉(天津中环);MY3 000-6B混凝实验搅拌仪器(武汉梅宇仪器);721型可见分光光度计(上海佑科);VELOCITY 18R台式多功能离心机(Dynamica公司);FY-1C-N真空泵(浙江飞越);G9 800A三维荧光激发-发射光谱仪(美国安捷伦);PHS-3E型pH计(雷磁);HH-4电热恒温水浴锅(绍兴苏珀)。

    取100 mL排水管网沉积物置于250 mL烧杯内,通过0.1 mol·L−1的盐酸或氢氧化钠溶液调节pH至 5~10;将烧杯放入水浴锅预热,使沉积物到目标温度(4~65 ℃)后;加入8%(质量百分比,酶质量与沉积物干质量比)污泥的复配酶(α-淀粉酶:中性蛋白酶=2:3),并加入0、1%、2%、5%、8%和10%(质量百分比)的SDS;在200 r·min−1下搅拌,连续反应 0~6 h。反应结束后,取部分污泥进行有机质含量的检测,将剩余部分污泥置于离心管中,在4 000 r·min−1下离心15 min,离心后取上清液经0.45 μm滤膜过滤;检测滤液中SCOD、氨氮、多糖,每个实验重复3次,取平均值分析4个因素对SDS促进复配酶水解排水管网沉积物的影响,确定其最佳反应条件,并分析最佳反应条件下的上清液EPS、三维荧光光谱、沉积物表面结构形态和粒径的变化。

    氨氮采用纳氏分光光度法进行测定;溶解性化学需氧量(SCOD)采用快速消解分光光度法测定;多糖采用苯酚-硫酸法测定;蛋白质含量选用改良Lowry法测定;沉积物中有机质含量测定采用《中华人民共和国城镇建设行业标准》(CJ/T96-1999)中有机质灼烧法。EPS采用热提取法,EPS中各类物质变化采用三维荧光扫描光谱仪(安捷伦1260)检测;沉积物表面形态采用扫描电子显微镜 (7610F,日本电子株式会社) 分析。采用16s rRNA高通量测序方法表征微生物群落结构变化。

    实验在原泥pH(7.28±0.3),8%(质量百分比)复配酶(α-淀粉酶:中性蛋白酶=2:3)、25 ℃反应2 h的条件下,SDS投加量对排水管网沉积物水解效果的影响结果见图1。由图1(a)可以看出,当SDS投加量在0%~5%时,SCOD与多糖浓度随SDS投加量增多而增长,在SDS投加量为5%时,SCOD和多糖达到峰值,分别由初始的5 686.9 mg·L−1和1 913.75 mg·L−1升至8 192.9 mg·L−1和3 561.29 mg·L−1;当投加量继续增加到10%,SCOD与多糖含量反而下降,在10%时,SCOD和多糖分别下降到7 545.9 mg·L−1和2 484.92 mg·L−1。由图1(b)可以观察到,氨氮与SCOD、多糖变化趋势相同,在SDS投加量为5%时,由原始的87.32 mg·L−1达到峰值的153.37 mg·L−1。有机质含量的变化与氨氮、SCOD、多糖变化趋势相反,在SDS投加量为5%时,有机质含量最低,为55.59%;当SDS投加量继续增大,有机质减量效果稍有提高,但与SDS投加量为5%时相差无几。有研究[16]表明,SDS作为酶调节分子,在较低剂量下可增强酶活性,在较高剂量下反而会抑制酶活性。这是由于SDS为阴离子表面活性剂,可以与带负电的沉积物发生静电排斥[14],在SDS含量为0%~5%,随投加量增加,沉积物更加分散,更利于复配酶与沉积物中有机质的接触,从而促进水解作用的发生;但当SDS投加过量时,SDS的烷基可与细胞壁结合,导致细胞破裂,从而部分影响微生物的活性,进而影响污泥水解效果[17]。因此,过低或过高的SDS均不利于生物酶对沉积物的水解。

    图 1  SDS投加量对沉积物水解效果的影响
    Figure 1.  Effect of SDS dosing on the hydrolysis effect of sediment

    投加8%复配酶与5%SDS后,沉积物水解效果随反应时间的变化情况如图2所示。由图2可以看出,SCOD、多糖和氨氮随反应时间呈现先升高后下降的趋势。在反应2 h时,SCOD、多糖和氨氮含量分别由初始的211.3、18.38和87.32 mg·L−1升至9 726.5、3 868.84和185.12 mg·L−1。SDS的投加破坏了沉积物中微生物分泌出的EPS内部的非共价键,从而破坏沉积物结构,导致内部物质向外释放,促进了酶与沉积物之间的接触反应,从而使得SCOD、多糖和氨氮含量升高。随着反应时间继续延长,上清液中的SCOD、多糖与氨氮均开始了不同程度的下降,在6 h时,SCOD、多糖与氨氮质量浓度分别为3 581.5、3 056.05、156.09 mg·L−1。这可能是因为复配酶与SDS的协同作用随时间延长,沉积物的水解效果减弱,同时管网微生物对溶出物质进一步分解和利用[18],SCOD、多糖、氨氮的生成速率小于消耗速率,使得上清液中各物质浓度降低。有机质含量随反应时间呈现出一直下降的趋势,这说明水解反应在0~6 h内一直在进行,且在4 h后有机质分解速率变慢。综上所述,选择SDS协同复配酶水解排水管网沉积物的最佳反应时间为2 h。

    图 2  反应时间对SDS+复配酶水解沉积物效果的影响
    Figure 2.  Effect of reaction time on the hydrolysis effect of sediment by SDS+compound enzyme

    实验在原泥pH(7.28±0.3),反应2 h,5%SDS与8%复配酶协同作用下,考察了温度对沉积物水解效果的影响,结果如图3所示。从图3可以看出,在4~65 ℃内,SCOD和氨氮随温度的升高而升高,多糖先升高后趋于平缓,有机质含量随温度的升高逐渐下降,随后变得平缓。当温度由4 ℃升至65 ℃时,SCOD由5 341.0 mg·L−1逐步升至8 983.0 mg·L−1;多糖由1 100.96 mg·L−1升至3 649.16 mg·L−1;氨氮由96.44 mg·L−1升至176.84 mg·L−1。有机质含量在4~35 ℃内下降较快,由开始的56.58%下降到54.69%,降低了1.89%;在35 ℃后随温度的升高,有机质含量保持在54.65%左右。这可能是由于温度升高,中性蛋白酶和α-淀粉酶的活性基团逐渐被激活,酶制剂活性增强,并且在SDS的增溶作用下,酶制剂和沉积物的接触更加充分,水解效果更好。在上述SDS与复配酶的协同作用下,液相中的蛋白质被分解为多肽以及小分子氨基酸,碳水化合物被水解成多糖与单糖[19],水解效果增强,溶解性有机物浓度提高。

    图 3  温度对SDS+复配酶水解沉积物效果的影响
    Figure 3.  Effect of temperature on the hydrolysis effect of sediment by SDS and compound enzyme

    根据实验结果,在反应温度高于15 ℃时,SDS协同复配酶的水解效果较好,而市政污水管网常年在8~35 ℃,因此,综合考虑项目经济性和实用性,在实际应用过程中,生物酶水解排水管网沉积物可选择管网温度在15 ℃以上时进行。

    本实验考察了5%SDS与8%复配酶在25 ℃,反应2 h条件下,不同pH对沉积物水解效果的影响结果见图4。由图4(a)可以看出,SCOD与多糖在pH=5~6保持一个平稳的数值,当pH升高为8时,二者均有不同程度的提高,SCOD与多糖分别由pH=6的4 830.4 mg·L−1 和2 369.82 mg·L−1提高到pH=8的5 895.4 mg·L−1和2 660.64mg·L−1;当pH进一步升高为8~10时,SCOD与多糖含量几乎不变。由图4(b)可以看出,氨氮含量随pH增加而下降,氨氮由pH=5的152.87 mg·L−1降到pH=10的82.83 mg·L−1。这是由于碱性条件下氨氮容易从液相转移到气相中,从而使得氨氮含量出现大幅度下降[20]。在pH=5~9,有机质含量随着pH的增加逐渐下降,从57.08%下降到55.09%,当pH增加到10时,有机质含量出现回升。结合图4(a),在pH=10时SCOD、多糖含量变化不大,说明pH继续增大不能继续提升沉积物水解效果。在pH=7~9内,SDS+复配酶对排水管网沉积物的水解效果较好,而实际管网中沉积物pH大概在7~8,因此,在实际应用过程中不需要进行pH调节。

    图 4  pH对SDS+复配酶对沉积物水解效果的影响
    Figure 4.  Effect of pH on the hydrolysis effect of sediment by SDS+compound enzyme

    沉积物中存在微生物,微生物日常生长代谢会产生有粘性的EPS等物质,增加了沉积物的抗冲刷能力;同时,EPS还能吸附污水中的有机颗粒,增加排水管网沉积物厚度和管网淤堵的风险。复配酶可水解沉积物中蛋白类与糖类物质,SDS的两亲性可以改变界面处的能量关系,增加EPS的溶解[21]。研究了复配酶协同SDS水解管网沉积物对EPS及其蛋白质与多糖浓度变化的影响,结果见图5。从图5(a)可以看出,在复配酶投加量为8%,水解2 h条件下,沉积物上清液中TB-EPS(tightly bound EPS)、LB-EPS(loosely bound EPS)与S-EPS(soluble-EPS)的多糖与蛋白含量均随着SDS投加量的增加呈现先升高后下降的趋势,各层EPS总含量变化趋势为S-EPS>LB-EPS>TB-EPS,其中TB-EPS向S-EPS转移。有研究表明,表面活性剂的两亲性使得SDS有一定的的分散作用,可以通过其疏水性与细胞膜蛋白相互作用,这可能导致沉积物的侵蚀[22];当SDS与复配酶协同水解沉积物时,可以大大削弱LB-EPS与TB-EPS的结合[23],使得沉积物发生更严重的裂解和内部生物聚合物的释放,使不溶性的EPS剥离从而进入沉积物上清液中,同时内层TB-EPS向外部转移,TB-EPS含量下降,LB-EPS与S-EPS增多,EPS中可溶性蛋白质与多糖含量增加。

    图 5  复配酶与SDS协同作用对沉积物EPS的影响
    Figure 5.  Effect of synergistic interaction of SDS+compound enzyme on sediment EPS

    图5(b)为不同SDS投加量下EPS总量的变化情况。可以看出,随投加量增多,EPS含量先升高后基本不变。由于SDS具有增溶作用,大量大分子物质脱离沉积物固体溶解于液相[24],从而释放出更多的蛋白质、多糖等物质到EPS中,使其含量增多。但由于表面活性剂在较低剂量(0~5%)下增强酶活性,在较高剂量(5%~10%)下抑制酶活性[16],因此在SDS投加量高于5%后,随着SDS投加量进一步增加,复配酶失活,水解效果降低。

    中性蛋白酶与α-淀粉酶能够破解复杂的高分子物质,例如蛋白质、碳水化合物等,将一部分难降解物质水解,并释放之液相。而SDS具有增溶的特性,能够加快非液相物质溶解到水中的速度,同时也会释放被沉积物捕获的酶制剂,暴露出更多的底物[25],从而促进沉积物中有机质的水解,增加进入液相中溶解性有机物的含量。而三维荧光光谱可以分析污泥中溶解性有机物的种类及分布,不同区域和不同荧光强度代表不同物质及相应的浓度。

    图6可以明显看出,经SDS+复配酶组处理后的沉积物上清液EPS中,I~III区域荧光强度较复配酶组大幅度下降。表明在投加SDS后,酪氨酸、色氨酸与富里酸类物质含量减小甚至消失。左锦静[26]研究表明,SDS与蛋白质之间可以通过疏水作用自发结合,SDS作为淬灭剂对蛋白质进行淬灭,使得三维荧光光谱中蛋白质类物质几近消失;IV区域内的荧光强度和范围略有缩减,这可能是因为SDS具有抑菌性,随着反应时间的延长,导致沉积物中部分微生物死亡,可溶性微生物代谢产物含量降低;V区域所代表的腐殖酸类为五类可溶性有机物中的主要物质,与经复配酶处理后的沉积物上清液的三维荧光光谱图进行对比可以看出,SDS+复配酶的投加使得沉积物上清液中腐殖酸含量急剧增加,且又出现了一种新的腐殖酸物质(Ex/Em为390~440 nm/440~500 nm),这2种腐殖酸浓度由内向外逐渐递增。一方面,SDS的两亲性使得复配酶更容易接触沉积物内部,释放出更多的物质,如腐殖酸;另一方面,微生物对腐殖酸利用率较低,容易在EPS中沉积,沉积物释放出的可溶性微生物副产物等物质更容易被微生物利用或被上清液中溶解的复配酶水解成小分子物质,导致腐殖酸含量高,溶性微生物副产物含量低。有研究[27]表明,腐殖酸浓度可以反映EPS溶解的程度,这也说明沉积物中腐殖酸类物质占比较高,腐殖酸浓度越大,溶解性EPS越多,沉积物水解减量效果越好。

    图 6  复配酶与SDS+复配酶处理后沉积物EPS荧光光谱变化
    Figure 6.  Changes in EPS fluorescence spectra of sediment after treatment by compound enzyme and SDS+compound enzyme

    SEM可较直观的反映出沉积物水解前后表面微观结构的变化,经SDS+复配酶、复配酶水解后的沉积物表面结构变化如图7所示。沉积物在被SDS+复配酶、复配酶水解后均出现密集多孔的表面形态,说明SDS+复配酶与复配酶对沉积物均有明显的破坏效果。经SDS+复配酶处理后,沉积物表面层状更多,说明SDS的增溶作用会打破沉积物紧密连接的结构,使得复配酶能够与更深层的沉积物的接触反应,进而促进水解反应的发生。同时疏松多孔的表面形态使得沉积物更容易被水力冲刷,有利于达到延缓管网淤堵和沉积物减量化的目的。

    图 7  复配酶处理后及SDS+复配酶作用后沉积物表面微观结构
    Figure 7.  Surface microstructure of sediment treated by compound enzyme and SDS+compound enzyme

    在复配酶投加量为8%的条件下,SDS投加量对沉积物粒径的影响结果见图8。可以看出,粒径>300 μm沉积物的质量占比由单独投加复配酶的48.25%下降到5% SDS投加量下的36.94%,随后SDS增加,此粒径沉积物的占比又增加;粒径在150~300 μm内的沉积物质量占比由独投加复配酶的21.05%升高到8%SDS的24.20%左右,随后其质量占比随SDS投加量增加而减小;粒径在75~150 μm内沉积物的质量分数由16.75%升至2%SDS下的23.5%,随后SDS投量增加,质量占比保持在22.0%左右;粒径<75 μm的沉积物质量分数占比由单独投加复配酶的13.95%升高到5%SDS的17.14%,随后SDS投量增加,其质量占比下降。

    图 8  不同投加量SDS处理后沉积物粒径变化情况
    Figure 8.  Variation of particle size after SDS treatment with different dosage

    以上结果表明,在SDS+复配酶协同水解沉积物的过程中,随着SDS投加量的增加,在粒径>300 μm时,沉积物质量占比均有明显下降;小粒径占比增多。SDS的投加量在0%~5%内,投加量的增多会促进大颗粒物质向小颗粒转化。但当SDS投加量大于5%时,SDS对复配酶的水解起抑制作用,大颗粒向小颗粒转化效果变差。

    1)排水管网沉积物Alpha多样性。利用16S rRNA基因测序技术对原沉积物和分别经复配酶、SDS+复配酶处理沉积物的菌群结构进行Alpha多样性指数分析,结果见表2。OTUs大小可反应样品中物种多样性[28]。由表2可知,原泥OTUs数量最多,投加复配酶后,OTUs数量显著降低,而采用SDS+复配酶处理后,OTUs又有大幅度回升。表明单独采用复配酶可降低管网菌种数量,但采用SDS与复配酶联用可减少对管网中微生物多样性的影响。Shannon和Simpson指数也表明,经过复配酶处理后的样品中,这2个指数均出现明显下降,而经SDS+复配酶处理后的样品Shannon和Simpson指数与原泥相比相差不大,说明微生物多样性和均匀性没有出现很大改变。本次实验中4组样品的覆盖率均大于0.98,表明本次微生物测序的有效性和可靠性。

    表 2  微生物alpha多样性指数分析
    Table 2.  Microbial alpha diversity index analysis
    样本 OTUs Chao1 Shannon Simpson 覆盖率
    原泥 1 471 2 090 6.52 0.95 0.98
    复配酶 (中性蛋白酶:α-淀粉酶=2:3) 791 1 086 4.84 0.88 0.99
    SDS+复配酶 (中性蛋白酶:α-淀粉酶=2:3) 1 294 1 934 6.22 0.95 0.98
     | Show Table
    DownLoad: CSV

    2)基于OTU的微生物群落Venn图分析。各组样品间的OTU彼此关联,根据3组沉积物样品测定的OTU数据,绘制了3组样品OTUs的Venn图,以反映不同处理条件下沉积物样品的物种多样性差异[29]。由图9可以看出,原泥组(A)、复配酶组(B)和SDS+复配酶组(C)样品的OTU数目分别为2 098、1 273和2 001,相较于原泥,各组OUT数均有不同程度的降低,表明在投加酶制剂后,物质多样性出现了不同程度的下降[30],其中复配酶下降最明显,而SDS+复配酶与原泥相差较小,这也与表2的结果一致。Venn图的重叠部分代表了不同样品的共有OTU,可知 3 组样品的共有OTU数为783,占总OTU数(2 647)的29.58%,说明酶制剂的投加会对排水管网沉积物中的微生物丰富度和多样性造成一定的影响[31]

    图 9  不同处理条件下基于OTU的微生物群落Venn图
    Figure 9.  Venn diagram of OTU-based microbial communities under different treatment conditions

    3)微生物属水平群落结构及功能菌群分析。观察了属水平上微生物群落结构演替(图10),沉积物经复配酶、SDS+复配酶处理后,Sulfurovum (反硝化硫菌)的相对丰度均有不同程度的增加,分别从原沉积物的5.02%增加为34.53%和14.85%,其中复配酶组增幅最大。这可能由于投加酶制剂后,沉积物中大分子物质溶出,氨氮升高,可能硝态氮也有所升高,有利于Sulfurovum的繁殖。Caldisericum(嗜热、硫代硫酸盐还原细菌)与Methanosaeta(甲烷丝菌属)在投加复配酶、SDS+复配酶后,相对丰度均出现下降的现象。Methanosaeta(甲烷丝菌属)在原沉积物、复配酶和SDS+复配酶中所占比例分别为8.09%、1.34%和5.33%。Methanosaeta属于产甲烷菌(MA)的一种,其新陈代谢会产生CH4和CO2,此菌种所占比例减少,一定程度上也会降低排水管道中CH4产量。Caldisericum的变化趋势与Methanosaeta相同,复配酶组、SDS+复配酶组相对丰度均小于原沉积物,表明经SDS+复配酶处理后会减少管网中H2S的产量,这有利于管网的后续维护。Uncultured表示未能在人工条件下获得纯培养的微生物。

    图 10  各组沉积物属水平相对丰度
    Figure 10.  Relative abundance at genus levels for each treated sediment group

    1)采用SDS+复配酶可有效水解排水管网沉积物,在原泥pH(7.28±0.3)、25 ℃下反应2 h,沉积物上清液中SCOD、多糖和氨氮分别由初始的5 686.9、1 913.75和87.32 mg·L−1升至8 192.9、3 561.29和153.37 mg·L−1,有机质含量由56.32%降到55.59%,促进了有机质从固相向液相的转移。

    2) SEM、EPS、粒径以及三维荧光光谱表征分析结果表明,SDS+复配酶处理管网沉积物后其内部紧实结构被破坏、粒径尺寸变小;在SDS投加量为0~5%内,随着投加量的增多,各层EPS总含量变化趋势为S-EPS>LB-EPS>TB-EPS,其中TB-EPS向S-EPS转移;与单独复配酶水解沉积物效果相比,SDS+复配酶水解沉积物过程中腐殖酸类物质由内向外转移,且荧光强度增强,溶解性EPS增多。这有利于破坏沉积物紧密连接的结构形态,降低沉积物黏性,增加被冲刷性能,延缓排水管网淤堵。

    3) SDS+复配酶在一定程度上改变了沉积物中的功能菌群,使得沉积物中Sulfurovum相对丰度增加,而CaldisericumMethanosaeta相对丰度下降,这对减少管网中CH4、H2S等的产生具有积极作用。SDS+复配酶对微生物的影响会降低管网内部的生化反应,有利于管网的后续维护。

  • 图 1  DDBAC投加量对不同pH条件下污泥脱水效果的影响

    Figure 1.  Effects of DDBAC dosage on sludge dewaterability under different pH conditions

    图 2  DDBAC投加量对不同pH条件下污泥SV的影响

    Figure 2.  Effects of DDBAC dosage on sludge SV under different pH conditions

    图 3  DDBAC投加量对不同pH条件下污泥CST与TTF的影响

    Figure 3.  Effects of DDBAC dosages on sludge CST and TTF under different pH conditions

    图 4  DDBAC投加量对不同pH条件下污泥EPS成分的影响

    Figure 4.  Effects of DDBAC dosages on sludge EPS content under different pH conditions

    表 1  污泥的基本特性

    Table 1.  Basic characteristics of raw sewage sludge

    密度/(g·cm−3)pH含水率/%滤饼含水率/%CST/sSV/%
    1.0026.76±0.0597.52±0.283.95±0.166±294±1
    密度/(g·cm−3)pH含水率/%滤饼含水率/%CST/sSV/%
    1.0026.76±0.0597.52±0.283.95±0.166±294±1
    下载: 导出CSV
  • [1] QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties: A review[J]. Chemical Engineering Journal, 2011, 171: 373-384. doi: 10.1016/j.cej.2011.04.060
    [2] YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. doi: 10.1016/j.watres.2015.04.002
    [3] 王丽苹, 李平, 木合塔尔·吐尔洪, 等. Fe0/H2O2类芬顿法提高污泥脱水性能及机理分析[J]. 现代化工, 2018, 38(12): 119-123.
    [4] TONY M A, ZHAO Y Q, TAYEB A M. Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning[J]. Journal of Environmental Sciences, 2009, 21: 101-105. doi: 10.1016/S1001-0742(09)60018-8
    [5] HOUGHTON J I, QUARMBY J, STEPHENSON T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer[J]. Water Science & Technology, 2001, 44(2/3): 373-379.
    [6] YU G H, HE P J, SHAO L M. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949.
    [7] FENG X, DENG J C, LEI He Y, et al. Dewaterability of waste activated sludge with ultrasound conditioning[J]. Bioresource Technology, 2009, 100(3): 1074-1081. doi: 10.1016/j.biortech.2008.07.055
    [8] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28: 882-894. doi: 10.1016/j.biotechadv.2010.08.001
    [9] BUYUKKAMAIC N. Biological sludge conditioning by Fenton’s reagent[J]. Process Biochemistry, 2004, 39(11): 1503-1506. doi: 10.1016/S0032-9592(03)00294-2
    [10] 徐文迪, 常沙, 明铁山, 等. 基于硫酸根自由基(SO4·)的污泥预处理技术[J]. 环境工程学报, 2018, 12(5): 1528-1535.
    [11] GUO S D, LIANG H, BAI L M. Synergistic effects of wheat straw powder and persulfate/Fe(II) on enhancing sludge dewaterability[J]. Chemosphere, 2019, 215: 333-341. doi: 10.1016/j.chemosphere.2018.10.008
    [12] LIU L Y, YAN H, YANG C. Dewatering of drilling sludge by ultrasound assisted Fe(II)-activated persulfate oxidation[J]. Royal Society of Chemistry, 2018, 8: 29756-29766.
    [13] 汪日平, 王继鹏, 周正伟, 等. Fe3O4/石墨烯-H2O2预处理对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2017, 11(10): 5590-5596.
    [14] 于文华, 濮文虹, 时亚飞, 等. 阳离子表面活性剂与石灰联合调理对污泥脱水性能的影响[J]. 环境化学, 2013, 32(9): 1785-1791.
    [15] 李雪, 李飞, 曾光明, 等. 表面活性剂对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2016, 10(5): 2221-2226.
    [16] 陈银广, 杨海真, 吴桂标, 等. 表面活性剂改进活性污泥的脱水性能及其作用机理[J]. 环境科学, 2000, 21(5): 97-100.
    [17] 刘欢. F-S复合调理剂对市政污泥脱水性能影响的研究[D]. 武汉: 华中科技大学, 2012.
    [18] LIN Y F, JING S R, LEE D Y. Recycling of wood chips and wheat dregs for sludge processing[J]. Bioresource Technology, 2011, 76(2): 161-163.
    [19] 张昊, 杨家宽, 虞文波, 等. Fenton试剂与骨架构建体复合调理剂对污泥脱水性能的影响[J]. 环境科学学报, 2013, 33(10): 2742-2749.
    [20] HONG C, SI Y X, XING Y, et al. Effect of surfactant on bound water content and extracellular polymers substances distribution in sludge[J]. RSC Advances, 2015, 5: 23383-23390. doi: 10.1039/C4RA15370G
    [21] HONG C, XING Y, HUA X F, et al. Dewaterability of sludge conditioned with surfactant DDBAC pretreatment by acid/alkali[J]. Environmental Biotechnology, 2015, 99: 6103-6111. doi: 10.1007/s00253-015-6451-2
    [22] 刘鹏, 刘欢, 姚洪, 等. 芬顿试剂及骨架构建体对污泥脱水性能的影响[J]. 环境科学与技术, 2013, 36(10): 146-151.
    [23] 刘中兴, 谢传欣, 石宁, 等. 过氧化氢溶液分解特性研究[J]. 齐鲁石油化工, 2009, 37(2): 99-102.
    [24] RIVAS F J, FRADES B J, BUXEDA P. Oxidation of p-hydroxybenzoic acid by Fenton’s reagent[J]. Water Research, 2001, 35: 387-396. doi: 10.1016/S0043-1354(00)00285-2
    [25] LO I M C, LAI K C, CHEN G H. Salinity effect on mechanical dewatering of sludge with and without chemical conditioning[J]. Environmental Science & Technology, 2001, 35: 4691-4696.
    [26] YANG S F, LI X Y. Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions[J]. Process Biochemistry, 2009, 44(1): 91-96. doi: 10.1016/j.procbio.2008.09.010
    [27] RIESZ P, BERDAHL D, CHRISTMAN C L. Free radical generation by ultrasound in aqueous and nonaqueous solutions[J]. Environmental Health Perspectives, 1985, 64: 233-252. doi: 10.1289/ehp.8564233
    [28] 余瑞元, 袁明秀, 陈丽蓉, 等. 生物化学实验原理和方法[M]. 2版. 北京: 北京大学出版社, 2005.
    [29] 黄绍松, 梁嘉林, 张斯玮, 等. Fenton氧化联合氧化钙调理对污泥脱水的机理研究[J]. 环境科学学报, 2018, 38(5): 1906-1919.
    [30] MIKKELSEN L H, KEIDING K. Physico-chenmical characteristics of full scale sewage sludges with implications to dewatering[J]. Water Research, 2002, 36(10): 2451-2462. doi: 10.1016/S0043-1354(01)00477-8
    [31] WANG L F, HE D Q, TONG Z H. Characterization of dewatering process of activated sludge assisted by cationic surfactants[J]. Biochemical Engineering Journal, 2014, 91: 174-178. doi: 10.1016/j.bej.2014.08.008
    [32] WANG H W, DENG H H, MA L M, et al. Influence of operating conditions on extracellular polymeric substances and surface properties of sludge flocs[J]. Carbohydrate Polymers, 2013, 92: 510-515. doi: 10.1016/j.carbpol.2012.09.055
    [33] HONG C, WANG Z Q, SI Y X, et al. Improving sludge dewaterability by combined conditioning with Fenton’s reagent and surfactant[J]. Environmental Biotechnology, 2017, 101: 809-816. doi: 10.1007/s00253-016-7939-0
    [34] FU J J, XIA C J, WANG Y. An investigation for the key role of surfactants in activated sludge dewatering[J]. Journal of Chemical Engineering of Japan, 2010, 43(2): 238-246. doi: 10.1252/jcej.09we176
    [35] SHEN W, ZHANG K C, KORNFIELD J A, et al. Tuning the erosion rate of artificial protein hydrogels through control of network topology[J]. Nature Materials, 2006, 5(2): 153-158. doi: 10.1038/nmat1573
    [36] WEST E R, XU M, WOODRUFF T K, et al. Physical properties of alginate hydrogels and their effects on in vitro follicle development[J]. Biomaterials, 2007, 28(30): 4439-4448. doi: 10.1016/j.biomaterials.2007.07.001
  • 加载中
图( 4) 表( 1)
计量
  • 文章访问数:  4587
  • HTML全文浏览数:  4587
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-04
  • 录用日期:  2020-10-23
  • 刊出日期:  2021-04-10
王杰, 陈钰, 赵玉婷, 何李文泽, 刘颖. 芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响[J]. 环境工程学报, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033
引用本文: 王杰, 陈钰, 赵玉婷, 何李文泽, 刘颖. 芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响[J]. 环境工程学报, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033
WANG Jie, CHEN Yu, ZHAO Yuting, HE Liwenze, LIU Ying. Effect of Fenton’s reagent and CaO system combined with DDBAC on sludge dewaterability[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033
Citation: WANG Jie, CHEN Yu, ZHAO Yuting, HE Liwenze, LIU Ying. Effect of Fenton’s reagent and CaO system combined with DDBAC on sludge dewaterability[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033

芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响

    通讯作者: 陈钰(1979—),女,博士,高级工程师。研究方向:水处理技术。E-mail:chenyu1123@swjtu.edu.cn
    作者简介: 王杰(1996—),男,硕士研究生。研究方向:污泥处理与利用技术。E-mail:1045463710@qq.com
  • 1. 西南交通大学地球科学与环境工程学院,成都 610031
  • 2. 西南交通大学土木工程学院,成都 610031
基金项目:
中央高校基本科研业务费专项资金资助(2682016CX080)

摘要: 在pH为3和5的条件下,研究了芬顿氧化钙体系联合十二烷基二甲基苄基氯化铵(DDBAC)对污泥破解效果及脱水性能的影响,以期减少CaO的用量并同时提高芬顿反应的适用pH。以脱水泥饼含水率(WC)、毛细吸水时间(CST)、过滤时间(TTF)、污泥沉降比(SV)和胞外聚合物(EPS)中蛋白质(PN)与多糖(PS)的含量作为评价指标,对DDBAC投加量做单因素分析,找出其最佳投加量;并比较在不同pH条件下,DDBAC对污泥脱水性能的影响。结果表明,在pH为3条件下,H2O2、Fe2+、CaO、DDBAC投加量分别为60、30、60、60 mg·g−1(DS)时,污泥脱水效果最佳,其WC为68.57%、CST为24 s、TTF为44 s、SV为72%。最佳脱水条件污泥EPS中的PN、PS总量大幅降低,其中T-EPS含量变化相较于S/L-EPS与污泥脱水性能的变化有更强的联系。在pH为5的条件下,该联合体系也有较好的脱水效果,对芬顿体系在弱酸性环境下使用有一定的参考价值。该联合体系能有效降低CaO的用量,同时能避免处理后的污泥pH过高、易板结的问题,且不会造成二次污染。

English Abstract

  • 市政污水处理厂产生的剩余污泥因其胶体结构与高亲水性质而导致其部分水难以脱除[1-2]。剩余污泥经浓缩或机械脱水后,含水率一般仍在80%以上。高含水率造成了污泥体积庞大、运输成本高、占用处理场地大以及处理处置困难等问题[3]。因此,如何经济有效地降低污泥的含水率成为了污泥处理的关键问题之一。

    一些研究者发现,污泥表面的胞外聚合物(EPS)是造成污泥脱水困难的重要因素之一[4-6]。剩余污泥有机物组成中50%~60%是EPS,而EPS中的70%~80%是蛋白质(PN)与多糖(PS)等大分子有机物[7]。在不同污泥中,EPS的组成亦不同[8]。PN与PS通过氢键等作用力将部分水锁定在污泥表面形成水膜,致使这部分水无法通过常规的机械方法被脱除。因此,有研究者将芬顿高级氧化的方法引入到污泥的脱水处理中,依靠其产生的羟基自由基破坏污泥表面的EPS结构,从而达到提高污泥的脱水性能的目的[4, 9]。但是,苛刻的反应条件限制了常规芬顿方法的应用。芬顿处理使用的H2O2存在较高的运输、保存费用,故有报道[10-12]用氧化能力稍差的过硫酸盐高级氧化法代替传统的芬顿氧化法。虽然效果不如传统的芬顿方法,但过硫酸盐的经济性更优,使其成为了研究的热点。也有研究者[3, 13]通过加快Fe3+向Fe2+的转化速率而改用Fe3O4或Fe0的类芬顿方法;通过加快自由基的生成速率从而达到提高污泥脱水性能的目的。传统经芬顿方法处理后的污泥粒径小,易堵塞过滤通道,不利于脱水[1]。为了优化污泥脱水效果,通过表面活性剂的强絮凝作用[14-16]或在体系中引入CaO等具有刚性晶格结构[17-19]的骨架成为新的研究热点。

    阳离子表面活性剂因其能同时促进污泥表面EPS的溶出与转化[20]受到了研究者的青睐。十二烷基二甲基苄基氯化铵(DDBAC)作为一种工业上经常使用的阳离子表面活性剂,已被证实单独作用于污泥时有较强的絮凝作用[21]。但是,昂贵的价格和较大的投加量限制了对他的推广和应用。CaO作为骨架结构作用于污泥时效果显著,但其存在投加量过高(100~200 mg·g−1)的问题。经CaO处理后的污泥体系碱性过强[22],且处理污泥易板结,有机物含量低,进而影响污泥的最终处置。

    为了减少CaO的用量,同时提高污泥的再絮凝能力,保证处理后体系的pH接近中性。本研究将CaO与DDBAC联用于最适条件下芬顿调理后的污泥,并分析污泥脱水过程中EPS的转化规律;通过在pH为5的弱酸性条件下重复上述实验,以期通过两者的协同作用来达到共同提高污泥脱水效果的目的;同时避免体系投入过多的酸调节pH,为后续芬顿方法在弱酸条件下的应用提供参考。

  • 污泥取自成都市某污水处理厂二沉池。该污水处理厂采用的是改良A2/O工艺,处理规模为1.5×104 m3·d−1,污水来源于服务区范围内的生活污水。由于原始污泥含水率过高,取回的污泥静沉24 h后,弃去上层清液再用于实验。样品分2批次采集,每批样品的实验在72 h内完成。污泥的基本特性见表1

    浓硫酸(H2SO4)、七水合硫酸亚铁(FeSO4·7H2O)、质量分数30%过氧化氢(H2O2)、氧化钙(CaO)、十二烷基二甲基苄基氯化铵(DDBAC)均为分析纯。

    六连异步电动搅拌器(JJ-4B型,常州市国旺仪器制造有限公司);数显酸度计(PHS-25型,杭州雷磁分析仪器厂);电热恒温鼓风干燥箱(DHG-9030A,上海一恒科学仪器有限公司);台式低速离心机(TD-420型,四川蜀科仪器有限公司);紫外可见分光光度计(UV-4802H型,上海尤尼柯仪器有限公司)。

  • 芬顿反应对pH有严格的要求,忽略目标物时最佳pH为3.0左右[23];提高体系pH,当pH超过5时,H2O2分解速率加快[24],且有更多水合氧化铁与氢氧化铁生成,影响Fe2+的利用。因此,本实验在pH为3和5的条件下进行实验。前期预实验得到最优的Fe2+和H2O2用量分别为30、60 mg·g−1(DS);由于处理后的酸性环境不利于DDBAC充分发挥作用[21],故在本实验中CaO在pH为3和5条件下的用量分别为60、40 mg·g−1(DS),此时反应后体系的pH在7.0左右。

    量取待试样品污泥600 mL置于1 000 mL烧杯中;加入硫酸,调节污泥pH至3或5;加入FeSO4·7H2O,300 r·min−1搅拌5 min后,再加入30%H2O2,180 r·min−1搅拌30 min;后加入CaO,180 r·min−1搅拌5 min;最后加入DDBAC于180 r·min−1下搅拌30 min。

  • 滤饼含水率的测定采用重量法;CST测定采用毛细吸水时间测定仪。

    TTF检测。取调理后的污泥200 mL,倒入装有定量滤纸的布氏漏斗中(直径150 mm),在真空压力为0.04 MPa的负压条件下进行抽滤脱水,记录抽滤瓶内量筒收集滤液达到100 mL时所花的时间,即为TTF[25]

    用改进热提取方法[26]提取各层EPS;将上述提取出来的EPS立即使用注射器过0.45 μm孔径的滤膜并保存,各层EPS中的多聚糖采用蒽酮-硫酸比色法测定,以葡萄糖作为标准样[27];蛋白质采用考马斯亮蓝染色法测定,以牛血清蛋白作为标准样[28]

    SV测定。取100 mL调理后的污泥于100 mL的量筒中,记录30 min后污泥于清液的分离界面高度v,污泥沉降比计算方法如式(1)所示。

  • 图1为DDBAC投加量对不同pH条件下污泥脱水效果的影响。当污泥在pH为3的芬顿氧化钙体系下时,泥饼的含水率随DDBAC投加呈现出先降低后增加的趋势。投加DDBAC前,泥饼的含水率为72.55%;当DDBAC投加量达到60 mg·g−1(DS)时,含水率降低至最低的68.57%。污泥在pH为5的芬顿氧化钙体系下,DDBAC投加量对污泥脱水效果的影响同pH为3时一致。由此可以发现,在芬顿与氧化钙联合调理后,DDBAC投加量在60 mg·g−1(DS)时,污泥的脱水效果是最好的,其投加量与HONG等[20]的DDBAC最优结论相近。

    经芬顿处理后,污泥颗粒粒径会显著变小,小粒径颗粒在抽滤脱水时容易堵塞过滤通道,从而造成污泥脱水率较低的现象[29]。CaO的添加不仅调节了pH,促进氢氧化铁絮体的形成,同时也会生成硫酸钙等具有刚性晶格结构的物质[19];同时,通过氢氧化铁的网捕卷积作用在污泥中重新絮凝形成具有较强抗压能力的絮体结构,造成芬顿氧化钙体系处理后的污泥具有较好的脱水效果。在本研究中,后加入的阳离子表面活性剂DDBAC,因电性中和作用,进一步促进了污泥的絮凝,使污泥絮体的粒径增大。因此,出现泥饼含水率随着DDBAC的投加量增加而降低的趋势,但当DDBAC过量时,污泥的电性升高,污泥难以继续絮凝沉降。值得一提的是,在pH为5的弱芬顿条件下,该体系仍有较好的脱水效果,相较于DDBAC的单独调理最佳用量[21],该联合体系也达到了减少DDBAC用量的目的。

  • DDBAC投加量对不同pH条件下污泥沉降性能的影响如图2所示。在pH为3和5的条件下,污泥的沉降性能随DDBAC的投加量增加,均呈现出先降后增的趋势,在DDBAC投加量为60 mg·g−1(DS)时达到最低的72%和76%,相较于未投加DDBAC时,这一阶段的提升率分别为8.51%和19.15%。这是由于,DDBAC作为一种阳离子表面活性剂,当其溶于污泥的时候,其极性基团电离带正电,而污泥带负电。随着电中和作用的发生,污泥体系电势进一步趋于0,污泥更易于发生絮凝沉淀[30]。因此,一开始污泥的SV随着DDBAC投加量的增加而降低。当DDBAC投加过量时,原本趋于0的电势开始升高,污泥又变得稳定而难以絮凝沉淀,因此SV开始升高。另一方面,由于表面活性剂的增溶作用,其极性基团可与EPS中蛋白质与多糖结合,形成复合物,降低液固界面的张力,从而增加这些难溶物的溶解度[31],导致污泥表面结合水的脱除,进而提高了污泥的沉降性能。在低pH条件下虽然污泥沉降性能较好,但在高pH条件下,DDBAC对体系沉降性能的影响更明显。

  • DDBAC投加量对pH为3条件下污泥CST与TTF的影响如图3(a)所示。CST与TTF的变化呈现出一样的趋势,随着DDBAC投加量的增加,CST与TTF呈现出先降低后升高的趋势。在DDBAC投加量为60 mg·g−1(DS)时达到最低,分别为24 s和44 s,相较于未投加DDBAC时的降低率分别达到22.58%和31.25%。在pH为5条件下,污泥调理后的CST与TTF变化如图3(b)所示,其变化趋势同pH为3时,在DDBAC投加量为60 mg·g−1(DS)时达到最低,此时相较于未投加DDBAC时的降低率分别为29.17%和36.84%。这是因为,在低pH条件下,芬顿反应生成的羟基自由基破坏了污泥表面EPS的稳定结构[3],污泥表面水膜中的结合水得以释放。结合氧化钙的骨架作用,保证了过滤时孔隙的畅通。因此,TTF与CST降低明显。但氧化钙的投加量有限,随着DDBAC的加入,其电性中和作用促使污泥再絮凝,粒径进一步增大。而且由于DDBAC的增溶作用,促使部分难溶于水的有机物溶解进入液相,结合水得以释放,导致CST与TTF继续降低。但当DDBAC投加量继续增加时,污泥体系电势升高,絮体趋于稳定,相较于最优条件时絮体粒径减小,脱水能力下降。另外,可能是污泥细胞发生了裂解,胞内大分子有机物大量释放,从而对脱水造成了负面影响[29]。不难发现,在弱芬顿条件下,联合体系的处理效率低于在pH为3的条件下的最优效果,但远高于芬顿氧化钙体系的效果;而且,DDBAC在弱芬顿条件下的效果更显著。这为芬顿体系在弱酸条件下的利用提供了参考。

  • DDBAC投加量对pH为3条件下污泥各层EPS中PN和PS的影响如图4(a)图4(b)所示。原泥中PN、PS的含量超过80%存在于紧密结合型胞外聚合物(T-EPS)中,这与WANG等[32]的结论相近。经芬顿氧化钙体系处理后的污泥,EPS中PN与PS有由内层向外层溶出的趋势。芬顿氧化过程产生的羟基自由基破坏了污泥表面的EPS结构,使得原本难溶的松散结合型胞外聚合物(L-EPS)和T-EPS向可溶性溶解型胞外聚合物(S-EPS)转化,这一过程促进了PN与PS等大分子有机物的水解过程,并使附着在其表面的水进一步溶出。随着DDBAC投加量的增加,污泥EPS中PN与PS的总量呈现出先降低后增长的趋势,在投加量为60 mg·g−1 (DS)时达到最低,分别为109和47 mg·L−1;相较于未投加DDBAC时,降低率达到48.10%、32.86%。S-EPS与T-EPS中PN和PS含量呈现出同总量一致的变化趋势。而L-EPS中PN和PS的含量变化并无规律可循。因芬顿的前处理,原本紧密的EPS结构变得松散,DDBAC投加量在60 mg·g−1(DS)以前,T-EPS中PN与PS含量进一步降低,DDBAC的增溶能力,促进了难溶EPS的进一步转化。但此时,S-EPS中PN与PS含量并没有增加而是减少了,这与HONG等[20]和HONG等[33]的结论相近。这是因为,在芬顿处理后,难溶性有机物发生部分水解,在DDBAC增溶过程中,同时又促进了大分子有机物的水解转化,此时水解效果强于增溶效果,其结果就是S-EPS中PN、PS含量降低。当DDBAC投加量达到100 mg·g−1(DS)时,各层EPS中PN、PS含量激增。这可能是因为,芬顿处理后污泥中仅剩部分难溶性EPS,在DDBAC进一步处理后,EPS含量降低,过多的DDBAC其表面疏水烷基附着在污泥细胞表面,抑制了营养摄入,致使污泥破解[34]。此时,细胞内PN、PS的流出,其表面的极性基团又开始吸附液相中的自由水,造成污泥的脱水能力下降。这也解释了在2.3节,当DDBAC投加量超过60 mg·g−1(DS)时,CST与TTF激增的原因。值得一提的是,DDBAC对污泥中PN的增溶效果明显强于对PS的效果。这可能是因为,PN由多种氨基酸构成,依靠肽键连接的单链结构,易于遭受自由基等的攻击裂解,而PS是由多个单糖以糖苷多个位点连接而形成的复杂的长链网状结构,能大大减少水分子在其结构内的移动,因此,表面活性剂对其作用较难进行[35-36]

    DDBAC投加量对pH为5条件下污泥各层EPS中PN与PS的影响如图4(c)4(d)所示。经过芬顿氧化钙体系处理后,EPS中PN和PS的总量下降趋势,与pH为3时的趋势一致,L-EPS中PN、PS的含量变化并无规律可循。不同的是,S-EPS中PN与PS的含量略有升高。随着DDBAC的投加量增加,EPS总量与T-EPS中PN、PS含量变化一致,呈现出先降低后增长的趋势,在投加量为60 mg·g−1(DS)时达到最低。不同的是,S-EPS中PN、PS含量则呈现出一直增长的趋势。这是因为,在pH为5的弱芬顿条件下产生的羟基自由基数量有限,只能将污泥中的部分EPS氧化。随着DDBAC投加量增加,更多的T-EPS向S-EPS和L-EPS转化。虽然EPS总量的慢速降低证实了水解过程仍在继续,但S-EPS中PN与PS的含量增长则证明了此时的增溶效果更强。因此,T-EPS更能较S-EPS作为表征污泥脱水效果的参考依据。而以上结果也证实了芬顿氧化钙的前处理对DDBAC深化污泥脱水有较好的作用。

  • 1)在pH为3,Fe2+、H2O2、CaO投加量分别为30、60、60 mg·g−1(DS)的条件下,当DDBAC投加为量60 mg·g−1(DS)时,可以将脱水泥饼含水率降低至68.57%。

    2)在pH为5的弱芬顿条件下,DDBAC对污泥体系SV、CST和TTF的降低率更高。其原因是,芬顿过程产生的羟基自由破坏了污泥表面EPS的稳定性,使部分难溶性EPS得到初步水解,此时,DDBAC增溶效果更显著;而在pH为3时,芬顿过程已将体系大部分难降解有机物水解,此时DDBAC的增溶效果不明显。

    3)芬顿CaO体系联合DDBAC可以在降低CaO的用量的同时,提高污泥的脱水能力,相较于DDBAC的单独处理,该体系也可以有效降低DDBAC的用量。

    4)在芬顿CaO前处理条件下,在一定范围内,EPS总量随DDBAC投加量增加而降低;而且在污泥各EPS层中,T-EPS相较于S-EPS和L-EPS,与污泥脱水性能有更强的联系。

参考文献 (36)

返回顶部

目录

/

返回文章
返回