Processing math: 100%

载铁牡蛎壳粉对水中磷的吸附性能及机理

蒙浩焱, 杨名帆, 罗国芝, 谭洪新. 载铁牡蛎壳粉对水中磷的吸附性能及机理[J]. 环境工程学报, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076
引用本文: 蒙浩焱, 杨名帆, 罗国芝, 谭洪新. 载铁牡蛎壳粉对水中磷的吸附性能及机理[J]. 环境工程学报, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076
MENG Haoyan, YANG Mingfan, LUO Guozhi, TAN Hongxin. Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076
Citation: MENG Haoyan, YANG Mingfan, LUO Guozhi, TAN Hongxin. Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076

载铁牡蛎壳粉对水中磷的吸附性能及机理

    作者简介: 蒙浩焱(1993—),男,硕士研究生。研究方向:养殖水处理。E-mail:menghy0103@163.com
    通讯作者: 罗国芝(1974—),女,博士,教授。研究方向:水产养殖用水重复利用等。Email:gzhluo@shou.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(31202033)
  • 中图分类号: X703

Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water

    Corresponding author: LUO Guozhi, gzhluo@shou.edu.cn
  • 摘要: 为解决生物絮凝养殖水体含磷物质积累,初步研究了载铁牡蛎壳粉吸附除磷性能及相关机理。结果表明,8 g·L−1载铁牡蛎壳粉在初始TP浓度为20.00~50.00 mg·L−1吸附效果最佳,TP去除率由(84.94±0.94)%增至(87.35±1.06)%,吸附量由(2.37±0.03) mg·g−1增至(5.45±0.22) mg·g−1;当pH为2.00~6.00时,TP去除率大于(80.13±3.27)%,吸附量大于(2.04±0.02) mg·g−1;碳酸氢根的存在对载铁牡蛎壳粉吸附除磷有明显的抑制作用。X射线衍射结果表明,载铁牡蛎壳粉表面覆盖成分为Fe2(PO)5和Fe4(PO4)2O。载铁牡蛎壳粉吸附过程符合Freundlich模型和准二级动力学模型,最大吸附量为9.81 mg·g−1,吸附过程存在物理吸附和化学吸附,主要由化学吸附决定,膜扩散和颗粒内扩散为主要限速步骤,配位交换和静电吸附为主要吸附机理。以上研究结果可为实际养殖废水除磷方法提供参考。
  • 垃圾渗滤液是生活垃圾在卫生填埋或堆放过程中,由于垃圾内有机物分解、自身水分、以及落在垃圾上的大气降水所形成的一种高浓度废水。垃圾渗滤液水质受垃圾的组成、填埋时间、地质情况、温度和含水量等多种因素影响而变化[1],但其一般特点是高氨氮(氨氮质量浓度为1 000~3 000 mg·L−1)、低碳氮比(老龄垃圾渗滤液COD/N<0.1),有机物种类多且复杂等。垃圾渗滤液若不经处理或处理不当排放至自然环境中,将严重威胁填埋场区域水、土环境的安全[2]

    目前,垃圾渗滤液处理主要采用物化法与生化法相结合的方式,通过预处理、生化处理、深度处理等系列工序达到排放标准[3-4]。吹脱法脱氨效果稳定、氨去除率高,常被用作垃圾渗滤液预处理工艺[5-6]。但吹脱法亦存在明显的缺点[7-8]:操作过程需要大幅度调节 pH、耗费大量酸碱调节药剂、增加成本;使用石灰药剂产生水垢,增大设备维护难度;吹脱产生气态氨,易造成大气污染等。而生物法因为其操作简单、工艺成本低、脱氮高效稳定等特点,逐渐成为国内外填埋场渗滤液脱氮的核心处理技术。但由于垃圾渗滤液碳氮比低,直接采用传统硝化反硝化脱氮工艺处理时,存在碳源投加量大、运行能耗高、脱氮效率低等问题[9-10]。短程硝化反硝化(PND)工艺是指将硝化过程控制在亚硝态氮阶段,再利用反硝化作用直接将亚硝态氮转化为氮气的过程[11]。与传统硝化反硝化相比,理论上可节约25%的耗氧量和40%的碳源量[12]。尽管一些研究者对短程硝化反硝化处理垃圾渗滤液进行了大量研究,通过控制pH、温度、溶解氧、FNA(游离亚硝酸)、FA(游离氨)、污泥龄等条件[13-18]实现亚硝态氮的积累,但研究多为实验室小试实验,大规模应用研究还鲜见报道。

    本研究针对深圳市某垃圾渗滤液处理厂氨吹脱预处理工艺存在的脱氮效果不佳、运行费用较高等实际问题,开展了基于短程硝化反硝化的垃圾渗滤液预处理的中试研究。中试处理水量最高可达200 m3·d−1,相当于小型垃圾渗滤液处理厂规模。由于垃圾渗滤液处理厂大多采用膜生物反应器(MBR)多级硝化反硝化技术,为方便渗滤液处理厂进行技术改造,本研究选用AO-SBR反应器开展中试实验。考察了短程硝化反硝化垃圾渗滤液预处理工艺启动及稳定运行控制的影响因素,解析了典型反应周期氮素平衡关系,探讨了短程硝化反硝化作为垃圾渗滤液预处理工艺的可行性。本研究将为垃圾渗滤液处理厂预处理工艺的升级改造提供实验基础与经验参考。

    AO-SBR工艺主要由调节池、缺氧池、SBR池(好氧池)和储水池组成,各部分有效容积分别为10、95、285、10 m3,实验装置示意图和现场照片见图1。老龄渗滤液取自深圳某垃圾填埋场,主要水质参数为pH=8.3~8.6、碱度7 000~12 000 mg·L−1、COD 1 200~3 000 mg·L−1、总氮1 200~2 700 mg·L−1、氨氮1 000~2 500 mg·L−1。实验中通过气动泵分别在缺氧池和储水池投加甲醇,以提高原水可生化性。接种污泥取自渗滤液处理厂二级AO-MBR好氧池,污泥MLSS浓度为7 086 mg·L−1,MLVSS浓度为5 668 mg·L−1,污泥呈棕黄色。

    图 1  AO-SBR示意图和现场照片
    Figure 1.  Schematic diagram and site photo of the AO-SBR reactor

    反应器单个周期运行工序为进水(非限制性曝气)8 h、曝气2 h、沉淀0.5 h、滗水1.5 h,每天运行2个周期。反应器回流比约为4∶1,沉淀与滗水工序时关闭回流。水池外壁安装保温层保持系统温度为35~38 ℃,通过调节鼓风机频率使SBR池DO保持为1~1.5 mg·L−1,通过调节进水量使SBR池pH保持为6.5~7.5。反应器启动阶段不排泥,生化池中污泥浓度始终维持在5 000~6 000 mg·L−1。反应器试运行阶段(1~10 d)主要解决工程问题,并未严格按设计工序运行,因此下述实验数据及分析从运行第11天开始。

    实验期间定期采样,COD、氨氮、亚硝态氮、碱度等常规水质指标均按国家标准方法[19]进行测定分析;硝态氮采用离子色谱仪(IC-AS23阴离子检测器,DIONEX ICS-600)测定;总氮由总有机碳分析仪(TOC-L CPH/CPN测定仪)测定;DO含量和pH分别使用溶解氧仪 (model 6308DT,Jenco)和pH计(model 3675,Jenco)进行在线测定。

    系统典型反应周期氮素平衡计算所涉及的生物脱氮反应方程式如式(1)~式(4)所示。亚硝化反应见式(1),硝化反应见式(2),硝化总过程见(3),反硝化过程反应见式(4)。

    55NH4++76O2+109HCO3C5H7O2N+54NO2+57H2O+104H2CO3 (1)
    400NO2+195O2+NH4++HCO3+4H2CO3C5H7O2N+400NO3+3H2O (2)
    NH4++1.83O2+1.98HCO30.021C5H7O2N+0.98NO3+1.04H2O+1.88H2CO3 (3)
    NO3+1.08CH3OH+0.24H2CO30.06C5H7NO2+0.47N2+1.68H2O+HCO3 (4)

    根据进水负荷和脱氮性能,可将AO-SBR反应器运行过程分为3个阶段,各阶段的平均进水氨氮负荷分别为0.376、0.511、0.489 kg·(m3·d)−1;平均水力停留时间(HRT)分别约为5、3.6、3.1 d。

    第Ⅰ阶段为启动期(11~60 d),在此阶段的前10 d,氨氮去除率由75%升高至95%,硝态氮质量浓度明显下降,亚硝化率由41.9%升高至99.2%(图2)。这说明此时系统脱氮路径正由全程硝化向短程硝化转变,氧化亚硝态氮的NOB菌活性受到抑制。第21天后亚硝态氮积累率稳定保持在95%以上,标志着系统内短程硝化启动成功。从第30天开始,氨氮去除率下降至90%左右,通过计算发现,第30天SBR池FNA质量浓度最高可达0.221 mg·L−1,处于硝化作用受到抑制的FNA浓度[20]范围内(0.22~0.28 mg·L−1)。但氨氮去除率并未持续下降,这说明硝化作用并没有完全被抑制。第Ⅱ阶段为负荷提升期(61~100 d),该阶段内氨氮去除率由90%下降至80%,进水氨氮负荷增加成为影响硝化反应的主要因素。第Ⅲ阶段为稳定运行期(101~190 d),受填埋场气候及渗滤液水质(尤其氨氮质量浓度)波动的影响,该阶段氨氮去除率不稳定,但基本保持在80%以上。在运行至第146天时,进水氨氮质量浓度高达3 300 mg·L−1,生化反应剧烈放热导致各反应池水温升至最高,为40 ℃,SBR池pH上升至8.0左右。紧急从二级AO-MBR好氧池中回流泥水混合物至SBR池稀释降温。应急处理后系统逐渐恢复正常,当天出水硝态氮质量浓度为60 mg·L−1。除突发情况外,其他运行时段亚硝化率稳定保持在90%以上。在反应器启动初期,出水亚硝态氮质量浓度约为200 mg·L−1,通过调节水量降低SBR池内pH,使FNA质量浓度最高达到0.111 mg·L−1,其处于NOB菌活性完全受到抑制的浓度[20]范围内(0.026~0.22 mg·L−1),而AOB菌活性并未受到影响,因此,使系统中NOB菌逐渐被洗淘,这说明在中试规模下通过控制高浓度FNA可以实现垃圾渗滤液短程硝化反硝化的快速启动和稳定运行。

    图 2  AO-SBR中氮化物浓度及亚硝化率
    Figure 2.  Nitrogen concentration and nitrosation rate in the AO-SBR

    由于垃圾渗滤液尤其是老龄垃圾渗滤液碳氮比失调,在实验中通过投加甲醇调节原水碳氮比,以提高原水可生化性、实现反应系统高效脱氮,实验结果如图3所示。在第Ⅰ阶段,系统平均COD/N约为2,总氮去除率由70%下降至60%。该阶段内的亚硝态氮逐渐积累,FNA浓度逐渐升高至0.247 mg·L−1。虽然高浓度FNA会影响反硝化菌的活性[20],但总氮去除率没有持续降低,这说明反硝化菌对高浓度FNA产生抗性。第Ⅰ阶段平均ΔCOD/ΔN约为2.1,小于传统硝化反硝化消耗碳氮比2.86,这也侧面证明短程硝化反硝化已经发生。在第Ⅱ阶段,系统平均COD/N下降为1.4,平均ΔCOD/ΔN低至1.8,总氮去除率低至40%,此时COD/N成为制约反硝化脱氮效率的主要因素。在第Ⅲ阶段,平均COD/N上升至1.8,平均ΔCOD/ΔN约为2,总氮去除率基本维持在50%以上。剩余亚硝态氮将在后续EGSB厌氧生物反应器中继续进行反硝化去除。在反应系统运行过程中,垃圾渗滤液原水水质受气候影响变化波动较大,但系统仍能保持稳定脱氮效果,说明该预处理工艺具有一定耐冲击负荷能力。

    图 3  AO-SBR中总氮浓度及其去除率的变化
    Figure 3.  Changes of total nitrogen mass concentration and its removal rate in the AO-SBR

    系统中氨氮的去除可能存在多种途径,除了短程硝化反硝化、传统硝化反硝化等生物脱氮路径,反应器利用池底鼓风曝气增加溶解氧的同时,也会使部分游离氨通过曝气方式从水中直接逸散。因此,有必要分析反应系统氮素物料平衡关系,明确氮类污染物主要去向、判断反应器运行状态。

    以第Ⅲ阶段稳定运行期第120天的进出水数据(表1)为例,根据生物脱氮反应方程(式(1)~式(4)),由碱度、COD消耗及进出水氮元素物料平衡关系计算,得到AO-SBR典型周期内氮素转化情况(图4)。氮平衡计算结果表明:当AO-SBR反应器进水总氮负荷为0.739 kg·(m3·d)−1时,通过短程硝化反硝化途径去除的总氮负荷为0.323 kg·(m3·d)−1,占据总氮去除负荷的74.8%;而全程硝化反硝化脱氮途径去除的总氮负荷占据总氮去除负荷的13.5%。由此可知,短程硝化反硝化反应是AO-SBR中试反应器脱氮的主要路径。在系统脱氮过程中,COD实际消耗量(2 375.65 mg·L−1,含投加甲醇1 246.07 mg·L−1)远小于仅发生传统脱氮反硝化的理论耗碳量(3 602.94 mg·L−1),节省约34%有机碳源。

    表 1  典型周期反应器进出水水质情况
    Table 1.  Water quality of influent and effluent in a typical cycle mg·L−1
    水样碱度COD总氮氨氮亚硝态氮硝态氮
    反应器进水10 023.502 4862 4422 160.4100
    反应器出水1 0061 356.421 01526959736
     | Show Table
    DownLoad: CSV
    图 4  典型周期反应器内氮素转化
    Figure 4.  Nitrogen conversion in a typical cycle

    垃圾渗滤液经AO-SBR预处理工艺脱氮后,还需通过EGSB厌氧生物反应器+AO-MBR+纳滤(NF)等工序,以完成渗滤液处理。EGSB厌氧生物反应器将去除预处理出水中剩余的亚硝态氮和部分COD,预处理+EGSB将共同完成80%总氮去除的任务,AO-MBR工艺去除剩余20%总氮与难降解COD,经NF后的最终出水水质达到《生活垃圾填埋场污染控制标准》即可纳管排放。在中试期间,系统各工艺段出水水质见表2,垃圾渗滤液处理系统出水水质见图5。短程硝化反硝化预处理工艺出水经过后续工艺处理后,均可达到排放标准。以上结果说明,短程硝化反硝化工艺代替氨吹脱方法进行垃圾渗滤液预处理在技术上是可行的。

    表 2  系统各工艺段出水水质
    Table 2.  Water quality of effluent from each process section of the system mg·L−1
    工艺段名称COD氨氮亚硝态氮硝态氮总氮
    原水1 442±5361 735±426001 950±430
    AO-SBR1 759±411234±106524±12615±5835±210
    EGSB1 145±506232±11049±145±1354±152
    AO-MBR837±52212±706±445±12
    NF65±183±201.5±125±9
     | Show Table
    DownLoad: CSV
    图 5  系统最终出水水质
    Figure 5.  Water quality of final system effluent

    AO-SBR工艺主要运行成本包括药剂费(甲醇)、电费和人工费;氨吹脱工艺主要运行成本包括药剂费(石灰、硫酸)、电费和人工费。在长期稳定运行的情况下,2种预处理工艺的主要运行费用见表3。未考虑其他少量药剂、设备折旧、日常维修和大修等费用时,AO-SBR作为垃圾渗滤液脱氮预处理工艺,其主要运行成本是氨吹脱的70%左右。此外,AO-SBR工艺自动化程度较高且操作简单。氨吹脱工艺容易产生水垢问题,导致其大修次数远多于AO-SBR工艺;吹脱产生自由氨需要硫酸溶液吸收处理,也会增加相应的人工成本。因此,在整体工艺出水满足纳管要求前提下,作为垃圾渗滤液预处理工艺,AO-SBR较氨吹脱具有明显的经济优势。

    表 3  AO-SBR与氨吹脱工艺的主要运行费用比较
    Table 3.  Comparison of main operating costs between AO-SBR and ammonia stripping
    工艺名称数量单价费用/(元·m−3)费用合计/(元·m−3)
    AO-SBR甲醇1.2 kg·m−34元·kg−14.8009.571
    电费5 kWh·m−30.732元·(kWh)−13.660
    人工费定员1人4 000元·月−11.111
    氨吹脱石灰18 kg·m−30.3元·kg−15.40013.669
    98%硫酸8 kg·m−30.3元·kg−12.400
    电费6.5 kWh·m−30.732元·(kWh)−14.758
    人工费定员1人4 000元·月−11.111
     | Show Table
    DownLoad: CSV

    1)中试规模的AO-SBR短程硝化反硝化垃圾渗滤液预处理工艺脱氮效果良好。当平均进水氨氮负荷为0.489 kg·(m3·d)−1时,氨氮去除率可达80%以上,且碳氮比为1.8时,总氮去除率为50%左右,满足后续工序进水要求。

    2)当AO-SBR反应器进水总氮负荷为0.739 kg·(m3·d)−1时,通过短程硝化反硝化途径去除的总氮负荷为0.323 kg·(m3·d)−1,占据总氮去除负荷的74.8%,系统以短程硝化反硝化脱氮途径为主。

    3) AO-SBR短程硝化反硝化预处理工艺出水经过后续EGSB厌氧生物反应器、二级AO-MBR、NF工艺处理后可以满足排放标准,AO-SBR主要运行成本为9.571元·m−3,是氨吹脱工艺主要运行成本的70%。

  • 图 1  吸附剂添加量、初始TP浓度和pH对除磷效果的影响

    Figure 1.  Effects of adsorbent amount, initial TP concentration and pH on phosphorus removal

    图 2  碳酸氢根和硝态氮对除磷效果的影响

    Figure 2.  Effects of HCO3 and NO3-N on phosphorus removal

    图 3  不同氢氧化钠浓度对载铁牡蛎壳粉解吸率的影响

    Figure 3.  Effects of different NaOH concentrations on desorption rate of magnetic modified OSP

    图 4  天然牡蛎壳粉和已吸附的载铁牡蛎壳粉的扫描电子显微镜图

    Figure 4.  SEM images of natural OSP and P-adsorbed magnetic modified OSP

    图 5  不同牡蛎壳粉的XRD图谱

    Figure 5.  XRD patterns of different OSP

    图 6  不同温度下载铁牡蛎壳粉的Langmuir模型和Freundlich模型

    Figure 6.  Langmuir isotherm and Freundlich isotherm of magnetic modified OSP at different temperatures

    图 7  载铁牡蛎壳粉吸附除磷的热力学常数图解

    Figure 7.  Thermodynamics for phosphorus adsorption on magnetic modified OSP

    图 8  载铁牡蛎壳粉除磷的颗粒内扩散过程

    Figure 8.  Intra-particle diffusion process for phosphorus removal on magnetic modified OSP

    表 1  不同牡蛎壳粉表面结构特征参数

    Table 1.  Surface structure characteristic parameters of different OSP

    样品比表面积/(m2·g−1)孔容/(cm3·g−1)平均孔径/nm
    天然牡蛎壳粉1.180.00516.52
    载铁牡蛎壳粉0.680.06135.60
    样品比表面积/(m2·g−1)孔容/(cm3·g−1)平均孔径/nm
    天然牡蛎壳粉1.180.00516.52
    载铁牡蛎壳粉0.680.06135.60
    下载: 导出CSV

    表 2  不同温度下载铁牡蛎壳粉等温线拟合结果

    Table 2.  Isotherm constants of magnetic modified OSP at different temperatures

    温度/℃LangmuirFreundlich
    qm/(mg·g−1)KR2Kf1/nR2
    1524.490.280.8800.590.910.910
    2522.811.110.8211.090.800.973
    359.816.110.9801.790.420.987
    温度/℃LangmuirFreundlich
    qm/(mg·g−1)KR2Kf1/nR2
    1524.490.280.8800.590.910.910
    2522.811.110.8211.090.800.973
    359.816.110.9801.790.420.987
    下载: 导出CSV

    表 3  不同初始TP浓度下载铁牡蛎壳粉吸附除磷的热力学参数

    Table 3.  Thermodynamic parameters for phosphorus adsorption on magnetic modified OSP at different initial TP concentrations

    C0/(mg·L−1)H0/(kJ·mol−1)S0/(kJ·(mol·K)−1)G0/(kJ·mol−1)
    15 ℃25 ℃35 ℃
    26.41118.080.46−10.19−14.48−17.85
    36.95102.180.40−11.27−14.95−17.90
    47.42101.980.40−12.13−15.23−18.76
    61.1753.190.24−12.65−15.93−16.07
    71.0863.040.27−13.00−15.88−17.08
    C0/(mg·L−1)H0/(kJ·mol−1)S0/(kJ·(mol·K)−1)G0/(kJ·mol−1)
    15 ℃25 ℃35 ℃
    26.41118.080.46−10.19−14.48−17.85
    36.95102.180.40−11.27−14.95−17.90
    47.42101.980.40−12.13−15.23−18.76
    61.1753.190.24−12.65−15.93−16.07
    71.0863.040.27−13.00−15.88−17.08
    下载: 导出CSV

    表 4  载铁牡蛎壳粉吸附动力学拟合参数

    Table 4.  Adsorption kinetic parameters of magnetic modified OSP

    温度/℃qe,exp/(mg·g−1)准一级动力学准二级动力学
    qe,cal/(mg·g−1)k1/(g·(min·mg)−1)R2qe,cal/(mg·g−1)k2/(g·(min·mg)−1)R2
    154.014.480.001 70.8322.250.001 10.185
    255.555.290.002 80.9796.640.000 60.988
    356.065.850.003 30.9887.190.000 61.000
    温度/℃qe,exp/(mg·g−1)准一级动力学准二级动力学
    qe,cal/(mg·g−1)k1/(g·(min·mg)−1)R2qe,cal/(mg·g−1)k2/(g·(min·mg)−1)R2
    154.014.480.001 70.8322.250.001 10.185
    255.555.290.002 80.9796.640.000 60.988
    356.065.850.003 30.9887.190.000 61.000
    下载: 导出CSV

    表 5  载铁牡蛎壳粉颗粒内模型拟合参数

    Table 5.  Fitting parameters of intra-particle diffusion model of magnetic modified OSP

    温度/℃第1阶段第2阶段第3阶段
    KpCR2KpCR2KpCR2
    150.04−0.140.2450.08−0.570.4490.16−2.020.885
    250.16−0.070.9720.24−0.680.9990.073.130.524
    350.24−0.480.9990.220.060.9570.054.180.705
      注:Kp的单位为g·(min·mg1/2)−1C的单位为mg·g−1
    温度/℃第1阶段第2阶段第3阶段
    KpCR2KpCR2KpCR2
    150.04−0.140.2450.08−0.570.4490.16−2.020.885
    250.16−0.070.9720.24−0.680.9990.073.130.524
    350.24−0.480.9990.220.060.9570.054.180.705
      注:Kp的单位为g·(min·mg1/2)−1C的单位为mg·g−1
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019.
    [2] 陈伟. 功能性生物絮团和BFT系统的构建及其在对虾养殖中的应用效果研究[D]. 上海: 上海海洋大学, 2018.
    [3] 庞云. 硝化型生物絮体养殖凡纳滨对虾(Litopenaeus vannmei)的应用效果研究[D]. 上海: 上海海洋大学, 2017.
    [4] 刘文畅. 酿酒废水添加、SRT和HRT对生物絮凝反应器处理RAS养殖污染物的影响[D]. 上海: 上海海洋大学, 2015.
    [5] 赵培. 生物絮团技术在海水养殖中的研究与应用[D]. 上海: 上海海洋大学, 2011.
    [6] 陈伟, 谭洪新, 罗国芝, 等. 碳氮比对生物絮凝反应器处理水质效果的影响[J]. 上海海洋大学学报, 2018, 27(6): 907-915.
    [7] 杨树润, 张世熔, 冯灿, 等. 4种镧改性海藻粉末对养殖废水中磷的去除[J]. 环境工程学报, 2019, 13(10): 2357-2368. doi: 10.12030/j.cjee.201903042
    [8] 刘兴国, 刘兆普, 徐皓, 等. 生态工程化循环水池塘养殖系统[J]. 农业工程学报, 2010, 26(11): 237-244. doi: 10.3969/j.issn.1002-6819.2010.11.041
    [9] 杨丽芳, 朱树文, 高红武, 等. ABR厌氧/CASS好氧工艺处理养殖废水[J]. 中国给水排水, 2007, 23(8): 62-66. doi: 10.3321/j.issn:1000-4602.2007.08.017
    [10] BRAUN J C A, BORBA E C, GODINHO M, et al. Phosphorus adsorption in Fe-loaded activated carbon: Two-site monolayer equilibrium model and phenomenological kinetic description[J]. Chemical Engineering Journal, 2019, 361: 751-763. doi: 10.1016/j.cej.2018.12.073
    [11] LIU T, CHEN X, WANG X, et al. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3[J]. Chemical Engineering Journal, 2018, 335: 443-449. doi: 10.1016/j.cej.2017.10.117
    [12] 陈玉枝, 林舒. 牡蛎壳与龙骨成分的分析[J]. 福建医科大学学报, 1999, 33(4): 432-434. doi: 10.3969/j.issn.1672-4194.1999.04.021
    [13] 李林锋, 吴小凤. 天然牡蛎壳对磷吸附特性试验研究[J]. 三峡环境与生态, 2011, 33(6): 1-4.
    [14] 浦晨霞, 曹玉成, 钱璨, 等. 改性牡蛎壳对低磷浓度水体的净化性能研究[J]. 环境污染与防治, 2019, 41(3): 59-63.
    [15] ZHANG B A Q, CHEN N, FENG C, et al. Adsorption for phosphate by crosslinked/non-crosslinked-chitosan -Fe(Ⅲ) complex sorbents: characteristic and mechanism[J]. Chemical Engineering Journal, 2018, 353: 361-372. doi: 10.1016/j.cej.2018.07.092
    [16] IFTHIKAR J, WANG J, WANG Q, et al. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications[J]. Bioresource Technology, 2017, 238: 399-406. doi: 10.1016/j.biortech.2017.03.133
    [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [18] 梁越敢, 方涛, 李伟, 等. 磁性龙虾壳吸附去除水中磷的特性[J]. 中国环境科学, 2019, 39(5): 138-143.
    [19] MONDAL P, MAJUMDER C B, MOHANTY B. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon[J]. Journal of Hazardous Materials, 2008, 150(3): 695-702. doi: 10.1016/j.jhazmat.2007.05.040
    [20] O’NEIL J R, VENNEMANN T W, MCKENZIE W F. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)aq and H2O[J]. Geochimica Et Cosmochimica Acta, 2003, 67(17): 3135-3144. doi: 10.1016/S0016-7037(02)00970-5
    [21] 王正芳. 载铁活性炭的制备及对P(V)的吸附性能研究[D]. 南京: 南京大学, 2011.
    [22] 姚淑华, 贾永锋, 汪国庆, 等. 活性炭负载Fe(Ⅲ)吸附剂去除饮用水中的As(Ⅴ)[J]. 过程工程学报, 2009, 9(2): 250-256. doi: 10.3321/j.issn:1009-606X.2009.02.008
    [23] GU Z, FANG J, DENG B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal[J]. Environmental Science & Technology, 2005, 39(10): 3833-3843.
    [24] REY A, FARALDOS M, CASAS J A, et al. Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface[J]. Applied Catalysis B: Environmental, 2009, 86(1/2): 69-77.
    [25] 李炳. 颗粒活性炭负载氧化铁(IOCGAC)吸附除Cr(Ⅵ)研究[D]. 长沙: 湖南大学, 2007.
    [26] 熊慧欣. 不同晶型羟基氧化铁(FeOOH)的形成及其吸附去除Cr(Ⅵ)的作用[D]. 南京: 南京农业大学, 2008.
    [27] HE Y, LIN H, DONG Y, et al. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism[J]. Applied Surface Science, 2017, 426(31): 995-1004.
    [28] LIU H, SUN X, YIN C, et al. Removal of phosphate by mesoporous ZrO2[J]. Journal of Hazardous Materials, 2008, 151(2/3): 616-622.
    [29] KIM D S. Adsorption characteristics of Fe(III) and Fe(III)-NTA complex on granular activated carbon[J]. Journal of Hazardous Materials, 2004, 106(1): 67-84. doi: 10.1016/j.jhazmat.2003.09.005
    [30] 周强, 冒咏秋, 段钰锋, 等. 溴素改性活性炭汞吸附特性研究[J]. 工程热物理学报, 2014, 35(12): 211-214.
    [31] SMITH J M. Chemical Engineering Kinetics[M]. New York: McGraw Hill, 1981.
    [32] ACELAS N Y, MARTIN B D, LÓPEZ D, et al. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media[J]. Chemosphere, 2014, 119: 1353-1360.
    [33] AKSU Z, KARABAYIR G. Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye[J]. Bioresource Technology, 2008, 99(16): 7730-7741. doi: 10.1016/j.biortech.2008.01.056
    [34] HAN R, ZHANG L, SONG C, et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode[J]. Carbohydrate Polymers, 2010, 79(4): 1140-1149. doi: 10.1016/j.carbpol.2009.10.054
  • 加载中
图( 8) 表( 5)
计量
  • 文章访问数:  6059
  • HTML全文浏览数:  6059
  • PDF下载数:  108
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-15
  • 录用日期:  2020-07-21
  • 刊出日期:  2021-02-10
蒙浩焱, 杨名帆, 罗国芝, 谭洪新. 载铁牡蛎壳粉对水中磷的吸附性能及机理[J]. 环境工程学报, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076
引用本文: 蒙浩焱, 杨名帆, 罗国芝, 谭洪新. 载铁牡蛎壳粉对水中磷的吸附性能及机理[J]. 环境工程学报, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076
MENG Haoyan, YANG Mingfan, LUO Guozhi, TAN Hongxin. Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076
Citation: MENG Haoyan, YANG Mingfan, LUO Guozhi, TAN Hongxin. Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 446-456. doi: 10.12030/j.cjee.202004076

载铁牡蛎壳粉对水中磷的吸附性能及机理

    通讯作者: 罗国芝(1974—),女,博士,教授。研究方向:水产养殖用水重复利用等。Email:gzhluo@shou.edu.cn
    作者简介: 蒙浩焱(1993—),男,硕士研究生。研究方向:养殖水处理。E-mail:menghy0103@163.com
  • 1. 上海海洋大学,上海水产养殖工程技术研究中心,上海 201306
  • 2. 上海海洋大学,农业农村部淡水水产种质资源重点实验室,上海 201306
  • 3. 上海海洋大学,水产科学国际级实验教学示范中心,上海 201306
基金项目:
国家自然科学基金资助项目(31202033)

摘要: 为解决生物絮凝养殖水体含磷物质积累,初步研究了载铁牡蛎壳粉吸附除磷性能及相关机理。结果表明,8 g·L−1载铁牡蛎壳粉在初始TP浓度为20.00~50.00 mg·L−1吸附效果最佳,TP去除率由(84.94±0.94)%增至(87.35±1.06)%,吸附量由(2.37±0.03) mg·g−1增至(5.45±0.22) mg·g−1;当pH为2.00~6.00时,TP去除率大于(80.13±3.27)%,吸附量大于(2.04±0.02) mg·g−1;碳酸氢根的存在对载铁牡蛎壳粉吸附除磷有明显的抑制作用。X射线衍射结果表明,载铁牡蛎壳粉表面覆盖成分为Fe2(PO)5和Fe4(PO4)2O。载铁牡蛎壳粉吸附过程符合Freundlich模型和准二级动力学模型,最大吸附量为9.81 mg·g−1,吸附过程存在物理吸附和化学吸附,主要由化学吸附决定,膜扩散和颗粒内扩散为主要限速步骤,配位交换和静电吸附为主要吸附机理。以上研究结果可为实际养殖废水除磷方法提供参考。

English Abstract

  • 近年来我国水产事业快速发展,养殖品种产量日益增加[1]。在养殖水体中培养微生物絮团的生物絮凝已成为集约化水产养殖的热点[2-3],生物絮凝是利用养殖环境系统中微生物絮团吸收转化水中有害含氮无机物,减少水环境对养殖鱼类的毒害[4-5]。但生物絮凝系统的养殖水磷酸盐高于20 mg·L−1[6],且碳酸氢根(HCO3)、硝氮(NO3-N)浓度普遍较高[2-3]。直接排放养殖水易造成湖泊富营养化,环境污染[7]。因此,对养殖水进行除磷是必要的。目前,养殖水除磷技术主要有人工湿地除磷[8]、生物除磷[9]、吸附法[10],吸附法因具有高效快速、易操作、成本廉价、无二次污染等特点而成为研究热点[11]

    废弃牡蛎壳因其获取便利,独特的多孔结构[12],被视为一种天然的除磷吸附剂。李林锋等[13]发现天然牡蛎壳吸附除磷的最大吸附量为0.88 mg·g−1。浦晨霞等[14]将牡蛎壳进行高温改性,对总磷的去除率可达90%,吸附量为1.10 mg·g−1。改性有助于提高牡蛎壳吸附效率,通常含铁氧化物改性制备的吸附剂吸附除磷效果更佳[15],目前,含铁化合物改性牡蛎壳吸附除磷鲜有报道。因此,本文选择牡蛎壳粉进行载铁改性,制成载铁牡蛎壳粉(magnetic modified oyster shell powder, magnetic modified OSP),探究了吸附剂添加量、初始总磷(total phosphorus, TP)浓度、pH对载铁牡蛎壳粉在模拟含磷水中吸附除磷的影响,并对其进行了表征,同时选择生物絮凝系统水中含量较多的HCO3NO3-N作为共存离子,考察了共存离子对吸附除磷的影响。通过吸附热动力学探讨了其除磷的吸附机理,以期为实际生物絮凝养殖废水除磷提供参考。

  • 载铁牡蛎壳粉制备:取自中国辽宁省某海域海滩上直径7~8 cm废弃天然牡蛎壳,多次清洗,表面洗净后晾干;用中药粉碎机粉碎过100 μm备用。分别取20.00 g牡蛎壳粉,20.00 g FeCl3·6H2O,11.10 g FeSO4·7H2O溶解于800 mL超纯水,充分搅拌均匀,并逐滴加入10.00 mol·L−1 NaOH至混合液pH为10.00,随后在350 r·min−1条件下搅拌1 h,静置1 d后移去上清液,水洗沉淀物至中性,70 ℃干燥24 h,备用[16]。使用分析纯级别的磷酸二氢钾(KH2PO4)、碳酸氢钠(NaHCO3)、硝酸钾(KNO3),分别和超纯水配制溶液。

  • 1)吸附剂添加量对除磷效果的影响。于若干250 mL锥形瓶分别加入50 mL,初始TP浓度为20.00 mg·L−1的模拟含磷水,调节初始pH为4.00~6.00,将不同添加量2.00、4.00、6.00、8.00、10.00、12.00、14.00、16.00、18.00、20.00 g·L−1载铁牡蛎壳粉分别装入锥形瓶。混合后在25 ℃,180 r·min−1下振荡24 h,待吸附平衡后,取上清液测定TP,计算TP去除率(η)、吸附量(qe),每个添加量3个平行。

    2)初始TP浓度对载铁牡蛎壳粉吸附除磷效果的影响。于若干250 mL锥形瓶分别加入50 mL,初始TP浓度为10.00、20.00、30.00、40.00、50.00、60.00、70.00、80.00、90.00、100.00 mg·L−1的模拟含磷水,调节初始pH为4.00~6.00,准确称取8.00 g·L−1载铁牡蛎壳粉分别装入锥形瓶。混合后在25 ℃,180 r·min−1下振荡24 h,待吸附平衡后,取上清液测定TP,计算TP去除率、吸附量,每个初始TP浓度3个平行。

    3) pH对载铁牡蛎壳粉吸附除磷效果的影响。于若干250 mL锥形瓶分别加入50 mL,初始TP浓度为50.00 mg·L−1的模拟含磷水,0.01 mol·L−1 HCl和0.01 mol·L−1 NaOH调节溶液pH初始为2.00、4.00、6.00、8.00、10.00、12.00,准确称取8.00 g·L−1载铁牡蛎壳粉分别装入锥形瓶。混合后在25 ℃,180 r·min−1下振荡24 h,待吸附平衡后,取上清液测定TP,计算TP去除率、吸附量,每个pH 3个平行。

    4)共存离子对载铁牡蛎壳粉吸附除磷效果的影响。于若干250 mL锥形瓶分别加入50 mL,初始HCO3NO3-N分别为50.00、100.00、150.00、200.00 mg·L−1,初始TP浓度为50.00 mg·L−1的模拟含磷水,调节初始pH为4.00~6.00,准确称取8.00 g·L−1载铁牡蛎壳粉分别装入锥形瓶。混合后在25 ℃,180 r·min−1下振荡24 h,待吸附平衡后,取上清液测定TP,计算TP去除率、吸附量,每个浓度3个平行。TP去除率和吸附量根据式(1)和式(2)计算。

    式中:η为TP去除率;C0Ce分别为TP的初始浓度和吸附平衡浓度,mg·L−1qe为平衡吸附剂量,mg·g−1V为水样体积,mL;m为吸附剂质量,g。

    5)载铁牡蛎壳粉的解吸。于250 mL锥形瓶中加入50 mL初始TP浓度为50.00 mg·L−1的模拟含磷水,调节初始pH为4.00~6.00,准确称取8.00 g·L−1载铁牡蛎壳粉装入锥形瓶。混合后在25 ℃、180 r·min−1条件下振荡24 h,待吸附平衡后,取上清液测定溶液中TP,计算吸附量;将经吸附的载铁牡蛎壳粉105 ℃烘干数小时,再分别加入0.01、0.10、1.00 mol·L−1 NaOH溶液,混合后于25 ℃,180 r·min−1条件下振荡24 h,待吸附平衡后,取上清液测定溶液中TP浓度Cd、解吸量,解吸率(qd/qe),每个浓度3个平行。

    6)吸附热力学实验。于若干250 mL锥形瓶中分别加入50 mL,初始TP浓度为26.40、36.95、47.42、61.17、71.08 mg·L−1的模拟含磷水,调节初始pH为4.00~6.00,分别准确装入8.00 g·L−1载铁牡蛎粉,以180 r·min−1分别在15、25、35 ℃下恒温振荡24 h,待吸附平衡后,取上清液测定TP、吸附量、热力学参数。每个初始TP浓度3个平行。采用Langmuir(式(3))、Freundlich(式(4))方程进行线性拟合,通过式(5)、式(6)、式(7)分别计算出固液分配系数、吉布斯自由能、标准反应焓变、标准反应熵。

    式中:K为Langmuir吸附平衡常数;qm为最大吸附量,mg·g−1Kf为Freundlich吸附平衡常数;KD为固液分配系数,mL·g−1C0为溶液初始浓度,mg·L−1V为溶液体积,mL;m为吸附剂质量,m;G0为吉布斯自由能,kJ·mol−1H0为标准反应焓变,kJ·mol−1S0为标准反应熵,kJ·(mol·K)−1R为理想气体常数,kJ·(mol·K)−1T为热力学温度,K。

    7)吸附动力学实验。于若干250 mL锥形瓶中分别加入50 mL初始TP浓度为50.00 mg·L−1的模拟含磷水,调节初始pH为4.00~6.00,分别准确装入8.00 g·L−1载铁牡蛎壳粉。在15、25、35 ℃下以180 r·min−1振荡,于0、10、30、60、120、240、480、720、1 080、1 440 min取样,取上清液测定TP,计算载铁牡蛎壳粉的即时吸附量、吸附活化能,每个温度梯度3个平行。采用准一级动力学方程(式(8))、准二级动力学方程(式(9))以及颗粒内扩散动力学方程(式(10))进行线性模型拟合,并通过式(11)计算吸附活化能。

    式中:qtt时刻吸附量,mg·g−1k1为准一级动力学速率常数,g·(min·mg)−1k2为准二级动力学速率常数,g·(min·mg)−1kp为颗粒内扩散速率常数,g·(min·mg1/2)−1R为摩尔气体常数,kJ·(mol·K)−1C为界面层厚度相关系数,mg·g−1k0为表现频率因子,g·(min·mg)−1Ea为吸附活化能,kJ·mol−1

  • pH通过WTW(Multi 3430,德国)测定;NO3-N采用紫外分光光度法;TP采用钼锑抗分光光度法,HCO3采用酸碱滴定指示法[17];使用比表面积及孔径分析仪(ASAP,Micromeritics,美国)分析测定壳粉比表面积;使用扫描电子显微镜(SEM,赛默飞FEG-250,美国)分析壳粉形貌;使用X射线衍射(XRD,smartlab ragiku 2019,理学电机公司,日本)分析壳粉晶体结构。

  • 实验数据采用Excel进行结果统计,用Origin 9和Adobe Illustrator CC 2019 进行图表绘制。采用SPSS 22.0统计软件对数据进行ANOVA 单因素方差分析,P<0.05为差异性显著,实验数值用平均值±标准差形式表示。

  • 图1反映了吸附剂添加量、初始TP浓度及pH对载铁牡蛎壳粉吸附除磷的影响。由图1(a)可知,随着载铁牡蛎壳粉添加量的增加,TP去除率上升,吸附量持续下降。当添加量从2.00 g·L−1增至10.00 g·L−1时,TP去除率由(33.05±5.71)%升至(84.61±1.47)%,这是由于壳粉和模拟水的接触面积增加,导致TP去除率迅速升高。但当添加量从10.00 g·L−1增至20.00 g·L−1时,TP去除率变化趋于稳定,为(81.74±1.47)%~(85.61±6.23)%,吸附量由(3.45±0.60) mg·g−1持续降至(0.89±0.01) mg·g−1。虽然高添加量提高了TP去除率,但过多的吸附剂相互掩饰吸附位点,影响吸附位点与磷分子的结合,从而造成吸附量下降,这和梁越敢等[18]的研究结果相似。结果表明,初始TP浓度为 20 mg·L−1时,载铁牡蛎壳粉的最佳添加量为8.00 g·L−1

  • 图1(b)可知,随着初始TP浓度增大,TP去除率先上升后下降。当初始TP浓度从5.00 mg·L−1增至20.00 mg·L−1时,TP去除率由(44.90±4.16)%迅速升至(84.91±0.94)%;初始TP浓度由20.00 mg·L−1增至50.00 mg·L−1时,TP去除率由(84.91±0.94)%升至(87.35±1.06)%;当初始TP浓度从50.00 mg·L−1增至100.00 mg·L−1时,TP去除率由(87.35±1.06)%降至(74.65±1.38)%。以上结果表明,当溶液中初始TP浓度低于20.00 mg·L−1时,8.00 g·L−1添加量的载铁牡蛎壳粉上吸附位点多,去除率上升迅速,随着吸附的进行,载铁牡蛎壳粉上吸附位点被占据,活性吸附位点减少,吸附接近饱和[19],表现为TP去除率上升逐渐缓慢。随着初始TP浓度增大,吸附位点相对减少,当初始TP浓度为100.00 mg·L−1中,过多的磷分子互相竞争吸附位点,导致TP去除率下降,因此,载铁牡蛎壳粉吸附效率降低。

    随着初始TP浓度从5.00 mg·L−1增至100.00 mg·L−1,载铁牡蛎壳粉的吸附量由(0.38±0.04) mg·g−1持续升至(9.87±0.06) mg·g−1。这可能是吸附位点结合了大量的磷分子后,壳粉上活性吸附位点减少,TP去除率下降,但由于溶液中TP浓度过高,吸附去除的TP浓度之差相对较大。因此,吸附量相对上升。结果表明,8.00 g·L−1载铁牡蛎壳粉在初始TP浓度为20.00~50.00 mg·L−1的模拟水中除磷效果最佳。

  • 当初始TP浓度为50.00 mg·L−1时,添加量为8.00 g·L−1的载体牡蛎壳粉在酸性条件下载铁牡蛎壳粉的TP去除率、吸附量均高于碱性条件下,由图1(c)可知,当pH在2.00~6.00时,载铁牡蛎壳粉的TP去除率均高于80%。由式(12)~式(14)可知,在酸性条件下,溶液中磷主要以H2PO4HPO24形式存在[20]。载铁牡蛎壳粉表面具有氧化铁层,氧化铁层在水溶液中容易发生羟基化,这使得吸附位点更具活性,溶液中H2PO4HPO24与吸附位点上的羟基氧化物配位交换[21],表现为TP去除率、吸附量升高。同时,载铁牡蛎壳粉通过静电作用吸附H2PO4HPO24;当pH为2.00时,TP去除率则高达(95.00±2.02)%,pH为2.00~12.00时,TP去除率下降明显,由(95.00±2.02)%降至(14.67±5.87)%。pH从2.00升至4.00时,吸附量由(2.04±0.02) mg·g−1升至(2.49±0.36) mg·g−1。但随着pH从4.00升至12.00时,吸附量持续降至(0.43±0.24) mg·g−1。随着pH升高,溶液中OH浓度越来越高,OHH2PO4HPO24的相互竞争吸附使得载铁牡蛎壳粉除磷效率降低、吸附量下降。碱性条件使得载铁牡蛎壳粉的等电点为负,静电作用吸附能力下降,TP去除率、吸附量降低[21]

  • HCO3的存在对载铁牡蛎壳粉吸附除磷有明显的抑制作用,由图2(a)可知,当HCO3存在时,TP去除率和吸附量均低于(76.54±3.75)%和(4.94±0.24) mg·g−1。当HCO3为50.00~200.00 mg·L−1时,TP去除率和吸附量均随着HCO3的升高而下降,TP去除率从(76.54±3.75)%下降至(27.11±5.28)%,吸附量从(4.94±0.24) mg·g−1降至(1.70±0.33) mg·g−1。这可能是HCO3与壳粉上Fe配位的阴离子发生了交换反应,影响了H2PO4HPO24与壳粉上Fe配位的阴离子发生的交换反应[22]HCO3H2PO4HPO24相互竞争吸附位点。有研究[22]表明,HCO3与吸附剂之间的结合力强于H2PO4HPO24与吸附剂之间的结合力,吸附剂上的活性吸附位点优先与HCO3结合。因此,当共存离子为HCO3时,载铁牡蛎壳粉的TP去除率、吸附量降低,这和梁越敢等[18]和王正芳[21]的研究结果相似。NO3-N的存在对载铁牡蛎壳粉吸附除磷的影响较小,由图2(b)可知,当NO3-N存在时,TP去除率、吸附量均高于(82.62±0.87)%和(5.18±0.05) mg·g−1。实际生物絮凝系统的养殖废水HCO3在100~150 mg·L−1HCO3竞争吸附位点,载铁牡蛎壳粉吸附除磷效率降低。因此未来探究载铁牡蛎壳粉在实际生物絮凝养殖废水中吸附除磷的效果,需先进行养殖废水硝化前处理,降低HCO3

  • 图3可知,0.10 mol·L−1 NaOH的解吸率为(22.97±1.77)%,显著均高于0.01、1.00 mol·L−1 NaOH的解吸率(P<0.05),表明0.10 mol·L−1 NaOH对载铁牡蛎壳粉的解吸效果较好。但由于牡蛎壳粉的解吸率低于生物炭(42.3%)[21],解吸率过低会影响牡蛎壳粉的广泛应用,因此,对牡蛎壳粉的解吸效果有待进一步研究。

  • 天然未处理的牡蛎壳粉和载铁牡蛎壳粉表面结构特征参数由表1可知,天然牡蛎壳粉和载铁牡蛎壳粉比表面积分别为1.18 m2·g−1和0.68 m2·g−1。经处理后,载铁牡蛎壳粉的孔容和平均孔径均增大,分别从0.005 cm3·g−1和16.52 nm增至0.061 cm3·g−1和35.60 nm。这可能是由于物质的比表面积是根据物质内部孔隙计算得出。在经载铁壳粉处理后,表面覆盖上一层含铁物质[23],堵塞了表面部分的孔隙[24]。测量比表面积的N2和壳粉表面的孔隙接触减少,继而导致计算结果降低。壳粉孔径的增大,也表明壳粉表明覆盖一层物质。

    将牡蛎壳粉进行SEM分析,样品放大10 000倍,由图4(a)可知,天然牡蛎壳粉表面凹凸不平,存在较多完整、光滑的大片状结构,片状结构之间形成了较多的缺陷位,这和壳粉的比表面积下降结果相一致。由图4(b)可知,吸附后的载铁牡蛎壳粉表面主要为微小颗粒,颗粒细小,分布均匀,原先的大片状结构破碎成小片状结构,片状结构表面粗糙。牡蛎壳粉经载铁处理后,壳粉表面结构发生变化,比表面积下降。有研究[25-26]表明,表面覆盖有氧化铁的吸附剂在电镜照片中呈现亮灰色,形状以团聚或松散的微小颗粒为主,颗粒无规则,分布均匀。载铁牡蛎壳粉的颜色较亮,表面颗粒细小,均匀分散。因此载铁牡蛎壳粉表面含有氧化铁等物质。

    将天然牡蛎壳粉和已吸附的载铁牡蛎壳粉进行X射线衍射分析,由图5可知,天然牡蛎壳粉和已吸附的载铁牡蛎壳粉的衍射图谱上均在23°、29.34°、35.92°、39.36°、43.12°、47.44°、48.46°、58°、63.02°、65.50°出现碳酸钙峰值。已吸附的载铁牡蛎壳粉在27.34°、31.06°出现峰形弥散的峰值。这与Fe2(PO)5和Fe4(PO4)2O标准卡片相吻合。由图5可知,牡蛎壳粉表面结合的铁组分主要为Fe2(PO)5和Fe4(PO4)2O。

  • 图6可知,随着温度的升高,2种方程的斜率均上升。由表2可知,在Freundlich方程中,15、25和35 ℃下的R2均大于Langmuir方程中对应的R2,这表明相比Langmuir方程,Freundlich方程更好地描述载铁牡蛎壳粉的吸附除磷行为,载铁牡蛎壳粉表面上的吸附位点的能量分布为指数型。随着温度从15 ℃升至35 ℃,Freundlich方程的吸附常数Kf、拟合相关系数R2也随之升高,1/n随之下降;Langmuir方程的吸附常数K、拟合相关系数R2升高,最大吸附量下降。当1/n为0.1~0.5时,则认为吸附过程容易发生;当1/n>2,吸附过程难发生。Kf越大,表明吸附效果越好。在本研究中,25 ℃和35 ℃下1/n分别为0.80和0.42,这表明载铁牡蛎壳粉在25 ℃和35 ℃条件下更容易吸附除磷。载铁牡蛎壳粉对TP最大吸附量为9.81 mg·g−1,高于天然牡蛎壳除磷(0.88 mg·g−1)[13]和高温改性牡蛎壳除磷(1.10 mg·g−1)[14],但低于镧-多孔沸石(17.2 mg·g−1)和ZrO2(29.71 mg·g−1)。这可能是牡蛎壳粉的比表面积较小,牡蛎壳粉的比表面积(1.18 m2·g−1)低于沸石(64.52 m2·g−1)[27]和ZrO2 (8.83 m2·g−1)[28],由此可见,比表面积小的吸附剂吸附效果较差。

    以1 000/T对ln(KD)作图得图7。由式(7)可知,1 000/T对ln(KD)直线斜率和截距可分别求得S0H0。在不同初始TP浓度、温度条件下,载铁牡蛎壳粉吸附除磷的G0均小于0,说明吸附过程是自发进行,由表3可知。随着温度由15 ℃升至35 ℃,同一TP初始浓度的G0均降低,但其绝对值增大,表明吸附过程的动力较大。在25 ℃和35 ℃下,G0分别先降至−15.93 kJ·mol−1和−18.76 kJ·mol−1,后升至−15.88 kJ·mol−1和−17.08 kJ·mol−1,这表明牡蛎壳粉吸附是一个动态过程。同时,在较大的初始TP浓度条件下,易发生吸附的逆过程[21]。实验中H0S0均大于0,进一步印证了载铁牡蛎壳粉吸附除磷为吸热反应,高温有助于除磷的效果。同时,牡蛎壳粉表面上磷分子解吸的自由度大于牡蛎壳粉吸附溶液磷分子的自由度[29]。这也可能是由于本实验中振荡强度较大导致的。

  • 根据式(8)和式(9),由表4可知,准二级动力学25 ℃和35 ℃的R2均大于准一级动力学对应的R2,且25 ℃和35 ℃下实验检测的吸附量均大于准一级动力学理论计算的吸附量,表明准二级动力学更适合描述载铁牡蛎壳粉吸附除磷的机理。由式(11)可得,载铁牡蛎壳粉吸附除磷的活化能为22.09 kJ·mol−1,说明吸附过程存在物理吸附和化学吸附[30-31],同时由表3可知,H0均大于40 kJ·mol−1,表明载体牡蛎壳粉吸附除磷的过程主要由化学吸附决定[27, 32-34]。为进一步研究载铁牡蛎壳粉对磷吸附的机理和限速因素,采用颗粒内扩散模型拟合得到3段斜率各不相同的直线,且直线均不过原点,结果如图8所示。由表5可知,牡蛎壳粉吸附过程可分为3个阶段:第1阶段在前60 min内,直线斜率随着温度升高而增大,说明高温有助于磷分子穿过水膜面达到牡蛎壳粉表面,该过程为膜扩散主导的吸附过程[27];第2阶段在120~480 min,35 ℃的直线斜率下降,表明牡蛎壳粉表面上的磷分子达到壳粉内部,为颗粒内扩散过程[21];第3阶段为720~1440 min,25 ℃和35 ℃对应的直线斜率最小,这表明磷分子在颗粒内的扩散减弱,吸附接近平衡,吸附过程转变为主导。在15 ℃下,载体牡蛎壳粉的准二级动力学、颗粒内扩散模型拟合参数结果差异较大,这可能是低温抑制了磷分子的运动以及固液相之间扩散,这也说明载铁牡蛎壳粉可适用的温度范围较窄(25~35 ℃)。

  • 1)当初始TP为20 mg·L−1时,载铁牡蛎壳粉最佳添加量为8.00 g·L−1,在此条件下,载铁牡蛎壳粉对初始TP浓度为20.00~50.00 mg·L−1的模拟水除磷效果最佳,TP去除率由(84.94±0.94)%升至(87.35±1.06)%,吸附量由(2.37±0.03) mg·g−1升至(5.45±0.22) mg·g−1;当pH为2.00~6.00时,载铁牡蛎壳粉TP去除率高于(80.13±3.27)%,吸附量高于(2.04±0.02) mg·g−1HCO3的存在对载铁牡蛎壳粉吸附除磷有明显的抑制作用;0.10 mol·L−1 NaOH对牡蛎壳粉解吸效果最优,解吸率为(22.97±1.77)%。

    2)经改性吸附后,牡蛎壳粉比表面积下降、孔径增大。壳粉表面以细小颗粒为主,分布均匀。XRD衍射结果表明,载铁牡蛎壳粉表面覆盖成分主要为Fe2(PO)5和Fe4(PO4)2O。

    3)当初始TP浓度为26.40~71.08 mg·L−1和温度为15~35 ℃时,Freundlich吸附模型更好地描述载铁牡蛎壳粉吸附除磷反应,载铁牡蛎壳粉对TP最大吸附量为9.81 mg·g−1。当初始TP浓度为50.00 mg·L−1和温度为15~35 ℃时,准二级动力学方程更好地描述载铁牡蛎壳粉吸附除磷过程,吸附过程存在物理吸附与化学吸附,主要由化学吸附决定。膜扩散和颗粒内扩散为主要限速步骤,配位交换和静电吸附为主要吸附机理。

参考文献 (34)

返回顶部

目录

/

返回文章
返回