-
在石油勘探、开采、炼制、清罐和储运过程中,由于事故、跑冒滴漏、自然沉降等原因会产生大量的含油污泥。这些油泥主要分为落地油泥、罐底油泥和炼厂油泥3类。罐底油泥是原油中的石蜡、沥青质、胶质等重质组分和所夹带的少量机械杂质、沙粒、泥土、重金属盐类等无机杂质在原油长期储存过程中,自然沉降在储油罐底部形成的黑稠淤泥。据统计[1-2],罐底油泥的体积通常约占储油罐的1%,我国每年平均产生100×104 t以上的罐底油泥。
罐底油泥中含有苯系物、酚类及锌、铅、铜、镍、铬等少量重金属[3],我国已将其列入危险废物名录[4]。罐底油泥与其他油泥相比,碳氢化合物(油)含量较高。目前采用的集中堆放干化和集中填埋的处理方式[5],这不仅会造成严重的环境污染,也会造成其中石油资源的极大浪费。因此,通过罐底油泥中油品的回收实现罐底油泥的资源化、减量化和无害化是石化行业极为关注且亟待解决的重要课题。
目前已开发的自罐底油泥中回收油品的方法包括溶剂萃取[6-8]、热化学[9-12]、热解[13-14]、泡沫浮选[15-16]、超声波[17]、水强化CO2萃取[18]、生物法[19-20]等。其中,通过热解法回收油品是在无氧或缺氧条件下,将油泥加热到一定温度,使其中的大分子烃类物质裂解成轻质组分,再通过冷凝方式分离获取油品的方法。热解法处理规模大并可获得高附加值油品,从而受到了广泛的关注[21]。为了获得更高的油品回收率并降低热解温度,研究人员在热解工艺、设备方面进行了深入研究。ZUOJIAO等[22]在罐底油泥热解前,对罐底油泥进行HNO3氧化/酸化预处理,使热解温度由700 ℃降到550 ℃,同时油品回收率从4.41%提高到27.53%,热解渣的亚甲基蓝吸附值达到89.25 mg·g−1。LIN等[23]利用白云石作为催化剂,在特殊的U型反应器中对罐底油泥进行催化热解,发现油品中饱和烃含量增加了45.0%,沥青质含量减少了88.5%。CHENG等[14]探讨了在罐底油泥热解过程中注入蒸汽和添加灰分对油品成分分布和质量的影响,发现注入蒸汽和添加灰分对提高油品的质量和回收率均有积极的影响。DOMINGUEZ等[24]对微波、电炉热解罐底油泥所得油品进行了比较,发现微波热解所得油品的主要成分是正构烷烃、1-烯烃和芳香族化合物,而电炉热解产生的油品与微波炉完全不同。GONG等[13]在研究罐底油泥热解回收其中油品的同时,也研究了热解碳的产量及其燃烧性能,发现当热解温度大于600 ℃时会降低油品的产量,而热解碳的产量始终维持在55%左右。截至目前,针对罐底油泥资源化的研究较多集中在回收其中的油品上,但针对热解过程产生的热解渣的利用方面则鲜见报道。ZUOJIAO等[22]和GONG等[13]对热解渣性能进行了分析,但未涉及热解渣的高附加值利用研究。本研究拟通过对罐底油泥热解产物尤其是热解渣的性能分析,寻找热解产物高附加值利用的途径,以期为罐底油泥的无害化、资源化利用提供参考。
罐底油泥热解产物高附加值利用途径
High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge
-
摘要: 为探讨罐底油泥热解产物的高附加值利用途径,利用GC-MS、XRF、XRD、SEM-EDS等方法对罐底油泥热解产物进行了详细的性能分析。在此基础上,选择3种典型阴离子Cr(VI)、
$ {{\rm{PO}}_4^{3 - }}$ 和F−和3种典型阳离子Cd2+、Pb2+和Cu2+进行了吸附去除实验。结果表明:罐底油泥热解得到的油品,其烷烃化合物含量高达50.91%,碳数主要分布在(n-C12)~(n-C30),与矿物浮选药剂制备原料的性能类似;热解得到的残渣具有疏松多孔的结构,其结构骨架由元素C、S、Fe、Ca、Al、Si、O等共同构成,且以FeS、Fe1−xS、Fe7S8、CaS、CaAl2Si2O8晶体矿物及非晶态物相形式镶嵌在其中,在水中可起到还原剂、硫化物沉淀剂和钙盐沉淀剂的作用;热解渣对水中阴、阳离子均有很高的去除率,在热解渣用量分别为3、10、12、1、0.8和0.8 g·L−1时,Cr(Ⅵ)、$ {{\rm{PO}}_4^{3 - }}$ 、F−、Cd2+、Pb2+和Cu2+去除率分别达到99.6%、98.9%、96.8%、99.3%、98.9%和99.4%。XRD分析结果表明,上述污染离子的去除是通过在热解渣表面生成FeCr2O4、Ca3(PO4)2、CaF2、CdS、Cd(OH)2、CdAl2Si2O8、PbS、Pb(OH)2、PbAl2Si2O8、CuS、Cu(OH)2、CuAl2Si2O8沉淀而实现的。本实验结果可为罐底油泥热解产物尤其热解渣的高附加值利用途径提供参考。Abstract: In order to discuss the high value-added utilization approach of the pyrolysis products, generated by tank bottom oily sludge, the properties of pyrolysis products were carefully analyzed by GC-MS, XRF, XRD and SEM-EDS techniques. On this basis, the adsorption removal experiments of three typical anions Cr(Ⅵ),$ {\rm{PO}}_4^{3 - }$ and F− and three typical cations Cd2+, Pb2+ and Cu2+ were carried out. The results showed the alkane content of the oils received by pyrolysis of tank bottom oily sludge was as high as 50.91%, and the carbon number was mainly distributed between n-C12 and n-C30, which was similar to the carbon number of the raw material for the preparation of mineral flotation agent. The structural framework of the pyrolysis residue with a loose porous structure was composed of elements C, S, Fe, Ca, Al, Si, O, etc., and the crystal minerals such as FeS, Fe1−xS, Fe7S8, CaS, CaAl2Si2O8 and the amorphous phase forms were embedded in it. And the pyrolysis residue in water could act as reducing agent, sulfide precipitator and calcium salt precipitator. It was found that pyrolysis residue was of the high removal efficiency on those anions and cations in water. When the dosage of pyrolysis residue was 3, 10, 12, 1, 0.8 and 0.8 g·L−1, the removal efficiencies of Cr(Ⅵ),$ {\rm{PO}}_4^{3 - }$ , F−, Cd2+, Pb2+ and Cu2+ reached 99.6%, 98.9%, 96.8%, 99.3%, 98.9% and 99.4%, respectively. XRD analysis revealed that the removal of those pollution ions was achieved by precipitation of FeCr2O4, Ca3(PO4)2, CaF2, CdS, Cd(OH)2, CdAl2Si2O8, PbS, Pb(OH)2, PbAl2Si2O8, CuS, Cu(OH)2, CuAl2Si2O8 on the surface of pyrolysis residue. The experimental results provided a reference for the high value-added utilization of pyrolysis products, especially pyrolysis residue.-
Key words:
- tank bottom oily sludge /
- oils /
- pyrolysis residue /
- pollution anions /
- pollution cations /
- adsorption material
-
表 1 GC-MS法鉴定的油品中主要化合物及其相对含量
Table 1. Main compounds identified by GC-MS and their relative contents
序号 时间/min 化合物 面积比/% 序号 时间/min 化合物 面积比/% 1 6.23 1-C9烯烃 0.04 30 20.91 1-C17烯烃 1.09 2 9.66 n-C9 0.06 31 20.99 n-C17 3.55 3 11.23 1-C10烯烃 0.22 32 21.05 Pr 1.86 4 11.37 n-C10 0.22 33 21.99 1-C18烯烃 1.00 5 12.88 1-C11烯烃 0.50 34 22.07 n-C18 2.80 6 13.02 n-C11 0.69 35 22.18 Ph 1.18 7 14.43 1-C12烯烃 0.76 36 22.50 菲 0.32 8 14.55 n-C12 1.72 37 22.60 蒽 0.12 9 14.69 萘 0.14 38 22.73 甲基菲 0.16 10 14.75 i-C13 0.58 39 23.03 1-C19烯烃 1.08 11 15.28 C6-环己烷 0.55 40 23.09 n-C19 2.80 12 15.49 i-C13 0.35 41 24.01 1-C20烯烃 0.65 13 15.61 i-C13 0.70 42 24.07 n-C20 2.43 14 15.90 1-C13烯烃 1.03 43 24.95 1-C21烯烃 0.55 15 16.00 n-C13 2.57 44 25.01 n-C21 2.41 16 16.32 2-甲基萘 0.33 45 25.85 1-C22烯烃 0.63 17 16.59 1-甲基萘 0.35 46 25.91 n-C22 2.01 18 17.06 i-C14 0.80 47 26.76 n-C23 2.52 19 17.26 1-C14烯烃 1.15 48 27.60 n-C24 2.33 20 17.36 n-C14 3.58 49 28.46 n-C25 2.28 21 17.83 C2-萘 0.37 50 29.39 n-C26 2.08 22 18.04 C2-萘 0.55 51 30.41 n-C27 1.86 23 18.10 C2-萘 0.74 52 31.58 n-C28 1.57 24 18.18 i-C15 1.43 53 32.92 n-C29 1.40 25 18.28 C2-萘 0.26 54 34.49 n-C30 1.15 26 18.55 1-C15烯烃 1.15 55 36.37 n-C31 0.95 27 18.65 n-C15 4.10 56 38.61 n-C32 0.72 28 19.77 1-C16烯烃 1.11 57 44.61 n-C33 0.34 29 19.85 n-C16 3.89 注:面积比总计为67.75%。 表 2 热解渣的XRF分析
Table 2. XRF analysis of pyrolysis residue
元素 质量分数/% 标准差 元素 质量分数/% 标准差 Fe 25.35 0.330 Sr 0.078 0.003 S 18.87 0.210 Ni 0.062 0.01 Ca 5.920 0.200 Ti 0.062 0.022 Al 4.210 0.440 Cu 0.039 0.007 Si 2.160 0.130 Cr 0.023 0.009 Cl 0.398 0.030 Pb 0.007 0.002 Mn 0.394 0.028 Sb 0.006 0.002 Zn 0.300 0.013 Zr 0.005 0.001 Ba 0.278 0.013 As 0.004 0.002 K 0.183 0.034 Mo 0.003 0.001 V 0.100 0.015 Nb 0.003 0.001 表 3 热解渣中重金属质量分数及其浸出浓度和排放标准
Table 3. Mass fraction and leaching concentration of heavy metals in pyrolysisresidue and discharge standards
重金属
种类重金属质量
分数/%重金属浸出浓度/
(mg·L−1)排放标准/
(mg·L−1)A1) B2) C3) Cu 0.032 ND ND 500 Cr 0.021 3.16 25.19 500 Pb 0.007 ND 0.468 1 000 Zn 0.20 22.62 432 2 000 As 0.004 0.038 9.369 500 Ni 0.071 3.02 52.61 1 000 注:ND为未检出;1)为HJ 557-2010;2)为HJ/T 299-2007;3)为GB 8978-1996。 -
[1] 黄永港, 徐如良, 侯天明, 等. 油罐底含油污泥处理技术[J]. 石油炼制与化工, 2003, 34(5): 60-62. doi: 10.3969/j.issn.1005-2399.2003.05.015 [2] LIU J G, JIANG X M, HAN X X. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1205-1213. [3] WANG Y H, ZHANG X M, PAN Y Y, et al. Analysis of oil content in drying petroleum sludge of tank bottom[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18681-18684. doi: 10.1016/j.ijhydene.2017.04.153 [4] 王晨. 2016年8月1日起施行新版《国家危险废物名录》[J]. 精细与专用化学品, 2016, 24(7): 29. [5] 葛丹, 赵晓非, 张晓阳, 等. 全油田含油污泥的综合利用[J]. 化工科技, 2016, 24(3): 91-94. doi: 10.3969/j.issn.1008-0511.2016.03.020 [6] 李美蓉, 张建, 桂召龙. 原油罐底泥的溶剂提取法处理技术[J]. 石油大学学报(自然科学版), 2005, 29(1): 120-122. [7] 巫树锋, 吴迪, 刘发强, 等. 石油储运罐底油泥溶剂萃取工艺优化[J]. 石化技术与应用, 2014, 32(2): 170-173. doi: 10.3969/j.issn.1009-0045.2014.02.016 [8] 巫树锋, 刘发强, 杨岳, 等. 罐底含油污泥萃取溶剂的选择与优化[J]. 环境工程学报, 2013, 7(8): 3191-3195. [9] 姜亦坚. 油田罐底油泥热化学处理工艺技术[J]. 化学工程师, 2014(7): 36-37. [10] 杨飞飞, 回军, 李宝忠, 等. 热化学清洗法处理罐底油泥的研究[J]. 当代化工, 2014, 43(6): 890-892. doi: 10.3969/j.issn.1671-0460.2014.06.002 [11] 徐轶. 罐底油泥处理技术研究[J]. 辽宁化工, 2015, 44(1): 105-108. [12] 阎松, 许维相, 郭铁, 等. 罐底油泥的药剂法处理研究[J]. 石油化工高等校学报, 2015, 28(3): 22-26. [13] GONG H Q, WANG Z T, WANG Z B, et al. Study on pyrolysis characteristics of tank oil sludge and pyrolysis char combustion[J]. Chemical Engineering Research and Design, 2018, 135: 30-36. doi: 10.1016/j.cherd.2018.05.027 [14] CHENG S, WANG Y H, FUMITAKE T, et al. Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis[J]. Applied Energy, 2017, 185: 146-157. doi: 10.1016/j.apenergy.2016.10.055 [15] 陈红硕, 刘佳驹, 林俊岭, 等. “球磨+浮选”联合工艺处理罐底油泥的效果[J]. 环境工程学报, 2019, 13(5): 1186-1193. doi: 10.12030/j.cjee.201811020 [16] RAMASWAMY B, KAR D D, DE S. A study on recovery of oil from sludge containing oil using froth flotation[J]. Journal of Environmental Management, 2007, 85(1): 150-154. [17] 张小庆, 王枫, 匡民明, 等. 超声波辅助破乳法回收石化罐底油泥中的原油[J]. 化工环保, 2015, 35(4): 399-402. doi: 10.3969/j.issn.1006-1878.2015.04.014 [18] WU X F, QIN H B, ZHENG Y X, et al. A novel method for recovering oil from oily sludge via water-enhanced CO2 extraction[J]. Journal of CO2 Utilization, 2019, 33: 513-520. doi: 10.1016/j.jcou.2019.08.008 [19] TAIWO E A, OTOLORIN J A. Oil recovery from petroleum sludge by solvent extraction[J]. Journal of Petroleum Science and Engineering, 2009, 27: 836-844. doi: 10.1016/j.petrol.2018.06.031 [20] EVANS M N, CHIDINYANE T M, OLUWADEMILADE M F, et al. Biosurfactant assisted recovery of the C5-C11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria[J]. Journal of Environmental Management, 2017, 196: 261-269. [21] ZHANG Y N, CUI Y L, LIU S Y, et al. Fast microwave-assisted pyrolysis of wastes for biofuels production: A review[J]. Bioresource Technology, 2019, 297: 122480. [22] ZUOJIAO K C, ZHANG Z, LI P J, et al. Enhanced oil recovery and residues utilization of oil sludge through nitric acid pretreatment process[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103089. doi: 10.1016/j.jece.2019.103089 [23] LIN B C, HUANG Q X, ALI M, et al. Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil[J]. Proceedings of the Combustion Institute, 2018, 37(2): 3101-3108. doi: 10.1016/j.proci.2018.05.143 [24] DOMINGUEZ A, MENENDEZ J A, INGUANZO M, et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges[J]. Journal of Chromatography A, 2003, 1012(2): 193-206. doi: 10.1016/S0021-9673(03)01176-2 [25] 中华人民共和国环境保护部. 固体废物浸出毒性浸出方法水平振荡法: HJ 557-2010[S]. 北京: 中国环境科学出版社, 2010. [26] 中华人民共和国环境保护部. 固体废物浸出毒性浸出方法硫酸硝酸法: HJ/T 299-2007[S]. 北京: 中国环境科学出版社, 2007. [27] 国家环境保护局. 污水综合排放标准: GB 8978-1996[S]. 北京: 中国环境科学出版社, 1996. [28] 于世林. 图解气相色谱技术与应用[M]. 北京: 科学出版社, 2010. [29] LIU C H , ZHANG Y , SUN S S. Oil recovery from tank bottom sludge using rhamnolipids[J]. Journal of Petroleum Science and Engineering, 2018, 170: 14-20. [30] 胡岳华. 矿物浮选[M]. 长沙: 中南大学出版社, 2014.