脱硫废水对渣水系统的腐蚀影响

林晓锋, 钟天东, 童鑫红, 陈光宇, 张净瑞, 郑煜铭. 脱硫废水对渣水系统的腐蚀影响[J]. 环境工程学报, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151
引用本文: 林晓锋, 钟天东, 童鑫红, 陈光宇, 张净瑞, 郑煜铭. 脱硫废水对渣水系统的腐蚀影响[J]. 环境工程学报, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151
LIN Xiaofeng, ZHONG Tiandong, TONG Xinhong, CHEN Guangyu, ZHANG Jingrui, ZHENG Yuming. Effect of desulfurization wastewater on slag water system corrosion[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151
Citation: LIN Xiaofeng, ZHONG Tiandong, TONG Xinhong, CHEN Guangyu, ZHANG Jingrui, ZHENG Yuming. Effect of desulfurization wastewater on slag water system corrosion[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151

脱硫废水对渣水系统的腐蚀影响

    作者简介: 林晓锋(1994—),男,硕士研究生。研究方向:废水处理技术。E-mail:linxiaofen@iue.ac.cn
    通讯作者: 郑煜铭(1978—),男,博士,研究员。研究方向:污染防治材料与技术。E-mail:ymzheng@iue.ac.cn
  • 基金项目:
    福建省中科院STS计划配套项目(2018T3002);厦门市科技计划项目(3502Z20193074)
  • 中图分类号: X703

Effect of desulfurization wastewater on slag water system corrosion

    Corresponding author: ZHENG Yuming, ymzheng@iue.ac.cn
  • 摘要: 利用渣水系统处理脱硫废水是燃煤电厂脱硫废水实现低成本零排放处理的一个重要发展方向。为考察脱硫废水引入渣水系统后对设备材质的腐蚀行为的影响,采用动态失重法与电化学法分别对系统内的金属材质进行了腐蚀行为研究,分别考察了温度、pH、电导率3个因素对渣水系统的影响。结果表明: 1Cr18Ni9Ti钢和304不锈钢的腐蚀速率低于0.1 mm·a−1,属耐腐材质,适用于该电厂的运行工艺;而T12钢、65Mn钢、Q235钢、20CrMnTi钢等腐蚀速率高于1.0 mm·a−1,无法长期满足电厂的运行条件,应采取相应的防腐措施。此研究结果可以为燃煤电厂常用金属材质的腐蚀行为提供了科学依据和数据参考,为电厂的安全稳定运行提供借鉴和指导。
  • 微塑料是由塑料制品在紫外线、风力及物理破碎作用衍生而来的新型污染物,已受到国内外研究人员的广泛关注[12]. 近年来,在海洋、河流、湖泊、地下水甚至自来水中均发现了微塑料的存在[3]. 由于其粒径较小,容易被生物误吞,并通过食物链进入到人体[4]. 此外,微塑料由于具有较大的比表面积和疏水性,其还容易吸附环境中的有机污染物和重金属等,所形成的复合污染体会对各种生物产生不同程度的影响[5]. 因此,对环境中的微塑料进行治理尤为重要.

    混凝是一种简单、稳定及低成本的处理技术. 然而,由于微塑料密度较低及其粒径变化较大,低剂量混凝剂的水解产物对其吸附架桥和卷扫能力较弱[6]. 为满足较高的微塑料去除效果,通常需投加较大剂量的混凝剂,由此不可避免会存在药剂和色度残留问题等[7]. 因此,为解决上述问题,有必要探索提高混凝过程对微塑料的去除效果的途径. 助凝剂是常用的强化混凝性能的材料之一,其可提高絮体的吸附和沉降能力,从而提高混凝剂对微塑料的去除效果[8]. 如Ma等[9]研究表明,在pH为7时,加入15 mg·L−1聚丙烯酰胺(PAM)后,5 mmol·L−1的AlCl3·6H2O对粒径< 0.5 mm的PE颗粒的去除效率从25.83%提高到45.34%. 但鉴于PAM水解单体的生物毒性,研究者们开始关注具有高生物亲和性和可降解性的天然聚合物,如淀粉、明胶、纤维素衍生物和微生物多糖等[10]. 其中,壳聚糖等多糖具有较高的离子电荷密度和较长的高分子链,还可对水中的微粒起到桥联作用,使其可作为助凝剂,提高传统混凝剂去除水中微粒的效率[11]. 如Huang等[12]研究发现,在常规剂量下,聚合氯化铝(PAC)与壳聚糖(CTS)的复配体系对纯水中PET微塑料的去除率为PAC体系的近3倍,CTS的加入可提升单一PAC混凝体系的电荷中和及吸附作用. Zhao等[13]研究表明,适度添加昆布多糖(LA)可使聚合氯化铝对天然有机物(NOM)的混凝效率提高15%—35%,且与PAM的助凝效果相当.

    作为一种重要的藻类资源,LA是一种表面带负电荷的链状聚合物,其具有的线性大分子结构有利于产生架桥效应,与合成混凝剂共同使用过程中起到强化混凝的作用[14]. 此外,LA主要含有C、H和O,元素分布集中,较易预测其在混凝过程中的产物,从而分析其助凝机制[13]. 近年来,研究人员主要关注LA的医用功能[15],其在微塑料混凝中的应用研究较少,为了提高微塑料混凝治理中的生物安全性并保持较高的净化效率,本研究创新性地提出在微塑料混凝处理过程中使用LA作为聚合氯化铝铁(PAFC)的助凝剂.

    本文重点研究了LA对PAFC混凝去除PE微塑料的强化性能,评价LA对PAFC混凝去除PE微塑料的强化效果,讨论PAFC及PAFC-LA等不同系统中可能存在的混凝机制,考察PAFC及PAFC-LA等不同系统对不同水质条件的适应性,为微塑料的混凝治理提供技术依据.

    聚合氯化铝铁(PAFC)、昆布多糖(LA)、阳离子型聚丙烯酰胺(CPAM)、阴离子型聚丙烯酰胺(APAM)、海藻酸钠(SA)、壳聚糖(CTS)、腐殖酸(HA)、十六烷基三甲基溴化铵(CTAB)购自上海麦克林生化科技有限公司,盐酸(HCl)、氢氧化钠(NaOH)均购自西陇科学股份有限公司,氯化钠(NaCl)、硫酸钠(Na2SO4)、碳酸钠(Na2CO3)均购自国药化学试剂有限公司,所有试剂均为分析纯. 聚乙烯(PE)购自东莞华创塑化有限公司. 0.45 μm混合纤维素过滤膜购自天津金腾实验设备有限公司.

    JSF-7200F型场发射扫描电镜,日本电子;Nicolet iS5型傅里叶变换红外光谱仪,美国赛默飞;Zetasizer Nano ZS90型纳米粒度仪,英国马尔文;ESCALAB 250Xi型X射线光电子能谱仪,美国赛默飞.

    混凝剂在使用前均配制成溶液,每次实验的PE微塑料重量均为100 mg,CTAB作为分散剂,其投加量固定为100 mg·L−1;投加量影响实验中,采用氢氧化钠溶液将pH预先调至8(除pH影响实验外,均采用此值),微塑料尺寸为50—150 μm(除微塑料尺寸影响实验外,均采用此值),PAFC和LA投加量范围分别为0—250 mg·L−1和0—30 mg·L−1;微塑料尺寸影响实验中,PAFC和LA的投加量分别固定为150 mg·L−1和20 mg·L−1,以下实验均采用此值,所考察范围分别为300—500、150—300、50—150、<50 μm等;pH影响实验所考察的范围分别为3、5、7、8、9、11;腐殖酸(HA)影响实验中,HA的质量浓度为1、10、50 mg·L−1;离子共存实验中,Cl、SO42-、CO32-的质量浓度分别为30、300 mg·L−1;在真实水环境混凝实验中,将微塑料均匀分散至所采集的湖水和自来水样中,其余实验条件与纯水环境一致. 所有混凝试验均在MY3000-6E型混凝试验搅拌仪进行(潜江梅宇仪器有限公司). 搅拌程序设置为快速搅拌(300 r·min−1)1 min和慢速搅拌(70 r·min−1)10 min,反应后静置沉淀30 min,所有实验均设置3组平行.

    微塑料的定量方法尚未统一,重量法是一种相对准确的方法,具体测试过程如下[16],首先,将滤膜置于烘箱中60 °C下干燥,直至恒重,并将质量计为M1(g). 混凝实验完成后,取出溶液上层的微塑料,加入1 mol·L−1的盐酸以去除杂质,然后进行抽滤、干燥和称重,此时将有滤膜的微塑料质量计为M2(g). 微塑料的去除率η(%)如下式1计算.

    stringUtils.convertMath(!{formula.content}) (1)

    SEM测试:取适量样品粘在导电胶上,然后喷金观察,测试过程中的加速电压为10 kV,工作距离为9.7 mm;FTIR测试:采用溴化钾压片法,波数测定范围为400—4000 cm−1;Zeta电位测试:取适量微塑料加入去离子水中,混匀后测定Zeta电位,当混凝沉淀后,测定上清液的Zeta电位;X 射线光电子能谱仪(XPS)测试:窄谱扫描时的通能为30 eV,步长为0.1 eV.

    在混凝实验前考察PE微塑料的自沉效率,如图1所示,在未添加PAFC及LA的情况下,仅约10.3%的PE微塑料会自然沉降,这主要由于PE微塑料的密度低于水,这与Zhou等[16]研究结果基本一致. 因此,需进一步测试PAFC及LA对微塑料的混凝效果. 在PAFC的常规用量(0—100 mg·L−1)下,絮体数量较少且存在絮体上浮问题,从而影响水中PE微塑料的去除效果,这与先前研究报道的常规混凝剂用量的混凝效率不足的结果相一致[9]. 此外,在紧急情况下,使用大剂量的混凝剂是有必要的. 因此,本实验主要考察较大剂量(0—250 mg·L−1)的PAFC对PE微塑料的混凝效果.

    图 1  不同投加量的PAFC和PAFC-LA复合混凝体系对PE微塑料的去除率
    Figure 1.  Removal rate of PE microplastics by PAFC and PAFC-LA composite flocculation system with different dosages

    图1所示,单独使用PAFC进行混凝时,当药剂用量由100 mg·L−1增加至250 mg·L−1,对PE微塑料的去除效率从66.5%相应提高到84.5%,值得关注的是,随混凝剂用量继续增加,混凝效率的上升速率逐渐减缓,这表明单纯使用PAFC可去除水中的微塑料,但存在混凝剂用量较大且混凝效率受限等问题,这与之前的研究结果相一致[17]. 因此,为有效减少混凝剂用量且提高微塑料的去除效果,需在混凝过程中加入助凝剂. 此外,在PAFC-LA复配体系的混凝效果测试前,还考察单独使用LA的絮凝效果. 如图1所示,由于生物大分子所具备的吸附架桥等作用,当LA投加量为5 mg·L−1时,微塑料的去除率可达到29.0%,但进一步增加LA的药剂量,对微塑料的絮凝效果提升较为有限,如投加量增加到30 mg·L−1时,PE微塑料的去除率也仅为36.6%. 因此,单一的PAFC或LA均较难达到较好的微塑料去除效果.

    图1所示,在PAFC-LA体系中,LA的加入明显改善微塑料混凝效果,当PAFC投加量为100 mg·L−1时,20 mg·L−1的LA使微塑料的去除效率由66.5%提升至76.9%. 随着LA投加量进一步增加至30 mg·L−1,微塑料的去除效率略微下降. 因此,为达到最佳的PE微塑料去除效果,需要研究PAFC和LA的不同投加量下的混凝效果,如图1所示,微塑料的去除效果随着PAFC和LA投加量的增加而增加. 当PAFC和LA的投加量分别为150 mg·L−1和20 mg·L−1时,可达到较佳的去除率(95.2%),并大幅减小单一体系中的混凝剂用量,从而间接减少水中的药剂残留量. 但进一步增大PAFC用量,LA的助凝作用较为有限,此外,当水中LA浓度过高时,溶液中会出现浑浊或絮体上浮现象,从而导致微塑料的去除效率降低,这与Zhang等[6]研究结果一致. 以上结果表明,LA可增强PAFC混凝去除PE微塑料的效果,合适的PAFC和LA的浓度和配比可实现对微塑料的最佳去除效率.

    助凝剂的存在可能改善一种或几种混凝机制,提高污染物去除率[18]. 然而,不同助凝剂的特性可能导致助凝效果的差异[19]. 通过比较不同助凝剂与PAFC复配的去除性能,探索LA替代传统助凝剂的可行性,为微塑料的复配混凝系统的构建提供必要的技术依据. 助凝剂的投加量均为20 mg·L−1,五种复配体系的实验结果如图2所示,LA、SA、CTS等天然高分子絮凝剂与PAFC复配对微塑料的去除效率较高,分别达到95.2%、90.4%和91.0%,同等条件下,CAPM、APAM等人工合成高分子絮凝剂与PAFC复配的去除率为79.3%—83.5%,低于天然絮凝剂的助凝性能. 然而,有研究表明PAM与混凝剂复配对微塑料的去除效率高于SA及ASA[6]. 与其他研究的实验条件比较结果表明,微塑料去除效率的差异可能是由于微塑料种类及混凝剂种类等因素造成的. 如Zhang等[6]开展PAM、SA及ASA与PAC复配对PET微塑料的混凝性能研究,在PAC及助凝剂投加量分别为200 mg·L−1及100 mg·L−1时,三体系对PET微塑料的去除效率分别为91.5%、73.4%及77.6%. 因此,在PE微塑料的去除效果方面,PAFC与LA复配混凝体系具有较好的性能,从强化混凝效果角度考虑,LA替代传统助凝剂是可行的,有必要进一步探讨该体系对微塑料的混凝机理.

    图 2  不同助凝剂与PAFC复配对PE微塑料的去除率
    Figure 2.  Removal rate of PE microplastics by different coagulant aids combined with PAFC

    电荷中和是混凝过程的主要机理之一,无机金属混凝剂水解所形成的阳离子产物,可中和微塑料表面的负电荷,使水中微塑料脱稳[20]. 如图3所示,在混凝前,pH为8时的PE微塑料的Zeta电位测量值为−33.03 mV,其表面带有负电荷,此时微塑料由于相互间的静电斥力作用而保持稳定,因此,PE微塑料在水中沉降效率仅为10.3%. 投加聚合氯化铝铁后所形成的水解产物带正电荷,体系的Zeta电位迅速由初始的−33.03 mV上升至9.17 mV,微塑料颗粒间斥力大大减弱,更容易发生凝聚现象. 值得关注的是,在PAFC-LA混凝体系中,Zeta电位显著降低至0.92 mV,这可能是由于LA的含氧基团在碱性条件下发生去质子化而带负电荷,中和体系中净余的正电荷,从而使Zeta电位降低. 一般认为,体系中Zeta电位越接近于0,颗粒间排斥作用较弱,微塑料更易发生聚沉现象[16]. 以上分析结果表明,LA的加入可能改善了PAFC体系的电荷中和作用效果.

    图 3  混凝前后PE微塑料Zeta电位的变化
    Figure 3.  Changes of PE microplastics zeta potential before and after coagulation

    吸附架桥也是混凝的重要机理之一. 本实验采用SEM观察PAFC及PAFC-LA体系的絮体表面形貌. 如图4a所示,PAFC产生的絮体具有较高的聚集程度,且呈现堆叠形态,微塑料附着或结合于絮体中,这表明混凝剂水解过程中可能发生吸附架桥或卷扫捕集效应;当溶液中加入LA后,如图4b所示,复配混凝体系引起的絮体具有明显的支化结构,改善了单一PAFC产生絮体的堆叠状态,使形成的絮凝体得以完全扩展,提升絮体的吸附架桥能力,这其中的机制可能是LA中的—OH作为路易斯碱,可将孤对电子转移到PAFC的金属原子上,形成相对稳定的Fe/Al-LA复合体,通过此桥接作用,进一步强化絮体生长,形成桥联网络结构[13]. 即LA的负电荷官能团可通过静电引力作用与带正电的混凝剂水解产物发生吸附架桥作用,改善絮体的沉降性能,进一步提高PE微塑料的混凝效果.

    图 4  PAFC(a)和PAFC-LA(b)体系中的絮体的扫描电镜图像
    Figure 4.  SEM images of flocs in PAFC(a) and PAFC-LA(b) systems

    为进一步阐明PAFC-LA与PE微塑料的吸附架桥机制,通过FTIR分析了PE及絮凝体的表面官能团. 如图5所示,在PE微塑料的红外光谱图中,在2915 cm−1和2848 cm−1附近分别出现由 —CH2不对称和对称伸缩振动引起的吸收峰[21],而1471 cm−1和717 cm−1附近出现的吸收峰可归因于 C—H的弯曲振动和摇摆振动[22],以上四处PE微塑料的特征峰强在混凝后明显减弱,表明部分微塑料的表面被混凝剂水解产物所覆盖或被包裹至絮体中[23].

    图 5  PE和絮体的红外光谱
    Figure 5.  FTIR spectrum of PE and flocs

    与PE微塑料的图谱相比,PAFC加入后所形成的絮凝体出现4处新的吸收峰,如在1638 cm−1和1057 cm−1附近出现了Al/Fe—OH中羟基弯曲振动引起的吸收峰[24],3250—3410 cm−1出现的宽峰可能与—OH的伸缩振动有关[25],以上吸收峰可能与聚合氯化铝铁的水解产物有关. 此外,在533 cm−1附近还出现Fe/Al—O弯曲振动引起的吸收峰[25]. 以上结果表明,聚合氯化铝铁充分参与混凝反应,含铝、铁化学键发生断裂并重组生成等羟基铝铁络合物,通过静电引力作用吸附表面带负电荷的微塑料颗粒,使PE微塑料脱稳沉降. 值得关注的是,在LA加入后,—OH、Al/Fe—OH及Fe/Al—O的峰形更为尖锐,且向低波数方向移动,这可能是LA中的—OH通过氢键或与絮体表面的铝、铁产生更为稳定的吸附架桥作用,进一步提升PAFC的混凝效果,这与SEM分析结果一致. Zhang等[6]研究也表明含有氨基和羟基的助凝剂,可将孤用电子对转移到金属离子的空轨道上形成稳定的配合物,从而提升PAC去除微塑料的能力.

    为进一步明确絮凝体中的铝及氧元素的化学态,采用XPS技术对干燥后的絮凝体进行分析,如图6a所示,530.45 eV、531.56 eV及532.94 eV的O 1s峰值分别归因于Al—O、Al—OH及吸附水[26],表明絮体中存在羟基铝离子等PAFC的水解产物,其可增强絮凝体与PE微塑料间静电吸附作用. 值得关注的是,如图6b所示,当加入LA后,Al—OH的含量由65.34%上升至72.38%,这可能由于LA的羟基与混凝剂中铝发生了作用,促进Al—OH的生成,增强PAFC对PE微塑料的吸附架桥效应,与FTIR分析结果一致. 如图6c所示,谱图中出现两处Al 2p的特征峰(74.52 eV,73.96 eV). 结合能为74.52 eV的峰可归因于六面体状态存在的Al[6,12],而73.96处的峰可归因于四面体形式存在的Al[6,12],絮体中六面体铝与四面体铝的比值在LA加入前后并未发生明显变化,表明LA存在并没有显著改变PAFC水解产物中铝的类型,这与Zhang等[6]研究结果一致. 如图6d所示,在PAFC-LA的体系中,Al的结合能位置发生明显的偏移,这可能是LA中的官能团与铝作用的结果,这与O 1s谱图结果一致. 由此可推断,LA的加入可改善PAFC的吸附架桥能力.

    图 6  絮凝体中Al 2p和O 1s的高分辨窄扫谱图
    Figure 6.  High-resolution narrow-sweep spectra of Al 2p and O 1s in flocks

    溶液pH会影响混凝剂的表面电荷和水解形态,从而影响其混凝效果[13]. 图7a对比了PAFC和PAFC-LA在酸性、中性和碱性条件下对PE微塑料的混凝去除率. 如图7a所示,随着pH值的变化,PAFC-LA对PE微塑料的混凝效果均优于单一PAFC体系,且两种体系的混凝效率均呈现先升高后降低趋势,在pH为8时,达到微塑料的最佳混凝效果,这表明两种混凝体系在不同pH下的混凝机理是一致的,LA的加入主要起到增强混凝效果的作用. 在酸性条件下(pH为3—5),体系中大量H+与混凝剂中的—OH发生反应,降低了水解产物的聚合程度[27],从而导致混凝效率降低,但LA由于其所具有的特殊的大分子结构,有效地弥补了对PAFC混凝效率的抑制. 在中性及弱碱性条件(pH为7—8)下,铝、铁的种类主要是低电荷多核络合离子或氢氧化物,可进一步对微塑料产生吸附架桥或卷扫捕集效应,此外,在该条件下,LA通过去质子化和解离作用产生了更多有效的吸附活性位点[13],且中和体系中多余的正电荷,从而以增强电中和和吸附架桥的形式进一步提高了PAFC对PE微塑料的去除能力. 在pH>8时,随着PAFC的水解程度进一步提高,Al(OH)3等水解产物逐渐增加,而Al(OH)2+及Fe(OH)2+等水解物种逐渐减少[28],减弱混凝体系对PE微塑料的电荷中和能力,因此,PAFC-LA对PE微塑料的去除率呈现下降趋势. 本实验微塑料去除效果最佳时所对应pH与其他研究成果较不一致,这可能是混凝剂和助凝剂的种类的不同所致,如He等[29]分别采用PAC和APAM作为混凝剂和助凝剂,在pH为7时,对PE微塑料的去除率最高.

    图 7  不同影响因素对PAFC and PAFC-LA体系去除效率的影响
    Figure 7.  The influence of different factors on the removal efficiency of PAFC and PAFC-LA systems

    在实际水体中,水中微塑料的颗粒大小差异较大,其中小粒径微塑料(粒径<500 μm)占比较多,而不同颗粒大小的微塑料去除效率通常也不一致. 因此,选用300—500 μm、150—300 μm、50—150 μm及<50 μm的PE微塑料作为研究对象. 结果如图7b所示,粒径对PAFC及PAFC-LA体系的混凝效率的影响趋势基本一致,且LA的加入提升PAFC对不同粒径微塑料的去除效率. PE微塑料的粒径为50—150 μm时,各体系均显示出较好的去除效果(78.4%及95.2%),且随着粒径进一步增大或减小时,PE微塑料去除效率均出现下降,Zhou等[16]研究也表明,对于<5000 μm的PE微塑料,粒径越小,其去除效率越高. 然而Shahi等[30]研究表明,对粒径为10—100 μm的微塑料,随着颗粒粒径的增大,其混凝去除效率随之升高. 与较大粒径微塑料相比,小粒径微塑料更难以克服水的表面张力,其沉降性能会受到抑制[16],这可能是50—150 μm的微塑料去除率高于<50 μm的微塑料的原因. 综上所述,过小或过大的微塑料粒径对PAFC的混凝沉降效果具有一定的抑制作用,但LA的加入提升其对PE微塑料的去除效率.

    天然水体中广泛存在NOM,其表面存在丰富的官能团会影响无机混凝剂对微塑料的混凝性能[31]. HA是一种常见NOM,因此,本研究将其作为目标考察对象. 从图7c可以看出,在PAFC-LA体系中,HA的存在抑制PE微塑料的去除,当HA浓度从0 mg·L−1增加到50 mg·L−1时,PE的去除率由95.2 %下降至73.6%,这可能是由于HA表面富含官能团,可吸附在PE及LA的表面,占据其活性位点,从而阻碍了PE、LA与PAFC水解产物之间的相互作用,减弱了混凝体系吸附架桥能力[32]. 与之相反,由于单一PAFC混凝机制主要受电荷中和作用控制,因此,HA的存在对其去除微塑料的抑制作用较小,这与表征分析结果一致.

    天然水体中通常含有多种离子,如碳酸根、硫酸根及氯离子等,这些离子可能会影响混凝性能[29]. 因此,有必要研究共存离子对复合体系混凝效果的影响. 如图7d所示,对于PAFC及PAFC-LA体系,PE的去除效率均随阴离子浓度的增加而降低,即阴离子的存在均抑制PE微塑料的去除. 据报道,水中的Cl、SO42-会与带正电荷的羟基铝离子发生反应,而造成混凝体系中Al(OH)2+、Al(OH)2+等水解产物的减少[33]. 此外,CO32-的存在会促进混凝剂水解生成氢氧化物,同样会造成带正电荷羟基铝离子的减少,从而减弱混凝体系的电荷中和及吸附架桥作用,使PE微塑料的去除效率下降. Zhou等[16]在用PAC和氯化铁去除PE微塑料的实验中,也发现SO42-对混凝效果有负面影响,但与Zhang等[6]采用PAC去除PET的研究结果相反,不同的实验结果可能是混凝剂和微塑料的类型差异造成的. 值得关注的是,在不同的离子及浓度下,PAFC-LA对PE微塑料的去除效果均优于单一PAFC混凝体系,表明LA的加入提升复配混凝体系的吸附架桥能力,减弱了共存离子所带来的负面效应.

    采集了两种真实水样,包括自来水(tap water)及湖水(lake water),与实验室纯水(pure water)进行对比,进一步评价PAFC及PAFC-LA混凝体系对PE微塑料的去除效果. 如图8所示,对于PAFC体系,湖水环境中的微塑料去除效果(82.2%)略优于纯水条件(78.4%),这可能由于湖水中存在多种悬浮物,在絮凝过程中被絮体捕集,从而增加絮凝体的质量,提高微塑性颗粒的沉降率[12]. 此外,由图7c可看出,HA等水体天然有机物对PAFC去除PE微塑料的影响较为有限,如HA为50 mg·L−1时,PAFC对PE微塑料的去除率仅由78.4%略微下降至73.1%,即吸附架桥作用可能不是PAFC对微塑料的主要混凝机理. 因此,在湖水环境中,PAFC对PE微塑料的去除效果出现略微上升现象. 与之相反,PAFC-LA体系在湖水中的混凝效率(92.2%)略低于纯水环境(95.2%). 这可能由于湖水中存在多种有机物,会阻碍了LA与PAFC水解产物之间的吸附架桥作用[32],如图7c也可看出,天然有机物对PAFC-LA的混凝性能影响较大,如HA为50 mg·L−1时,PAFC-LA混凝体系对PE微塑料的去除率由95.2%下降至73.6%. 同样,Gong等[34]研究也发现,在实际地表水中加入PS—COOH,由于地表水中存在NOMs,导致其去除效率降低. 因此,在吸附架桥作用受到较大抑制及絮体质量变大两种因素影响下,导致PAFC-LA在湖水环境的混凝效果出现略微下降趋势. 而对于自来水环境,PAFC及PAFC-LA混凝体系对PE的去除效果均出现了下降现象,这可能是由于自来水中存在阴离子,其会减少水中带正电荷羟基金属离子等水解物种的含量,造成混凝体系对微塑料的去除率出现下降趋势,与共存离子的实验结果一致. 但与Huang等[12]采用PAC-CTS去除PET微塑料的研究成果较不一致,这可能与微塑料及混凝剂的种类不同有关. 值得关注的是,不同环境下,PAFC-LA对PE的去除效果均优于单一PAFC,表明PAFC-LA复配体系能更好的适应水体中复杂的环境条件,对微塑料的治理具有更广阔的应用前景.

    图 8  真实水环境中PE微塑料的去除效率
    Figure 8.  The removal efficiency of PE microplastics in actual water treatment

    本研究测试LA在PAFC去除PE微塑料时的强化混凝性能,添加适量的LA可提高PAFC对PE微塑料的混凝效率,当PAFC和LA的投加量分别为150 mg·L−1和20 mg·L−1时,单一PAFC和PAFC-LA对PE微塑料的的去除率分别达到78.4%和95.2%. PAFC和PAFC-LA体系对PE微塑料的混凝机理是一致的,昆布多糖结构中的负电荷基团的桥联作用使PAFC的电荷中和和吸附架桥的作用得到改善,从而对PE微塑料表现出更优异的混凝效果. 此外,LA在较宽的pH、粒径、离子和腐殖酸共存下均发挥了良好的助凝效果. 综上所述,在混凝工艺中,LA在去除PE微塑料方面表现出较优异的应用潜力.

  • 图 1  渣水系统示意图

    Figure 1.  Schematic diagram of slag water system

    图 2  实验流程图

    Figure 2.  Experimental flow chart

    图 3  不同材质在最优条件下的电化学极化曲线

    Figure 3.  Electrochemical polarization curves of different materials under the corresponding conditions

    表 1  腐蚀实验材质

    Table 1.  Materials used for corrosion test

    设备名称材质型号与设计量备注
    水冷壁T12钢锅炉型号为SG-1913/25.4-M971
    冷灰斗、上槽体1Cr18Ni9Ti钢内衬混凝土#400矾土水泥内衬混凝土
    关断门、管道304不锈钢管道壁厚为5 mm
    上槽体65Mn钢钢板厚度为9.5 mm锌基底漆
    刮板Q235B钢工作长度为1 508 mm
    链条20CrMnTi钢捞渣机专用模锻链
    设备名称材质型号与设计量备注
    水冷壁T12钢锅炉型号为SG-1913/25.4-M971
    冷灰斗、上槽体1Cr18Ni9Ti钢内衬混凝土#400矾土水泥内衬混凝土
    关断门、管道304不锈钢管道壁厚为5 mm
    上槽体65Mn钢钢板厚度为9.5 mm锌基底漆
    刮板Q235B钢工作长度为1 508 mm
    链条20CrMnTi钢捞渣机专用模锻链
    下载: 导出CSV

    表 2  电厂捞渣机上清液和脱硫废水水质

    Table 2.  Water quality of supernatant and desulfurizing wastewater from the slag dredger of power plant

    水质温度/℃pH电导率/(mS·cm−1)氯离子浓度/(mg·L−1)
    捞渣机上清液水质62.5~75.05.8~8.014.5~35.04 000~17 637.67
    脱硫废水水质37.65.9~6.530.6-37.77 000~19 350.59
    水质温度/℃pH电导率/(mS·cm−1)氯离子浓度/(mg·L−1)
    捞渣机上清液水质62.5~75.05.8~8.014.5~35.04 000~17 637.67
    脱硫废水水质37.65.9~6.530.6-37.77 000~19 350.59
    下载: 导出CSV

    表 3  不同比例脱硫废水和捞渣机上清液配制的混合液水质

    Table 3.  Water quality of mixture of desulfurization wastewater and supernatant of slag dredger in different ratios

    水样编号温度/℃pH电导率/(mS·cm−1)氯离子浓度/(mg·L−1)
    150515.05 180.69
    265730.011 787.95
    380945.019 146.04
    水样编号温度/℃pH电导率/(mS·cm−1)氯离子浓度/(mg·L−1)
    150515.05 180.69
    265730.011 787.95
    380945.019 146.04
    下载: 导出CSV

    表 4  材质主要化学成分

    Table 4.  Main compositions of materials %

    材质CSiMnSPCrNiTiCuFe
    1Cr18Ni9Ti钢≤0.12≤1.00≤2.00≤0.030≤0.03517.00~19.008.00~11.000.50~0.80≥66.015
    T12钢1.15~1.24≤0.35≤0.40≤0.030≤0.035≥97.945
    304不锈钢≤0.08≤1.0≤2.00≤0.03≤0.03518.0~20.08.0~10.58.0-11.0≥55.355
    65Mn钢0.62~0.700.17~0.370.90~1.20≤0.035≤0.035≤0.25≤0.25≤0.25≥96.91
    Q235B钢≤0.20≤0.35≤1.4≤0.045≤0.045≤0.30≤0.30≤0.30≥97.06
    20CrMnTi钢0.17~0.230.17~0.370.80~1.10≤0.030≤0.0301.00~1.30≤0.300.04~0.1≤0.30≥96.293
    材质CSiMnSPCrNiTiCuFe
    1Cr18Ni9Ti钢≤0.12≤1.00≤2.00≤0.030≤0.03517.00~19.008.00~11.000.50~0.80≥66.015
    T12钢1.15~1.24≤0.35≤0.40≤0.030≤0.035≥97.945
    304不锈钢≤0.08≤1.0≤2.00≤0.03≤0.03518.0~20.08.0~10.58.0-11.0≥55.355
    65Mn钢0.62~0.700.17~0.370.90~1.20≤0.035≤0.035≤0.25≤0.25≤0.25≥96.91
    Q235B钢≤0.20≤0.35≤1.4≤0.045≤0.045≤0.30≤0.30≤0.30≥97.06
    20CrMnTi钢0.17~0.230.17~0.370.80~1.10≤0.030≤0.0301.00~1.30≤0.300.04~0.1≤0.30≥96.293
    下载: 导出CSV

    表 5  T12钢的腐蚀正交实验结果

    Table 5.  Orthogonal test results of corrosion of T12 steel

    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.781 6
    2507302.323 2
    3509451.288 1
    4655302.341 1
    5657451.651 4
    6659151.774 6
    7805451.923 2
    8807152.387 8
    9809302.672 5
    K15.392 96.045 95.944 0
    K25.767 16.362 47.336 8
    K36.983 55.735 24.862 7
    k11.797 62.015 31.981 3
    k21.922 42.120 82.445 6
    k32.327 81.911 71.620 9
    极差R1.590 60.627 22.474 1
    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.781 6
    2507302.323 2
    3509451.288 1
    4655302.341 1
    5657451.651 4
    6659151.774 6
    7805451.923 2
    8807152.387 8
    9809302.672 5
    K15.392 96.045 95.944 0
    K25.767 16.362 47.336 8
    K36.983 55.735 24.862 7
    k11.797 62.015 31.981 3
    k21.922 42.120 82.445 6
    k32.327 81.911 71.620 9
    极差R1.590 60.627 22.474 1
    下载: 导出CSV

    表 6  1Cr18Ni9Ti钢的腐蚀正交实验结果

    Table 6.  Orthogonal test results of corrosion of 1Cr18Ni9Ti steel

    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505150
    2507300.000 9
    3509450.000 2
    4655300.002 2
    5657450.001 5
    6659150
    7805450.064 7
    8807150.000 7
    9809300
    K10.001 10.066 90.000 7
    K20.003 70.003 10.003 1
    K30.065 40.000 20.066 4
    k10.000 40.022 30.000 2
    k20.001 20.001 00.001 0
    k30.021 80.000 10.022 1
    极差R0.064 30.066 70.065 4
    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505150
    2507300.000 9
    3509450.000 2
    4655300.002 2
    5657450.001 5
    6659150
    7805450.064 7
    8807150.000 7
    9809300
    K10.001 10.066 90.000 7
    K20.003 70.003 10.003 1
    K30.065 40.000 20.066 4
    k10.000 40.022 30.000 2
    k20.001 20.001 00.001 0
    k30.021 80.000 10.022 1
    极差R0.064 30.066 70.065 4
    下载: 导出CSV

    表 7  304不锈钢的腐蚀正交实验结果

    Table 7.  Orthogonal test results of corrosion of 304 stainless steel

    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505150.002 7
    2507300
    3509450.000 9
    4655300.000 2
    5657450.000 2
    6659150
    7805450.068 7
    8807150.001 3
    9809300
    K10.003 60.071 60.004 0
    K20.000 40.001 50.000 2
    K30.070 00.000 90.069 8
    k10.001 20.023 80.001 3
    k20.000 10.000 50.000 1
    k30.023 30.000 30.023 3
    极差R0.066 40.070 70.069 6
    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505150.002 7
    2507300
    3509450.000 9
    4655300.000 2
    5657450.000 2
    6659150
    7805450.068 7
    8807150.001 3
    9809300
    K10.003 60.071 60.004 0
    K20.000 40.001 50.000 2
    K30.070 00.000 90.069 8
    k10.001 20.023 80.001 3
    k20.000 10.000 50.000 1
    k30.023 30.000 30.023 3
    极差R0.066 40.070 70.069 6
    下载: 导出CSV

    表 8  65Mn钢的腐蚀正交实验结果

    Table 8.  Orthogonal test results of corrosion of 65Mn steel

    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.437 7
    2507301.978 3
    3509451.450 1
    4655302.054 1
    5657451.734 6
    6659152.128 7
    7805451.260 5
    8807152.182 6
    9809302.112 5
    K14.866 14.752 35.749 0
    K25.917 45.895 56.144 0
    K35.555 65.691 34.445 2
    k11.622 01.584 11.916 3
    k21.972 51.965 22.048 3
    k31.851 91.897 11.481 7
    极差R1.051 31.142 91.698 8
    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.437 7
    2507301.978 3
    3509451.450 1
    4655302.054 1
    5657451.734 6
    6659152.128 7
    7805451.260 5
    8807152.182 6
    9809302.112 5
    K14.866 14.752 35.749 0
    K25.917 45.895 56.144 0
    K35.555 65.691 34.445 2
    k11.622 01.584 11.916 3
    k21.972 51.965 22.048 3
    k31.851 91.897 11.481 7
    极差R1.051 31.142 91.698 8
    下载: 导出CSV

    表 9  Q235B钢的腐蚀正交实验结果

    Table 9.  Orthogonal test results of corrosion of Q235B steel

    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.684 6
    2507301.644 2
    3509450.985 3
    4655302.433 5
    5657452.849 0
    6659152.289 0
    7805453.542 4
    8807151.786 1
    9809301.815 0
    K14.314 17.660 55.759 7
    K27.571 56.279 35.892 7
    K37.143 55.089 37.376 7
    k11.438 02.553 51.919 9
    k22.523 82.093 11.964 2
    k32.381 21.696 42.458 9
    极差R3.257 42.241 21.617 0
    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.684 6
    2507301.644 2
    3509450.985 3
    4655302.433 5
    5657452.849 0
    6659152.289 0
    7805453.542 4
    8807151.786 1
    9809301.815 0
    K14.314 17.660 55.759 7
    K27.571 56.279 35.892 7
    K37.143 55.089 37.376 7
    k11.438 02.553 51.919 9
    k22.523 82.093 11.964 2
    k32.381 21.696 42.458 9
    极差R3.257 42.241 21.617 0
    下载: 导出CSV

    表 10  20CrMnTi钢的腐蚀正交实验结果

    Table 10.  Orthogonal test results of corrosion of 20CrMnTi steel

    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.285 7
    2507301.488 8
    3509450.986 3
    4655301.272 2
    5657451.007 7
    6659151.512 7
    7805451.042 9
    8807151.801 8
    9809301.557 6
    K13.760 83.600 84.600 2
    K23.792 64.298 34.318 6
    K34.402 54.056 63.036 9
    k11.253 61.200 31.533 4
    k21.264 21.432 81.439 5
    k31.467 51.352 21.012 3
    极差R0.641 70.697 51.563 3
    实验组因素腐蚀速率/(mm·a−1)
    温度/℃pH电导率/(mS·cm−1)
    1505151.285 7
    2507301.488 8
    3509450.986 3
    4655301.272 2
    5657451.007 7
    6659151.512 7
    7805451.042 9
    8807151.801 8
    9809301.557 6
    K13.760 83.600 84.600 2
    K23.792 64.298 34.318 6
    K34.402 54.056 63.036 9
    k11.253 61.200 31.533 4
    k21.264 21.432 81.439 5
    k31.467 51.352 21.012 3
    极差R0.641 70.697 51.563 3
    下载: 导出CSV

    表 11  不同材质的电化学极化曲线的参数

    Table 11.  Parameters of electrochemical polarization curves of different materials

    材质密度/(g·cm−3)自腐蚀电位/V阳极Tafel斜率/mV阴极Tafel斜率/mV腐蚀电流/(A·cm−2)腐蚀速度/(mm·a−1)
    1Cr18Ni9Ti钢7.85−0.2963.3246.6111.72×10−60.02
    T12钢7.85−0.61510.1444.9037.85×10−49.13
    304不锈钢7.93−0.1852.00912.0403.48×10−60.04
    65Mn钢7.81−0.47713.6572.4131.58×10−41.85
    Q235B钢7.85−0.61510.2022.8548.23×10−49.57
    20CrMnTi钢7.82−0.47110.4912.7101.13×10−41.32
    材质密度/(g·cm−3)自腐蚀电位/V阳极Tafel斜率/mV阴极Tafel斜率/mV腐蚀电流/(A·cm−2)腐蚀速度/(mm·a−1)
    1Cr18Ni9Ti钢7.85−0.2963.3246.6111.72×10−60.02
    T12钢7.85−0.61510.1444.9037.85×10−49.13
    304不锈钢7.93−0.1852.00912.0403.48×10−60.04
    65Mn钢7.81−0.47713.6572.4131.58×10−41.85
    Q235B钢7.85−0.61510.2022.8548.23×10−49.57
    20CrMnTi钢7.82−0.47110.4912.7101.13×10−41.32
    下载: 导出CSV
  • [1] 张建华, 池毓菲, 邹宜金, 等. 燃煤电厂脱硫废水处理技术工程应用现状与展望[J]. 工业水处理, 2020, 40(10): 14-19.
    [2] 马双忱, 温佳琪, 万忠诚, 等. 中国燃煤电厂脱硫废水处理技术研究进展及标准修订建议[J]. 洁净煤技术, 2017, 23(4): 18-28.
    [3] TONG T Z. ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855.
    [4] 张净瑞, 梁海山, 郑煜铭, 等. 基于旁路烟道蒸发的脱硫废水零排放技术在火电厂的应用[J]. 环境工程, 2017, 35(10): 5-9.
    [5] 杨跃伞, 苑志华, 张净瑞, 等. 燃煤电厂脱硫废水零排放技术研究进展[J]. 水处理技术, 2017, 43(6): 29-33.
    [6] 王冬梅, 程家庆, 孔繁军. 脱硫废水零排放技术与工艺路线[J]. 工业水处理, 2017, 37(8): 109-112. doi: 10.11894/1005-829x.2017.37(8).109
    [7] 俞彬, 陈飞, 王小军, 等. 电厂脱硫废水零排放处理工程实例[J]. 工业水处理, 2018, 38(4): 94-96.
    [8] 陈美秀, 莫建松, 刘学炎, 等. 一种脱硫废水循环利用方法[J]. 环境工程, 2014, 32(S1): 188-191.
    [9] 邵国华, 方棣. 电厂脱硫废水正渗透膜浓缩零排放技术的应用[J]. 工业水处理, 2016, 36(8): 109-112. doi: 10.11894/1005-829x.2016.36(8).109
    [10] 叶春松, 黄建伟, 刘通, 等. 燃煤电厂烟气脱硫废水处理方法与技术进展[J]. 环境工程, 2017, 35(11): 10-13.
    [11] 刘海洋, 江澄宇, 谷小兵, 等. 燃煤电厂湿法脱硫废水零排放处理技术进展[J]. 环境工程, 2016, 34(4): 33-36.
    [12] 王艳伟. 发电厂脱硫废水回用至湿式捞渣机研究与应用[J]. 低碳世界, 2018(11): 64-65. doi: 10.3969/j.issn.2095-2066.2018.11.040
    [13] 杨青, 尤天军. 某电厂脱硫废水处理系统的优化改造[J]. 宁夏电力, 2014(4): 68-71. doi: 10.3969/j.issn.1672-3643.2014.04.015
    [14] 陈嘉伦. 火电厂脱硫废水零排放设备改造探讨[J]. 科技创新与应用, 2015(32): 103-104.
    [15] 陈彪, 许超, 赵琦, 等. 烟气脱硫废水排入渣水处理系统的试验研究[J]. 浙江电力, 2010, 29(2): 33-36. doi: 10.3969/j.issn.1007-1881.2010.02.010
    [16] 胡治平. 燃煤电厂高含盐废水近零排放研究[D]. 北京: 华北电力大学, 2017.
    [17] 程明新, 贾在, 蓝树宏, 等. 冷却水中金属腐蚀影响因素[J]. 中国新技术新产品, 2013(1): 161-162.
    [18] 宋雪曙. 金属材料的海水腐蚀与防护[J]. 机械工程材料, 1983(2): 58-61.
    [19] 李子凡, 肖葵, 魏丹, 等. Fe-Cr合金在含Cl- SO24 离子溶液中的腐蚀行为[J]. 科技导报, 2014, 32(21): 26-30. doi: 10.3981/j.issn.1000-7857.2014.21.003
    [20] 刘倩倩, 李自力, 程远鹏. 正交试验法研究X90管线钢在CO2环境中的腐蚀行为[J]. 腐蚀与防护, 2016, 37(12): 970-972. doi: 10.11973/fsyfh-201612005
    [21] 王奇. 基于正交试验的塔顶冷却系统腐蚀行为的研究[J]. 化工技术与开发, 2019, 48(6): 55-58. doi: 10.3969/j.issn.1671-9905.2019.06.015
    [22] CARLSON R, SIMONSEN G, DESCOMPS A. Orthogonal experiments in the development of organic synthetic processes[J]. Organic Process Research & Development, 2009, 13(4): 798-803.
    [23] CHEN J, SHEUI R G. Using. Taguchi’s. method and orthogonal function approximation to design optimal manipulated trajectory in batch processes[J]. Industrial & Engineering Chemistry Research, 2002, 41(9): 2226-2237.
    [24] HAGEMAN T, WEIS D D. Reliable identification of significant differences in differential hydrogen exchange-mass spectrometry measurements using a hybrid significance testing approach[J]. Analytical Chemistry, 2019, 91(13): 8008-8016. doi: 10.1021/acs.analchem.9b01325
    [25] 赵永峰. 13Cr钢在CO2-H2S体系中的腐蚀行为及其缓蚀技术研究[D]. 北京: 北京化工大学, 2010.
    [26] 何斌. 氯化钠污染砂环境下砂粒粒径对体系及X70钢电化学腐蚀行为的影响[D]. 太原: 太原理工大学, 2012.
    [27] 唐志永. 湿法脱硫后燃煤电站尾部装置腐蚀研究[D]. 南京: 东南大学, 2006.
    [28] MA Y, HAN F, LI Z, et al. Corrosion behavior of metallic materials in acidic-functionalized ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2015, 4(2): 633-639.
    [29] YAN M C, SUN C, XU J, et al. Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17615-17624.
    [30] YUAN S J, PEHKONEN S O, TING Y P, et al. Corrosion behavior of type 304 stainless steel in a simulated seawater-based medium in the presence and absence of aerobic pseudomonas ncimb 2021 bacteria[J]. Industrial & Engineering Chemistry Research, 2008, 47(9): 3008-3020.
    [31] 李占坚. 一种显示T12钢奥氏体晶粒与内部组织的腐蚀方法[J]. 铸造技术, 2018, 39(7): 1631-1632.
    [32] PANERU M, BRZOZOWSKA G S, MAIER J, et al. Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying SO2 concentrations in an oxy-fuel combustion atmosphere[J]. Energy & Fuels, 2013, 27(10): 5699-5705.
    [33] LIU Y C, FAN W D, ZHANG X, et al. High-temperature corrosion properties of boiler steels under a simulated high-chlorine coal-firing atmosphere[J]. Energy & Fuels, 2017, 31(4): 4391-4399.
    [34] HOLMBERG R J, BEAUCHEMIN D, JERKIEWICZ G. Characteristics of colored passive layers on titanium: Morphology, optical properties, and corrosion resistance[J]. ACS Applied Materials & Interfaces, 2014, 23(6): 21576-21584.
    [35] BORENSTEIN S. Microbiologically Influenced Corrosion Handbook[M]. Cambridge: Woodhead Publishing Ltd., 1994: 113.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.5 %DOWNLOAD: 2.5 %HTML全文: 87.5 %HTML全文: 87.5 %摘要: 10.1 %摘要: 10.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 89.1 %其他: 89.1 %Beijing: 4.6 %Beijing: 4.6 %Central: 0.1 %Central: 0.1 %Chang'an: 0.0 %Chang'an: 0.0 %Chaowai: 0.2 %Chaowai: 0.2 %Chengdu: 0.0 %Chengdu: 0.0 %Cherbourg-Octeville: 0.1 %Cherbourg-Octeville: 0.1 %Chongqing: 0.2 %Chongqing: 0.2 %Fuzhou: 0.0 %Fuzhou: 0.0 %Gaocheng: 0.1 %Gaocheng: 0.1 %Guangzhou: 0.0 %Guangzhou: 0.0 %Guangzhou Shi: 0.0 %Guangzhou Shi: 0.0 %Hangzhou: 0.1 %Hangzhou: 0.1 %Hanoi: 0.0 %Hanoi: 0.0 %Hefei: 0.0 %Hefei: 0.0 %Hyderabad: 0.1 %Hyderabad: 0.1 %Mountain View: 0.0 %Mountain View: 0.0 %Nanjing: 0.1 %Nanjing: 0.1 %Qinnan: 0.0 %Qinnan: 0.0 %Shenyang: 0.0 %Shenyang: 0.0 %Shijiazhuang: 0.0 %Shijiazhuang: 0.0 %The Bronx: 0.1 %The Bronx: 0.1 %Tianjin: 0.0 %Tianjin: 0.0 %Xi'an: 0.0 %Xi'an: 0.0 %Xiamen: 0.0 %Xiamen: 0.0 %Xingfeng: 0.0 %Xingfeng: 0.0 %XX: 2.8 %XX: 2.8 %Yuncheng: 0.1 %Yuncheng: 0.1 %东营: 0.0 %东营: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.4 %北京: 0.4 %唐山: 0.1 %唐山: 0.1 %平凉: 0.0 %平凉: 0.0 %成都: 0.1 %成都: 0.1 %抚顺: 0.0 %抚顺: 0.0 %济南: 0.0 %济南: 0.0 %深圳: 0.0 %深圳: 0.0 %绍兴: 0.0 %绍兴: 0.0 %苏州: 0.0 %苏州: 0.0 %贵港: 0.0 %贵港: 0.0 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %其他BeijingCentralChang'anChaowaiChengduCherbourg-OctevilleChongqingFuzhouGaochengGuangzhouGuangzhou ShiHangzhouHanoiHefeiHyderabadMountain ViewNanjingQinnanShenyangShijiazhuangThe BronxTianjinXi'anXiamenXingfengXXYuncheng东营内网IP北京唐山平凉成都抚顺济南深圳绍兴苏州贵港郑州重庆Highcharts.com
图( 3) 表( 11)
计量
  • 文章访问数:  5142
  • HTML全文浏览数:  5142
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-27
  • 录用日期:  2020-05-19
  • 刊出日期:  2021-01-10
林晓锋, 钟天东, 童鑫红, 陈光宇, 张净瑞, 郑煜铭. 脱硫废水对渣水系统的腐蚀影响[J]. 环境工程学报, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151
引用本文: 林晓锋, 钟天东, 童鑫红, 陈光宇, 张净瑞, 郑煜铭. 脱硫废水对渣水系统的腐蚀影响[J]. 环境工程学报, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151
LIN Xiaofeng, ZHONG Tiandong, TONG Xinhong, CHEN Guangyu, ZHANG Jingrui, ZHENG Yuming. Effect of desulfurization wastewater on slag water system corrosion[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151
Citation: LIN Xiaofeng, ZHONG Tiandong, TONG Xinhong, CHEN Guangyu, ZHANG Jingrui, ZHENG Yuming. Effect of desulfurization wastewater on slag water system corrosion[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 350-359. doi: 10.12030/j.cjee.202002151

脱硫废水对渣水系统的腐蚀影响

    通讯作者: 郑煜铭(1978—),男,博士,研究员。研究方向:污染防治材料与技术。E-mail:ymzheng@iue.ac.cn
    作者简介: 林晓锋(1994—),男,硕士研究生。研究方向:废水处理技术。E-mail:linxiaofen@iue.ac.cn
  • 1. 中国科学院城市环境研究所,中国科学院城市污染物转化重点实验室,厦门 361021
  • 2. 中国科学院大学,北京 100049
  • 3. 福建华电可门发电有限公司,福州 350000
基金项目:
福建省中科院STS计划配套项目(2018T3002);厦门市科技计划项目(3502Z20193074)

摘要: 利用渣水系统处理脱硫废水是燃煤电厂脱硫废水实现低成本零排放处理的一个重要发展方向。为考察脱硫废水引入渣水系统后对设备材质的腐蚀行为的影响,采用动态失重法与电化学法分别对系统内的金属材质进行了腐蚀行为研究,分别考察了温度、pH、电导率3个因素对渣水系统的影响。结果表明: 1Cr18Ni9Ti钢和304不锈钢的腐蚀速率低于0.1 mm·a−1,属耐腐材质,适用于该电厂的运行工艺;而T12钢、65Mn钢、Q235钢、20CrMnTi钢等腐蚀速率高于1.0 mm·a−1,无法长期满足电厂的运行条件,应采取相应的防腐措施。此研究结果可以为燃煤电厂常用金属材质的腐蚀行为提供了科学依据和数据参考,为电厂的安全稳定运行提供借鉴和指导。

English Abstract

  • “十三五”规划实施以来,我国对工业废水的处理要求日趋严格,尤其是“水十条”的出台,使脱硫废水零排放成为必然趋势[1-3]。目前,脱硫废水零排放处理工艺多采用预处理+浓缩减量+蒸发固化[4-9],其存在设备占地面积大、投资和运行成本高[10],直接蒸发固化工艺存在烟道腐蚀等风险[11];另一方面,当前电力环保新形势下电厂机组运行负荷普遍偏低,急需开发低成本的脱硫废水处理技术。利用渣水系统中的碱性炉渣处理脱硫废水中的重金属或酸性物质,以废治废,具有投资成本低,工艺改造简单等优势[12-16];但脱硫废水水质复杂,含盐量高,且pH较低,排入渣水系统后对渣水系统的腐蚀风险尚未可知。

    本研究通过模拟实验,采用动态失重法和电化学法,系统地研究了添加不同比例脱硫废水的捞渣机补水混合液,对渣水系统中捞渣机、链条、水冷壁、关断门和冷灰斗等一系列直接接触混合液的关键部件金属材料的腐蚀影响,考察了温度、pH和电导率对材质的腐蚀规律;探讨了多因素共同存在下对金属材料的腐蚀规律;并提出了防腐蚀策略,本研究可为利用渣水系统处理脱硫废水提供理论指导和数据支持。

  • 本研究系统研究了燃煤电厂渣水系统中与水直接接触的6种典型材质,对应的设备位置如图1所示,通过模拟挂片实验和电化学腐蚀实验分别直接和间接地进行各材质腐蚀行为研究。腐蚀实验的材质见表1

  • 研究[17-19]表明,影响金属腐蚀的主要因素包括工业水温度、pH、电导率和金属材料等。本研究采用正交法[20-21]设计实验,用极差法对实验结果进行分析,可直观地观察到各因素水平对腐蚀速率的影响,并得到不同因素对材质腐蚀速率的影响大小[22],另一方面,通过电化学方法研究不同材质的腐蚀规律。

    1)腐蚀评价正交实验设计。腐蚀实验所用材质见表1,实验采用3因素3水平进行正交实验,其中,3因素分别为温度、pH、电导率,3水平为温度(50、65、80 ℃)、pH(5、7、9)、电导率(15、30、45 mS·cm−1),每个数据点作3个平行样。实验结果中系数K表示水平对腐蚀速率的影响强弱,K值越大,影响越强;极差R表示因素对腐蚀速率影响的显著性大小,R值越大,影响则越大。

    2)实验水样。实验所用水样的水质如表2表3所示。

    3)腐蚀实验。样片上的防锈油脂先用滤纸擦拭干净,然后置于丙酮和无水乙醇中用脱脂棉擦洗,擦洗干净后用滤纸吸干,放入干燥器中4 h,再用分析天平(赛多利斯,型号:BSA224S)进行称重(精确到2 mg);待按实验要求配制好的实验水样达到指定温度时,挂入实验用试片,启动旋转挂片腐蚀实验仪(型号:RCC-111);达到实验指定时间时,取出试片进行外观观察及记录,然后将试片用毛刷刷干净,并在酸洗溶液中清洗30 s,接着取出用水冲洗后用滤纸擦拭吸干水分,于无水乙醇中浸泡3 min,取出置于滤纸上吸干,再放入干燥器中4 h后称质量(精确到2 mg)。同时做试片的酸洗空白实验,以矫正酸洗失重。实验流程如图2所示,具体实验步骤参照GB/T 18175-2014进行。通过对不同材质的腐蚀减重进行分析,筛选不同材质的最优工艺条件;在最优工艺条件下进行电化学实验(电化学工作站型号为Gamry 3000),对不同材质的腐蚀机理进行分析。

    4)腐蚀速率计算。腐蚀速率按(1)式进行计算。

    式中:v为腐蚀速率,mm·a−1。Δm为试片的质量损失,g;s为试片的表面积,cm2ρ为试片的密度,g·cm−3t为实验时间,h;8 760为与年相当的时间,h·a−1;10为与1 cm相当的长度,mm·cm−1

    5)耐腐性判定。根据腐蚀的3级标准判断材质的耐腐性能,当腐蚀深度小于0.1 mm·a−1时,耐蚀性等级为1,属耐蚀材质;当腐蚀深度为0.1~1.0 mm·a−1时,耐蚀性等级为2,属可用材质;当腐蚀深度>1.0 mm·a−1时,耐蚀性等级为3,属不可用材质。

    6)材质的主要化学成分如表4所示。

  • 1)水冷壁-T12钢。T12钢的腐蚀正交实验结果如表5所示。极差R值的大小反映了各因素、水平对腐蚀速率的影响程度[22-23]。由表5可知,温度、pH、电导率的极差R值分别为1.590 6、0.677 2、2.474 1,3个因素中对T12钢腐蚀速率影响的显著性[24]最大的是电导率,其次是温度,最小的是pH。由于T12钢的化学成分组成可知,T13钢含碳量高且不含生成保护膜的元素,在高电导率废水中极易受到腐蚀;温度主要是影响腐蚀产物形成的防护层性能,不同材质对温度的敏感性不一样;由pH对腐蚀速率的影响可知,该材质对pH不敏感。

    每个因素的不同水平对腐蚀速率的影响也各不相同,在温度因素中,K3>K2>K1;在pH因素中,K2>K1>K3;对电导率因素而言,K2>K1>K3。由此可推测,在温度50 ℃、pH=9、电导率为45 mS·cm−1的实验条件下,材质的腐蚀速率最小;在温度80 ℃、pH=7、电导率为30 mS·cm−1条件下,材质的腐蚀速率最大。

    有研究[25-28]发现,通常情况下金属的腐蚀速度随温度的增加而增加;当在温度在较低的区间内,随着温度的升高,水中溶解氧下降幅度较下,但氧扩散速率的增加较为显著,因而到达金属表面的氧流量增加,导致金属腐蚀速率增加。相关研究[28-29]表明大多数金属材料在酸性较碱性条件更易被腐蚀,这主要取决于不同材料表面氧化层在酸性条件下稳定性。本研究中T12钢含碳量高,属碳素工具钢,在高氯离子腐蚀介质中,大量氯离子容易穿过金属表面的氧化层,侵蚀内部金属并产生氯化铁等腐蚀产物,这些氯化物向外扩散的速率较快[30],导致与基材分离。因此,T12钢在高氯离子溶液中更易受到腐蚀[31]

    2)冷灰斗、上槽体-1Cr18Ni9Ti钢。表6是1Cr18Ni9Ti钢的腐蚀正交实验结果。对表6的正交实验结果进行极差分析可知,温度、pH、电导率的极差R值分别为0.064 3、0.066 7、0.065 4,3个因素对1Cr18Ni9Ti钢腐蚀速率影响的显著性最大的是pH,其次是电导率,最小是温度。由1Cr18Ni9Ti钢的化学成分组成可知,1Cr18Ni9Ti钢的含碳量低且含有大量的Cr、Ni、Ti元素,其腐蚀产物保护膜具有高效的的防腐性能,因此,影响该材质腐蚀速率的主要原因是pH对腐蚀产物的溶解。

    根据对3个因素的水平值进行分析可知,每个因素的不同水平对腐蚀速率的影响各不相同。在温度因素中,K3>K2>K1;在pH因素中,K1>K2>K3;对电导率因素而言,K3>K2>K1。因此,当温度50 ℃、pH=9、电导率为15 mS·cm−1的条件下,材质的腐蚀速率最小;而在当温度80 ℃、pH=5、电导率为45 mS·cm−1条件下,材质的腐蚀速率最大。

    1Cr18Ni9Ti钢含有Cr、Ni等元素,这些元素的腐蚀产物溶于酸性水溶液而不溶于碱性水溶液,则1Cr18Ni9Ti钢在低pH时腐蚀速率快,而在高pH时腐蚀速率慢。PANERU等[32]、LIU等[33]、HOLMBERG等[34]的研究表明,发生高温腐蚀或电化学腐蚀时,含有铬、镍、钛元素的不锈钢受腐蚀时会在表面生成一层致密的保护膜,更耐氯离子与复杂介质腐蚀。这也是1Cr18Ni9Ti钢在高pH与高电导条件下腐蚀速率低的原因。

    3)关段门、管道-304不锈钢。表7是304不锈钢的腐蚀正交实验结果。由表7可知,温度、pH、电导率的极差R值分别为0.066 4、0.070 7、0.069 6,3个因素对304不锈钢腐蚀速度影响的显著性最大的是pH,其次为电导率,最小是温度。304不锈钢的化学性质成分与1Cr18Ni9Ti钢相近,皆具有良好的耐腐性能,对腐蚀速率影响的最大的因素是pH。

    通过对3个因素的水平值进行分析可知,每个因素的不同水平对腐蚀速率的影响各不相同。温度因素中,K3>K1>K2;pH因素中,K1>K2>K3;对电导率因素而言,K3>K1>K2。因此,当温度为65 ℃、pH=9、电导率为30 mS·cm−1的条件下,材质的腐蚀速率最小;而当温度80 ℃、pH=5、电导率为45 mS·cm−1条件下,材质的腐蚀速率最大。

    304不锈钢中最为重要的元素是Ni、Cr,行业要求Ni含量须大于8%,Cr含量须大于18%。BORENSTEIN在《微生物腐蚀手册》中指出304不锈钢在水环境中能形成一种薄的、致密的、富含铬的氧化物保护膜,具有良好的耐腐蚀性,因此,在工业冷却水中得到了广泛的应用,特别是在发电厂和离岸工业[35],YUAN等[30]研究304型不锈钢在模拟海水中的腐蚀行为中所得到的结论也证实了这一观点。

    4)上槽体-65Mn钢。表8为65Mn钢的腐蚀正交实验结果。由表8可知,温度、pH、电导率的极差R值分别为1.051 3、1.142 9、1.698 8;3个因素对65Mn钢腐蚀速度影响的显著性从大到小依次是电导率>pH>温度。65Mn钢同T12钢一样,缺少形成保护膜的元素,因此在高电导率介质中容易受到腐蚀;其腐蚀产物形成的保护膜易受在环境中溶解或脱落,使得腐蚀持续发生。这也是65Mn钢在高电导率和酸性条件下腐蚀速率高的原因。通过对3个因素的水平值分析可知:温度因素中,K2>K3>K1;pH因素中,K2>K3>K1;对电导率因素而言,K2>K1>K3。因此,当温度为50 ℃、pH=5、电导率为45 mS·cm−1的条件下,材质的腐蚀速率最小;而在当温度65 ℃、pH=7、电导率为30 mS·cm−1条件下,材质的腐蚀速率最大。65Mn钢含碳量少,强度较高,但相对于1Cr18Ni9Ti钢、304不锈钢,65Mn钢中因为缺少铬、镍、钛等形成保护膜的元素,耐腐性能较差。

    5)刮板-Q235B钢。表9为Q235B钢的腐蚀正交实验结果。由表9可知,温度、pH、电导率的极差R值分别为3.257 4、2.241 2、1.617 0,3个因素对Q235B钢腐蚀速度影响依次是温度>pH>电导率。

    通过对3种因素的水平值分析可知,每个因素的不同水平对腐蚀速率的影响各不相同。由表9可以看出,在温度因素中,K2>K3>K1;在pH因素中,K1>K2>K3;对电导率而言,K3>K2>K1。因此,当温度50 ℃、pH=9、电导率为15 mS·cm−1的条件下,材质的腐蚀速率最小;而在当温度65 ℃、pH=5、电导率为45 mS·cm−1条件下,材质的腐蚀速率最大。Q235B钢同T12钢和65Mn钢,由于腐蚀介质中含有大量的侵蚀性离子(氯离子、硫酸根离子等)容易在金属表面造成点蚀,在酸性条件下腐蚀产物易溶解,无法形成保护膜,腐蚀进一步加剧[28],因此,Q235B钢在低pH和高盐条件下腐蚀速率高。

    6)链条-20CrMnTi钢。表10为20CrMnTi钢的腐蚀正交实验结果。对20CrMnTi钢的实验结果进行极差分析可知,温度、pH、电导率的极差R值分别为0.641 7、0.697 5、1.563 3,3个因素对20CrMnTi钢腐蚀速率的影响大小依次是电导率>pH>温度。由材质的化学成分组成可知20CrMnTi钢同T12钢、65Mn钢一样缺少形成保护膜的元素,在高电导率和酸性条件下腐蚀速率较高。

    对3个因素的水平值进行分析可知,每个因素的不同水平对腐蚀速率的影响各不相同。温度因素中,K3>K2>K1;pH因素中,K2>K3>K1;对电导率因素而言,K1>K2>K3。因此,当温度为50 ℃、pH=5、电导率为45 mS·cm−1条件下材质的腐蚀速率最小;而在当温度80 ℃、pH=7、电导率为15 mS·cm−1条件下,材质的腐蚀速率最大。

    对比1Cr18Ni9Ti钢和304不锈钢,20CrMnTi钢的抗腐蚀性差,故其在相同实验条件下各实验组的腐蚀速率较高;但相对于T12钢、65Mn钢、Q235B钢,20CrMnTi钢的腐蚀情况较轻。

  • 根据正交实验的结果,选择各材质腐蚀速率最小的最佳因素组合,应用电化学极化曲线法,对上述6种材质进行评价。各材质的最佳因素组合如下:1Cr18Ni9Ti钢温度为50 ℃、pH=9、电导率为15 mS·cm−1;T12钢温度为50 ℃、pH=9、电导率为45 mS·cm−1;304不锈钢温度为65 ℃、pH=9、电导率为30 mS·cm−1;65Mn钢温度为50 ℃、pH=5、电导率为45 mS·cm−1;Q235B钢温度为50 ℃、pH=9、电导率为15 mS·cm−1;20CrMnTi钢的温度为50 ℃、pH=5、电导率为45 mS·cm−1。各材质的相应的电化学参数见表11,极化曲线如图3所示。

    金属自腐蚀电位越负,腐蚀倾向越大;其正值越大,腐蚀倾向越小[18]。金属的点蚀电位是指钝化膜开始发生破裂的电位,用于表征材料点蚀敏感性的特征参数之一,当其值为正值,且绝对值越大,表明金属材料对点蚀的敏感性越小。

    表11可知,1Cr18Ni9Ti钢、T12钢、304不锈钢、65Mn钢、Q235B钢、20CrMnTi钢对应的自腐蚀电位(单位V)可知,6种材质的耐腐性能大小为304不锈钢>1Cr18Ni9Ti>20CrMnTi>65Mn钢>T12钢>Q235B钢;1Cr18Ni9Ti钢、T12钢、304不锈钢、65Mn钢、Q235B钢、20CrMnTi钢的腐蚀电流分别为1.72×10−6、7.85×10−4、3.48×10−6、1.58×10−4、8.23×10−4、1.13×10−4 A·cm−2,结果表明,6种材质发生点蚀的敏感性为1Cr18Ni9Ti钢<304不锈钢<20CrMnTi钢<65Mn钢<T12钢<Q235B钢。由图3可知,1Cr18Ni9Ti钢与304不锈钢这2种材质的阴极Tafel斜率大于阳极Tafel斜率,说明这2种材质阴极反应的阻力较阳极反应大,即阴极氧气等的还原反应阻力大,阳极金属的氧化反应难以进行,因而表现为1Cr18Ni9Ti钢与304不锈钢比其他4种材质耐蚀性要好。电厂捞渣机上槽体的实际腐蚀情况也证实了这一点。结果表明,1Cr18Ni9Ti钢和304不锈钢具有良好的耐腐蚀性能,其可满足运行要求。

  • 由实验结果可知,T12钢、65Mn钢、Q235钢、20CrMnTi钢等在实验与实际运行中腐蚀速率较高,应采取相应的防腐措施,保证设备和管道的安全运行。目前常用的防腐蚀方法有选用耐蚀金属材料、添加缓蚀剂、涂层防护等。具体防护措施如下。

    1)耐蚀金属材料的选用。由实验结果可知,在脱硫废水中选用1Cr18Ni9Ti钢和304不锈钢,可满足系统耐蚀的要求;在经济允许的情况下,可考虑更换材质。

    2)缓蚀剂的投加。投加缓蚀剂是相对简便易行的防腐蚀处理方案。缓蚀剂通过在金属表面形成保护膜,阻隔了金属和腐蚀介质而达到缓蚀的效果。缓蚀剂的选择需要综合考虑运营成本。

    3)涂层防护。涂层防护是通过在金属表面形成的涂层使得金属免于腐蚀的技术,一般分为金属涂层和非金属涂层两大类。对于水冷壁(T12钢)、上槽体(65Mn钢)、刮板(Q235B钢)、链条(20CrMnTi钢)等长期需要浸泡在水中的设备可采用涂层保护,以有效降低设备运行风险。

  • 1) T12钢、65Mn钢、Q235钢、20CrMnTi钢的腐蚀速率大于1.0 mm·a−1,在本研究中属于不适用材质。

    2) 1Cr18Ni9Ti钢和304不锈钢的腐蚀速率低于0.1 mm·a−1,属耐腐材质。

    3)以T12钢做水冷壁、以65Mn作上槽体部件、以Q235B钢作为捞渣机刮板、以20CrMnTi钢作链条,在原运行条件不能有效耐受高温高盐水溶液对其的腐蚀,需定期检修与更换,或进行涂层防护。

    4)以1Cr18Ni9Ti钢作冷灰斗和上槽体、以304不锈钢作关断门和管道能有效降低脱硫废水排入渣水系统后因腐蚀带来的机组运行风险与检修成本。

参考文献 (35)

返回顶部

目录

/

返回文章
返回