-
由于旋风除尘器对细微颗粒的去除率较低[1],不能满足燃煤工业锅炉烟尘排放达标的要求,很多学者研究了旋风-布袋复合除尘器的性能。SON等[2]设计了一种旋风-布袋复合除尘器,现场实验表明布袋积尘量小,压降降低近30%;赵新义等[3]设计了旋风-布袋复合除尘器,并将其投入生产,除尘器运行良好,去除率可达标。针对更加高效的除尘需求(如排放浓度<5 mg·m−3),须进一步研究其除尘性能,优化其设计。通过实验研究复合除尘器的优化须制作实验装置,耗费时间;而计算流体力学(CFD)模拟可以降低时间和投资成本,并且可以比实验更详细地了解除尘器内部的流动,近几年得到了广泛应用。刘海等[4]使用可实现的k-ε模型模拟了SCX型脱硫除尘器内部的气固两相流场;廉继尧等[5]设计了一种旋风-布袋复合除尘器,模拟其内部流场,发现滤袋内外两侧压差较大,粒径在5 μm以下的颗粒去除率可高达99%;张文青等[6]模拟了开口挡板和底部导流板对旋风-布袋复合除尘器流场的影响,结果表明,挡板的长度对气流分布的影响很大,导流板能够提高气流分布的均匀性。
参考旋风除尘器和已有研究[2-6]中对复合除尘器的设计,本研究设计了一种在旋风除尘器的内筒设置滤袋的新型复合除尘器,通过CFD方法,模拟了无滤袋结构的旋风除尘器(A)以及滤袋前无导流板(B)、有导流板(C)或开孔挡板(D)的旋风-布袋复合除尘器的内部流场,考察了不同入口风速和粉尘浓度下除尘器A和C的压降和除尘效率,为复合除尘器的结构优化提供参考。
旋风-布袋复合除尘器优化和除尘效率的数值模拟
Optimization of cyclone-bag composite dust collector and numerical simulation of dust removal efficiency
-
摘要: 针对燃煤工业锅炉烟尘超低排放的要求,采用数值模拟方法,研究了旋风除尘器(A)和内部滤袋前无导流板(B)、有导流板(C)或开孔挡板(D)的几种旋风-布袋复合除尘器的流场。结果表明:除尘器C的流场较均匀,较高风速时压降低于除尘器B、D。进一步模拟了除尘器A、C的分级效率,发现对于粒径低于15 μm的颗粒,除尘器A去除率低于60%,除尘器C去除率高于97.8%。且复合除尘器占地小,滤袋寿命长,具有广阔的应用前景。上述数值模拟结果可为复合除尘器的优化设计提供参考。Abstract: For the ultra-low emission of flue gas and dust from coal-fired industrial boilers, a numerical simulation method was used to study the flow fields of cyclone dust collector (A) and several kinds of cyclone-bag composite dust collectors without baffle (B), with baffle (C) or perforated baffle (D) in front of inner filter bag. The results showed that the flow field of cyclone-bag composite dust collector C was more uniform than others, and its pressure drop was lower than cyclone-bag composite dust collectors of B and D at a higher inlet velocity. The grading efficiencies of cyclone-bag composite dust collectors of A and C were further simulated, it was found that for particles smaller than 15 micrometers, the corresponding removal efficiency by cyclone-bag composite dust collector A was lower than 60%, while the corresponding removal efficiency by cyclone-bag composite dust collector C was higher than 97.8%. Moreover, with advantages of less space, lower filter bag load and longer cleaning cycle, the new composite dust collector has a broad application prospect. The results of above numerical simulation provide guidelines for the design and optimization of the composite dust collector.
-
Key words:
- composite dust collector /
- numerical simulation /
- optimization /
- dust removal efficiency
-
-
[1] SONG C M, PEI B B, JIANG M T, et al. Numerical analysis of forces exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294: 437-448. doi: 10.1016/j.powtec.2016.02.052 [2] SON J, PARK Y, KOO C, et al. High efficiency compact cybagfilter: 5961675[P]. 1999-10-05. [3] 赵新义, 张毅. 新型旋风-滤袋复合除尘器的开发应用[J]. 化工机械, 2006, 33(4): 227-229. doi: 10.3969/j.issn.0254-6094.2006.04.010 [4] 刘海, 李彩亭, 曾光明, 等. SCX型脱硫除尘器内部气固两相流场数值模拟[J]. 环境工程学报, 2011, 5(4): 865-870. [5] 廉继尧, 夏凤毅, 沈州. 新型复合除尘器的设计及数值模拟[J]. 中国计量学院学报, 2015, 26(1): 70-74. [6] 张文青, 李勇. 旋风-滤筒复合除尘器的数值模拟及优化[J]. 化工机械, 2018, 45(1): 82-85. doi: 10.3969/j.issn.0254-6094.2018.01.021 [7] 丁倩倩, 李珊红, 李彩亭, 等. 基于ASMM模型对不同袋长袋式除尘器气固两相流的模拟[J]. 环境工程学报, 2016, 10(12): 7126-7132. doi: 10.12030/j.cjee.201507056 [8] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. [9] CORTES C, GIL A. Modeling the gas and particle flow inside cyclone separators[J]. Progress in Energy and Combustion Science, 2007, 33(5): 409-452. doi: 10.1016/j.pecs.2007.02.001 [10] DUFRÊCHE J, PRAT M, SCHMITZ P, et al. On the apparent permeability of a porous layer backed by a perforated plate[J]. Chemical Engineering Science, 2002, 57(15): 2933-2944. doi: 10.1016/S0009-2509(02)00173-2 [11] KOZOłUB P, KLIMANEK A, BIAłECKI R A, et al. Numerical simulation of a dense solid particle flow inside a cyclone separator using the hybrid Euler-Lagrange approach[J]. Particuology, 2017, 31: 170-180. doi: 10.1016/j.partic.2016.09.003 [12] BELBA V H, GRUBB W T, CHANG R. The potential of pulse-jet baghouses for utility boilers. Part 1: A worldwide survey of users[J]. Journal of the Air & Waste Management Association, 1992, 42(2): 209-217. [13] SU Y X, ZHENG A Q, ZHAO B T. Numerical simulation of effect of inlet configuration on square cyclone separator performance[J]. Powder Technology, 2011, 210(3): 293-303. doi: 10.1016/j.powtec.2011.03.034 [14] GRONALD G, DERKSEN J J. Simulating turbulent swirling flow in a gas cyclone: A comparison of various modeling approaches[J]. Powder Technology, 2011, 205(1/2/3): 160-171. [15] 缪兵, 贾卫东, 施爱平. 基于计算机仿真技术的旋风除尘器流场模拟[J]. 农机化研究, 2009(2): 40-43. doi: 10.3969/j.issn.1003-188X.2009.02.012 [16] WANG B, XU D L, CHU K W, et al. Numerical study of gas-solid flow in a cyclone separator[J]. Applied Mathematical Modelling, 2006, 30(11): 1326-1342. doi: 10.1016/j.apm.2006.03.011 [17] GIMBUN J. CFD simulation of aerocyclone hydrodynamics and performance at extreme temperature[J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(1): 22-29. doi: 10.1080/19942060.2008.11015208 [18] 郭丰年, 徐天平. 实用袋滤除尘技术[M]. 北京: 冶金工业出版社, 2015. [19] 霍夫曼·斯坦因. 旋风分离器: 原理、设计和工程应用[M]. 北京: 化学工业出版社, 2004. [20] 丁倩倩, 李珊红, 李彩亭, 等. 滤袋长度对袋式除尘器内流场影响的数值模拟研究[J]. 环境工程学报, 2015, 9(11): 5521-5526. doi: 10.12030/j.cjee.20151162