-
城市绿地为居民提供了良好的环境、景观和游憩场所,城市绿地功能的发挥离不开土壤,城市的居住适宜程度和环境质量以及人类的生活品质等都与城市绿地土壤密切相关[1-2]。然而,随着城市化的发展,城市土壤环境问题日渐严峻,大量污染物进入土壤当中,尤为突出的是土壤重金属和多环芳烃(PAHs)污染日益加剧[3-4]。因此,土壤重金属和多环芳烃污染问题是阻碍城市发展、影响城市居民健康的重要因素之一。
城市土壤中的重金属和PAHs主要来自大气中吸附有环境污染物的细颗粒物的干湿沉降[5-6],而城市中的植被格局在很大程度上,影响着大气颗粒物的传输和沉降过程[7]。目前,城市中观尺度上土地利用类型、城市化程度、城区植被类型及覆盖度等因素对土壤重金属和多环芳烃的影响均有较多研究[8-10]。由于不同的土地利用类型(商业区、居民区、工业区等)对土壤污染物的累积影响较大[11-12],因此,选择相同的土地利用类型来研究某种因素的影响能够较为明确地揭示目标因素的影响作用。居民区是城市区域中人口最为集中的地方之一,且占地面积较大,与人居环境质量息息相关[13]。有研究[14]表明,杭州市居民区土壤重金属元素均有不同程度的积累,以Cd最为明显。居民区土壤重金属可能是人体重金属的重要来源之一[15]。陈秀端等[16]发现,在西安市居民区土壤中,重金属污染对成人与儿童的健康都具有风险。其中,儿童所接受的重金属元素As、Ba、Co、Cr、Pb和Zn污染的健康风险远高于成人。吴新民等[17]应用MIELKE等[18]提出的儿童健康标准的土壤Pb全量指标进行研究,发现南京市老居民区土壤Pb浓度超标75%以上。此外,有研究[19-21]表明,不同城市化强度、城市土地利用类型以及植被类型对土壤PAHs累积均具有显著影响。然而,以上的研究均在城市区域尺度上进行,对于小尺度(如居民区尺度)水平上植被格局对土壤污染物累积的影响研究较少。
小尺度水平上的植被格局是城市绿地园林设计和规划的重要内容,研究小尺度水平上植被格局对土壤重金属和PAHs等污染物累积的影响能够为城市绿地园林设计和绿地管理提供依据,能够使其同时兼顾环境美观和健康。因此,本研究选择居民区土地利用类型作为研究对象,对不同植被格局下,居民区土壤重金属和PAHs累积特征进行调查分析,旨在探明小尺度水平上,植被格局对土壤污染物累积的影响程度。
小尺度水平上植被格局对城市绿地土壤污染物累积的影响
Impact of vegetation pattern on soil contaminant accumulation in urban green land at small scale
-
摘要: 小尺度水平上土壤污染物累积特征不仅与人们的生活直接相关,与社区环境管理和园林规划也有密切联系。选择北京市五环内具有不同植被格局(围绕式、行列式、混合式和群点式)的典型居民区为研究对象,通过小区内绿地的多点布点,调查分析表层土壤中的7种重金属元素(Cr、Ni、Cu、Zn、Cd、Pb、Mn)和16种优先控制多环芳烃(PAHs)的浓度;探究小尺度水平上,植被格局对绿地土壤重金属及多环芳烃累积的影响。结果表明:Cu、Zn、Cd和Pb为主要的重金属污染物;居民区土壤中,16种多环芳烃总量(Σ16PAHs)的浓度为88.1~2 844 μg·kg−1,其主要来源于煤炭燃烧而非石油及其产物燃烧;行列式植被格局的绿地土壤中,主要重金属和PAHs污染物的浓度分布较为分散,高浓度污染物也往往出现在该类植被格局的土壤中;而群点式植被格局土壤中,主要重金属污染物以及本地指示性多环芳烃Ant、BaA和BaP的浓度中位值都较其他3种植被格局低。对行列式植被格局的小区进行土壤质量调查时,需要采集较多的样品数量才能获得代表性污染物浓度;同时,行列式植被格局有利于对污染物的截获,使绿地土壤起到吸纳污染物的作用,而群点式植被格局的绿地土壤环境质量较好,但是不利于发挥吸纳污染物的生态功能。Abstract: Accumulation characteristics at small scale is not only close to people’s daily lives, but also links to neighborhood environmental management and garden planning. Typical residential neighborhoods with different vegetation patterns(encircled, linear, mixed and dotted) were chosen as studied areas. Through multi-site sampling in residential green land, the concentrations of seven heavy metals(Cr, Ni, Cu, Zn, Cd, Pb, Mn) and 16 prior polycyclic aromatic hydrocarbons (PAHs) were analyzed, then the impacts of vegetation patterns on soil heavy metals and PAHs accumulation in green land at small scale were explored. The results showed that the main heavy metal contaminants were Cu, Zn, Cd and Pb. In residential soil, the concentration of total PAHs (Σ16PAHs) ranged from 88.1~2 844 μg·kg−1, these PAHs were derived mainly from the combustion of coal rather than petroleum and its products. In soil with linear pattern of vegetation, the concentration of major heavy metals and PAHs contaminants presented scattered distribution, and high concentration contaminants were also observed. In soil with dotted pattern of vegetation, the median concentrations of major heavy metals and local indicative PAHs: Ant, BaA and BaP, were lower than the other three patterns of vegetation. For the soil quality investigation in residential area with linear pattern of vegetation, more sampling sites were needed to get representative concentration of contaminants. Moreover, linear pattern of vegetation in residential area was benefit for capturing contaminants, and the soil in green land could play a role in absorbing contaminants. By contrast, the soil environmental quality was better in green land with dotted pattern of vegetation, while was adverse to play its ecological role in absorbing contaminants.
-
表 1 研究区表层土壤中7种重金属浓度及其变异系数
Table 1. Concentrations and variation coefficients of seven heavy metals in surface soil of study area
重金属
元素浓度最小值/(mg·kg−1) 浓度最大值/(mg·kg−1) 浓度平均值/(mg·kg−1) 浓度中位值/(mg·kg−1) 变异系数/% 实测 背景1) 实测 背景1) 实测 背景1) 实测 背景1) 实测 背景1) Cr 32.7 50.6 63.4 163 45.9 68.1 46.5 64.4 15.0 23.4 Ni 14.5 17.0 28.2 48.9 21.9 29 22.2 27.4 14.4 25.7 Cu 13.0 15.0 159 101 29.1 23.6 22.3 23.7 88.1 19.8 Zn 33.2 48.2 245 226 71.8 102.6 65.1 97.5 37.6 34.5 Cd 0.104 0.005 0.235 0.339 0.156 0.074 0.150 0.073 19.1 78.9 Pb 13.2 10.0 132 46.0 31.2 25.4 23.2 24.1 85.6 24.8 Mn 335 419 648 1 039 400 705 384 685 16.0 22.7 注:1)背景值参考已有研究中的数值[30]。 表 2 研究区土壤各元素浓度旋转后的因子载荷分析
Table 2. Principal component loadings of elements concentrations in studied soils after rotation
元素 主成分1 主成分2 主成分3 主成分4 Cr 0.281 0.078 0.886 −0.003 Ni 0.065 0.001 0.914 0.117 Cu 0.960 0.135 0.037 −0.064 Zn 0.951 0.064 0.200 −0.050 Cd1) 0.664 0.153 0.476 −0.170 Pb 0.904 0.118 0.140 −0.206 Mn1) 0.737 0.606 0.114 −0.008 Na −0.209 −0.135 −0.096 0.808 K −0.032 0.178 0.168 0.879 Fe 0.227 0.857 −0.045 −0.031 Ca1) 0.361 0.589 0.499 −0.327 Mg −0.023 0.905 0.244 0.039 Al 0.131 0.880 −0.068 0.068 注:1)表示在2组以上主成分中占有相似比例的载荷。 表 3 土壤样品中各元素浓度的偏度、峰度、正态性检验(K-S检验)
Table 3. Skewness, kurtosis and normal test (K-S testing) of heavy metal concentrations in studied soils
元素 峰度 偏度 P Cr 0.053 0.100 0.200 Ni −0.342 −0.321 0.200 Cu 22.0 4.22 0.000* Zn 14.3 3.17 0.000* Cd 0.316 0.529 0.200 Pb 7.21 2.60 0.000* Mn 6.31 2.02 0.008* Na 2.83 1.49 0.000* K −0.245 −.0725 0.004* Fe 0.637 0.922 0.017* Ca −0.257 −0.164 0.200 Mg 2.29 1.23 0.068 Al 1.61 0.678 0.200 注:*表示差异显著(P<0.05)。 表 4 研究区表层土壤中PAHs浓度
Table 4. PAHs concentrations in surface soil of study area
化合物 缩写 环数 极小值/(μg·kg−1) 中位值/(μg·kg−1) 极大值/(μg·kg−1) 变异系数/% 萘 Nap 2 3.79 15.4 33.9 51.6 苊 Ace 3 1.23 3.49 28.6 103 苊烯 Acy 3 0.140 1.05 8.25 114 芴 Flu 3 0.710 2.60 13.1 72.9 菲 Phe 3 5.60 26.6 204 105 蒽 Ant 3 1.07 3.72 47.5 140 荧蒽 Fla 4 9.29 30.5 346 124 芘 Pyr 4 7.09 22.7 283 132 苯并(a)蒽 BaA 4 5.68 19.8 188 111 屈 Chry 4 7.99 29.2 289 115 苯并(b)荧蒽 BbF 5 11.3 41.3 269 85.8 苯并(k)荧蒽 BkF 5 6.39 22.4 226 118 苯并(a)芘 BaP 5 6.60 23.3 250 130 二苯并(a,h)蒽 DahA 5 2.60 10.5 91.4 113 苯并(g,h,i)苝 BghiP 6 9.09 34.3 288 108 茚并(1,2,3-cd)芘 InP 6 9.44 44.1 288 94.4 低环PAHs LMW PAHs 2~3 12.6 49.9 326 85.6 高环PAHs HMW PAHs 4~6 75.5 278 2 518 111 总PAHs Σ16PAHs 2~6 88.1 327 2 844 107 -
[1] VRSCAJ B, POGGIO L, MARSAN F A. A method for soil environmental quality evaluation for its management and planning in urban areas[J]. Landscape and Urban Planning, 2008, 88(2/3/4): 81-94. [2] 房城, 王成, 郭二果, 等. 城市绿地与城市居民健康的关系[J]. 东北林业大学学报, 2010, 38(4): 114-116. doi: 10.3969/j.issn.1000-5382.2010.04.034 [3] 符娟林, 章明奎, 厉仁安. 杭州市居民区土壤重金属形态和酸可溶性研究[J]. 科技通报, 2004, 20(1): 6-10. doi: 10.3969/j.issn.1001-7119.2004.01.002 [4] 章迪, 曹善平, 孙建林, 等. 深圳市表层土壤多环芳烃污染及空间分异研究[J]. 环境科学, 2014, 35(2): 711-718. [5] SUMAN S, SINHA A, TARAFDAR A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India[J]. Science of the Total Environment, 2017, 545/546: 353-360. [6] 王梦梦, 原梦云, 苏德纯. 我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 2017, 37(11): 4085-4096. doi: 10.3969/j.issn.1000-6923.2017.11.010 [7] XU D C, ZHOU P, ZHAN J, et al. Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China[J]. Ecotoxicology and Environmental Safety, 2013, 90: 103-111. doi: 10.1016/j.ecoenv.2012.12.018 [8] 田壮, 方淑波, 印春生, 等. 盐城海岸带景观格局变化和重金属空间分布相关分析[J]. 上海海洋大学学报, 2013, 22(6): 912-921. [9] CAO H B, CHAO S H, QIAO L, et al. Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in southern Jiangsu, China[J]. Science of the Total Environment, 2017, 575: 692-700. doi: 10.1016/j.scitotenv.2016.09.106 [10] HUANG Y P, LIU M, WANG R Q, et al. Characterization and source apportionment of PAHs from a highly urbanized river sediments based on land use analysis[J]. Chemosphere, 2017, 184: 1334-1345. doi: 10.1016/j.chemosphere.2017.06.117 [11] 王静, 刘明丽, 张士超, 等. 沈抚新城不同土地利用类型多环芳烃含量、来源及人体健康风险评价[J]. 环境科学, 2017, 38(2): 703-710. [12] 郭伟, 孙文惠, 赵仁鑫, 等. 呼和浩特市不同功能区土壤重金属污染特征及评价[J]. 环境科学, 2013, 34(4): 1561-1567. [13] 符娟林, 章明奎, 厉仁安. 基于GIS的杭州市居民区土壤重金属污染现状及空间分异研究[J]. 土壤通报, 2005, 36(4): 575-578. doi: 10.3321/j.issn:0564-3945.2005.04.026 [14] 符娟林. 杭州市居民区土壤环境质量的空间分异及其与土地利用历史的关系[D]. 杭州: 浙江大学, 2004. [15] 陈潇霖, 杨丹, 胡迪青, 等. 北京土壤重金属分布及评价: 以五环以内为例[J]. 环境科学与技术, 2012, 35(S2): 78-81. [16] 陈秀端, 卢新卫. 西安城市居民区土壤重金属健康风险评价[J]. 土壤通报, 2017, 48(4): 961-968. [17] 吴新民, 李恋卿, 潘根兴, 等. 南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J]. 环境科学, 2003, 24(3): 105-111. doi: 10.3321/j.issn:0250-3301.2003.03.021 [18] MIELKE H W, GONZALES C R, SMITH M K, et al. The urban environment and children’s health: Soils as an integrator of lead, zinc and cadmium in New Orleans, Louisiana, U. S. A[J]. Environmental Research, 1999, 81(2): 117-129. doi: 10.1006/enrs.1999.3966 [19] 姚宏, 张士超, 刘明丽, 等. 基于城镇化进程表层土壤多环芳烃来源解析及风险评价[J]. 环境科学, 2018, 39(2): 889-898. [20] 赵利容, 孙省利, 柯盛. 湛江市区不同利用类型土壤的PAHs污染特征和来源[J]. 土壤学报, 2012, 49(4): 830-834. doi: 10.11766/trxb201105180179 [21] SOUKARIEH B, EL HAWARI K, EL HUSSEINI M, et al. Impact of lebanese practices in industry, agriculture and urbanization on soil toxicity. Evaluation of the polycyclic aromatic hydrocarbons (PAHs) levels in soil[J]. Chemosphere, 2018, 210: 85-92. doi: 10.1016/j.chemosphere.2018.06.178 [22] 北京市统计局, 国家统计局北京调查总队. 北京统计年鉴2018[EB/OL]. [2019-10-11]. http://www.bjstats.gov.cn/tjsj/.pdf, 2018. [23] 宋爱春. 北京建成区居住绿地植物多样性及其景观研究[D]. 北京: 北京林业大学, 2014. [24] XIE T, WANG M E, CHEN W P, et al. Impacts of urbanization and landscape patterns on the accumulation of heavy metals in soils in residential areas in Beijing[J]. Journal of Soils and Sediments, 2019, 19(1): 148-158. doi: 10.1007/s11368-018-2011-6 [25] PENG C, OUYANG Z Y, WANG M E, et al. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators[J]. Environmental Pollution, 2013, 178: 426-432. doi: 10.1016/j.envpol.2013.03.058 [26] 杨伟光, 王美娥, 陈卫平. 新疆干旱区某矿冶场对周围土壤重金属累积的影响[J]. 环境科学, 2019, 40(1): 445-452. [27] 彭驰. 城市土壤重金属与多环芳烃累积过程模拟[D]. 北京: 中国科学院大学, 2013. [28] 张枝焕, 卢另, 贺光秀, 等. 北京地区表层土壤中多环芳烃的分布特征及污染源分析[J]. 生态环境学报, 2011, 20(4): 668-675. doi: 10.3969/j.issn.1674-5906.2011.04.014 [29] WANG M E, MARKERT B, CHEN W P, et al. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China[J]. Environmental Monitoring and Assessment, 2012, 184(10): 5889-5897. doi: 10.1007/s10661-011-2388-9 [30] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. [31] YANG Z P, LU W X, LONG Y Q, et al. Assessment of heavy metals contamination in urban topsoil from Changchun City, China[J]. Journal of Geochemical Exploration, 2011, 108(1): 27-38. doi: 10.1016/j.gexplo.2010.09.006 [32] WU S, XIA X H, LIN C Y, et al. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985-2008)[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 860-868. [33] 王学松, 秦勇. 利用对数正态分布图解析徐州城市土壤中重金属元素来源和确定地球化学背景值[J]. 地球化学, 2007, 36(1): 98-102. doi: 10.3321/j.issn:0379-1726.2007.01.011 [34] EDWARD N T J. Polycyclic aromatic hydrocarbons (PAHS) in the terrestrial environment: A review[J]. Journal of Environmental Quality, 1983, 12(4): 427-441. [35] LIANG M, LIANG H D, RAO Z, et al. Characterization of polycyclic aromatic hydrocarbons in urban-rural integration area soil, North China: Spatial distribution, sources and potential human health risk assessment[J]. Chemosphere, 2019, 234: 875-884. doi: 10.1016/j.chemosphere.2019.06.119 [36] SONG S, LU Y L, WANG T Y, et al. Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction[J]. Environmental Manage, 2019, 249: 109406. [37] YUNKER M B, MACDONALD R W, VINGAZAN R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5 [38] 张俊叶, 俞菲, 俞元春. 中国主要地区表层土壤多环芳烃含量及来源解析[J]. 生态环境学报, 2017, 26(6): 1059-1067.