-
石油作为现代社会最主要的能源之一,有工业血液之称[1]。然而,石油在生产、储运和使用的过程中也带来了许多环境问题,其中石油及其产品污染土壤的问题尤为突出,世界上98%的石油泄漏事故发生在陆地上[2]。土壤中的石油类污染物会对土壤的通透性、微生物群落及农作物生长造成影响,修复石油污染土壤对环境保护和土地可持续利用有着十分重要的意义[1]。
目前,高级氧化技术(advanced oxidation processes,AOPs)是修复石油污染土壤常用的方法之一[3]。在高级氧化技术中常用到的氧化剂为双氧水(H2O2)。但由于H2O2有稳定性差、易催化分解等缺点,导致其修复效果受到限制[4]。过氧化钙(CaO2)被称为固态H2O2,因其具有强氧化性、持久缓释性、残留物无害性以及微生物友好性而被广泛应用于土壤和地下水化学修复[5]。GOI等[6]用CaO2代替H2O2修复电气绝缘油污染的土壤,发现投加适量的CaO2可在21 d去除96%的绝缘油。ZHANG等[7]利用Fe(Ⅲ)催化CaO2降解地下水中三氯乙烯,在180 min内达到了99.95%的降解率。
基于H2O2和CaO2的高级氧化技术被广泛应用于去除土壤和地下水中的污染物,但关于其对土壤及地下水中微生物群落、植物等造成的影响的研究却相对较少[8]。本研究利用类Fenton氧化技术修复石油污染土壤,考察氧化剂种类(H2O2和CaO2)、氧化剂投加量、Fe(Ⅲ)及柠檬酸浓度对污染物去除效率的影响,通过比较CaO2/Fe(Ⅲ)/柠檬酸体系和H2O2/Fe(Ⅲ)/柠檬酸体系修复前后土壤原著微生物及植物生长情况的变化,评估2种类Fenton技术所产生的生态毒性效应。
CaO2及H2O2类Fenton降解土壤石油烃污染
Degradation of total petroleum hydrocarbons pollution in soil by CaO2/H2O2-Fenton-like system
-
摘要: 采用H2O2/Fe(Ⅲ)/柠檬酸类Fenton体系和CaO2/Fe(Ⅲ)/柠檬酸类Fenton体系修复土壤石油污染,考察了氧化剂种类、氧化剂投加量、Fe(Ⅲ)浓度和柠檬酸浓度对柴油降解效果的影响,并进一步研究比较了CaO2/Fe(Ⅲ)/柠檬酸和H2O2/Fe(Ⅲ)/柠檬酸2种修复方式对土壤原著微生物群落变化及豌豆植株生长所带来的生态毒性效应。单因素实验结果表明:在其他条件相同的情况下,CaO2类Fenton降解柴油效果优于H2O2类Fenton降解效果;柴油降解率随着氧化剂投加量、Fe(Ⅲ)和柠檬酸浓度的增大呈现先增后降的趋势。当CaO2浓度为166.67 mmol·L−1、Fe(Ⅲ)浓度为27.78 mmol·L−1、柠檬酸浓度为27.78 mmol·L−1时,反应24 h后,土壤中柴油降解率达到44.14%。生态毒性实验表明:CaO2类Fenton处理后土壤微生物群落的丰富度和多样性指数均有所提高,H2O2类Fenton处理后均有所降低,2种处理方式均在不同程度上改变了土壤微生物群落的优势菌门构成;CaO2及H2O2类Fenton处理均抑制了豌豆植株的生长,发芽率、植株干重、株高、叶绿素含量等测试指标均下降,其中H2O2类Fenton处理的抑制效果更为明显。进一步分析可知,CaO2类Fenton处理技术比H2O2类Fenton处理技术更适用于石油污染土壤修复。
-
关键词:
- CaO2类Fenton /
- Fe(Ⅲ) /
- 柠檬酸 /
- 石油烃 /
- 生态毒性效应
Abstract: In this study, H2O2/Fe(Ⅲ)/citric acid and CaO2/Fe(Ⅲ)/citric acid Fenton-like systems were used to degrade total petroleum hydrocarbons (TPH) in soil, and the effects of H2O2 and CaO2 dosages, Fe(Ⅲ) and citric acid concentrations on diesel oil degradation efficiency in soil were investigated. Furthermore, the ecotoxicological effects of these two remediation modes on the variation of indigenous microbial communities in soil and pea plant growth were compared. The results showed that under the situation of other conditions being equal, CaO2-Fenton-like system had a better performance on diesel oil degradation than H2O2-Fenton-like system. The diesel oil degradation efficiency increased first and then decreased with the increase of CaO2 dosage, Fe(Ⅲ) and citric acid concentration. At CaO2 dosage of 166.67 mmol·L−1, Fe(Ⅲ) concentration of 27.78 mmol·L−1, and citric acid concentration of 27.78 mmol·L−1, the diesel oil degradation efficiency in soil reached 44.1% at 24 h. The ecotoxicological impacts showed that CaO2 -Fenton-like treatment promoted soil microbial richness and diversity indexes, while H2O2 -Fenton-like treatment reduced them. This indicated that these two treatment modes changed the compositions of soil microbes and dominant bacterial phyla in varying degrees. The CaO2 and H2O2-Fenton-like treatments inhibited the growth of pea plants, and decreased the indexes of germination rate, shoot length, plant dry weight and chlorophyll content, and H2O2-Fenton-like treatment had more serious inhibition effects. In summary, the CaO2 Fenton-like treatment is more suitable for TPH-contaminated soil remediation than H2O2 Fenton-like treatment.-
Key words:
- CaO2-Fenton-like systems /
- Fe(Ⅲ) /
- citric acid /
- total petroleum hydrocarbons /
- ecotoxicological impacts
-
-
[1] 黄曼曼, 邓百万, 武晓雨, 等. 石油污染土壤的微生物修复技术研究进展[J]. 黑龙江农业科学, 2017(4): 149-153. [2] 卢楠, 韩霁昌, 李刚, 等. 石油污染土壤生物修复技术进展[J]. 广东化工, 2016, 43(16): 131-132. doi: 10.3969/j.issn.1007-1865.2016.16.061 [3] 徐金兰, 宋少花, 黄廷林, 等. 柠檬酸改性Fenton氧化石油污染土壤的影响因素研究[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(4): 605-608. [4] 丁宇, 张祥, 吕树光. Fe3+催化过氧化钙体系降解水中三氯乙烯[J]. 环境污染与防治, 2018, 40(4): 392-397. [5] LU S G, ZHANG X, XUE Y F, et al. Application of calcium peroxide in water and soil treatment: A review[J]. Journal of Hazardous Materials, 2017, 337: 163-177. doi: 10.1016/j.jhazmat.2017.04.064 [6] GOI A, VIISIMAA M, TRAPIDO M, et al. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides[J]. Chemosphere, 2011, 82(8): 1196-1201. doi: 10.1016/j.chemosphere.2010.11.053 [7] ZHANG X, GU X G, LU S G, et al. Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid[J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 502-512. [8] REDE D, SANTOS L H, RAMOS S, et al. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds[J]. Chemosphere, 2016, 159: 193-198. doi: 10.1016/j.chemosphere.2016.06.002 [9] NDJOU’OU A C, CASSIDY D. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil[J]. Chemosphere, 2006, 65: 1610-1615. doi: 10.1016/j.chemosphere.2006.03.036 [10] 杨金凤, 陈鸿汉, 王春艳, 等. 生物通风技术修复柴油污染土壤的土柱模拟实验[J]. 环境工程学报, 2012, 6(2): 653-657. [11] 赵洲. 浅析《水质石油类和动植物油类的测定红外分光光度法》新旧标准的区别[J]. 环境科学导刊, 2012, 31(6): 131-133. doi: 10.3969/j.issn.1673-9655.2012.06.037 [12] 王慕华, 彭晓光, 麻杰, 等. 基于16S rRNA基因高通量测序的太原地区健康成年人肠道菌群结构分析[J]. 中国微生态学杂志, 2019, 31(7): 745-751. [13] SERA B, SERY M, GAVRIL B, et al. Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.)[J]. Plasma Chemistry and Plasma Processing, 2017, 37(1): 207-221. doi: 10.1007/s11090-016-9763-9 [14] 汪艳杰, 胡志辉, 郭瑞, 等. 结荚期摘除叶荚对豇豆及其光谱荧光参数的影响[J]. 北方园艺, 2016, 40(23): 15-19. [15] 李佳, 曹兴涛, 隋红, 等. 石油污染土壤修复技术研究现状与展望[J]. 石油学报(石油加工), 2017, 33(5): 811-833. [16] ZHOU Y B, FANG X B, WANG T H, et al. Chelating agents enhanced CaO2 oxidation of bisphenol A catalyzed by Fe3+ and reuse of ferric sludge as a source of catalyst[J]. Chemical Engineering Journal, 2017, 313: 638-645. doi: 10.1016/j.cej.2016.09.111 [17] 樊坤, 伊艳杰, 刘阳, 等. 基于高通量测序分析驴皮肤病病灶中细菌菌群组成[J]. 动物医学进展, 2019, 40(6): 37-41. doi: 10.3969/j.issn.1007-5038.2019.06.007 [18] LEE M D, THOMAS J M, BORDEN R C, et al. Biorestoration of aquifers contaminated with organic compounds[J]. Critical Reviews in Environmental Control, 1989, 18: 29-89. [19] MALACHOWSKA-JUTSZ A, NIESLER M. The effect of calcium peroxide on the phenol oxidase and acid phosphatase activity and removal of fluoranthene from soil[J]. Water, Air and Soil Pollution, 2015, 226: 226-365. doi: 10.1007/s11270-015-2469-4 [20] 侯景清, 王旭, 陈玉海, 等. 乳酸菌复合制剂对盐碱地改良及土壤微生物群落的影响[J]. 南方农业学报, 2019, 50(4): 710-718. doi: 10.3969/j.issn.2095-1191.2019.04.05 [21] KONG X, YU S Y, XU S, et al. Effect of Fe0 addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates[J]. Waste Management, 2018, 71: 719-727. doi: 10.1016/j.wasman.2017.03.019 [22] LIU S J, XI B D, QIU Z P, et al. Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals[J]. Science of the Total Environment, 2019, 651: 909-916. doi: 10.1016/j.scitotenv.2018.09.267 [23] 陈颖, 杨华, 乐利, 等. 过氧化氢对银杏悬浮细胞黄酮含量及抗氧化酶活性的影响[J]. 中南林业科技大学学报, 2014, 34(12): 40-45. doi: 10.3969/j.issn.1673-923X.2014.12.008 [24] 张晓龙, 王闪闪, 王乃喜. 外源过氧化氢对弱光下黄瓜幼苗抗氧化酶的影响[J]. 长江大学学报(自然科学版), 2013, 10(17): 11-14. [25] GAO X T, ZHANG A, HEROUX P, et al. Effect of dielectric barrier discharge cold plasma on pea seed growth[J]. Journal of Agricultural and Food Chemistry, 2019, 67(39): 10813-10822. doi: 10.1021/acs.jafc.9b03099 [26] CORPAS F J, BARROSO J B. Peroxisomal plant metabolism-an update on nitric oxide, Ca2+ and the NADPH recycling network[J]. Journal of Cell Science, 2018, 131(2): 1-8.