-
半干法脱硫工艺具有占地面积小、投资少、无废水产生、脱硫产物为干态、便于处理运输等优点[1-2],越来越多的企业选择该类脱硫工艺,进而产生大量的脱硫灰。预计到2020年,中国干法-半干法脱硫灰每年产生量稳定在2×107 t左右。目前,对此类脱硫灰国内外还没有成熟的工业化处理技术,从而导致大量的脱硫灰没有得到合理的处理利用[3-4],大量露天堆放的脱硫灰会产生一定的环境风险。大量无法利用的脱硫灰不能露天堆放,很多企业会选择填埋处置[5-7],而填埋处置又会造成大量资金和资源的浪费。因此,脱硫灰已经成为限制干法-半干法脱硫发展的一项难题。
脱硫灰的粒径主要在0.004~0.200 mm,钢厂脱硫灰的粒径较小一些,中位粒径(D50)为5~7 μm;而电厂的脱硫灰则粒径较大些,中位粒径为170~200 μm[8-10]。脱硫灰粒度相对较小,比表面积相对较大,具有较高的活性并适合用于生产较高品质的建材。脱硫灰的主要组分有CaSO3,CaCO3,CaSO4,Ca(OH)2,含量其次相对较多的是Al2O3和SiO2,此外,还含有少量的MgO、Fe2O3、Na2O等[11-14],其组成比较复杂。脱硫灰的热重分析结果[15-17]表明:脱硫灰中亚硫酸钙发生高效氧化的温度为400~560 ℃,在该区间内存在明显的放热现象。
脱硫灰无法大量应用的主要原因是其中含有大量的亚硫酸钙,亚硫酸钙在潮湿的环境下可以与氧气发生缓慢的氧化反应,产生二水硫酸钙,从而造成体积膨胀,使建材的强度和稳定性下降,进而严重影响其在建筑材料中的应用[18]。亚硫酸钙在水泥中水化较慢,不会很快凝结硬化,会造成水泥和建材的缓凝[19]。当温度高于800 ℃或脱硫灰处于强酸环境时,亚硫酸钙则会分解释放出二氧化硫,造成二次污染。要想实现脱硫灰的资源化利用,就必须将脱硫灰中的亚硫酸钙氧化成硫酸钙,变成脱硫石膏,用脱硫石膏代替天然石膏应用于建材中,最终实现脱硫灰的资源化利用。通过加热使脱硫灰中亚硫酸钙氧化为硫酸钙是最直接、最有可能快速进入生产实践阶段的处理方法。本研究以应用最为广泛的循环流化床工艺的脱硫灰为实验材料,对主要的热氧化影响因素进行了探究,为脱硫灰热氧化提供了准确的最优工艺参数,为脱硫灰氧化的工业化生产提供参考。
CFB烧结烟气脱硫灰亚硫酸钙热氧化条件优化
Thermal oxidation conditions optimization for calcium sulfite in desulfurization ash of CFB sintered flue gas
-
摘要: 循环流化床(CFB)是一种常用的半干法烟气脱硫工艺,该工艺的副产物主要为脱硫灰。含有大量亚硫酸钙的脱硫灰较难被利用,致使大量脱硫灰堆积,给环境保护和企业生产带来了巨大的压力。亚硫酸钙的存在限制了脱硫灰在建材领域的应用,只有将其氧化为硫酸钙才能实现其资源化。脱硫灰热氧化主要采用了立式管式炉,分别考察了反应温度、反应状态、氧含量、水汽的含量对亚硫酸钙氧化的影响。结果表明:温度对脱硫灰氧化的影响最大,其次为气体流速、氧含量和水汽含量。反应温度与反应速率呈正相关;增加氧气含量可以提高反应速率,但当氧含量高于30%时,反应速率趋于稳定;反应器温度在350 ℃时,亚硫酸钙开始缓慢反应,在400 ℃、无预热气速为75 mL·min−1时,亚硫酸钙最大转化效率达到86%,预热处理后最大转化率达到90%;当水汽量<0.88 g·L−1时,水汽量的增加会抑制氧化的进行;当水汽含量>0.88 g·L−1时,则会促进反应的进行。以上结果对指导脱硫灰热氧化处理和节能环保具有理论与实践意义。Abstract: Circulating fluidized bed (CFB) is a commonly used semi-dry flue gas desulfurization process, in which desulfurized ash is the main by-product. Desulfurization ash containing a large amount of calcium sulfite is difficult to be utilized, which results in a large amount of desulfurization ash accumulation and brings a great pressure on environmental protection and enterprise production. The presence of calcium sulfite limits the application of desulfurization ash in the field of building materials, its resource utilization will be achieved only by the oxidation of calcium sulfite to calcium sulfate. In this study, the vertical tube furnace was mainly used in the desulfurization ash thermal oxidation experiments, and the effects of reaction temperature, reaction state, oxygen content and water vapor content on the oxidation of calcium sulfite were investigated. The results showed that the temperature had the greatest influence on the desulfurization ash oxidation, followed by the gas flow rate, oxygen content and water vapor content. The reaction temperature was positively correlated with the reaction rate. Increasing the oxygen content could raise the reaction rate, but the reaction rate reached stable when the oxygen content was higher than 30%. At the reactor temperature of 350 ℃, the reaction of calcium sulfite began slowly. At the heat speed of 75 mL·min−1 without 400 ℃ preheating, the maximum conversion efficiency of calcium sulfite reached 86%, while the maximum conversion rate after preheating treatment reached 90%. When the water vapor volume was greater than zero and less than 0.88 g·L−1, the increase of water vapor quantity could inhibit oxidation. However, at the water vapor content greater than 0.88 g·L−1, the reaction was promoted. The results of this study have important theoretical and practical significance for guiding thermal oxidation treatment of desulfurized ash, energy conservation and environmental protection.
-
Key words:
- desulfurization ash /
- calcium sulfite /
- calcium sulfate /
- thermal oxidation /
- resource utilization
-
表 1 脱硫灰元素分析结果
Table 1. Results of desulfurization ash element analysis
% 样品 CaO SO3 CO2 Cl K2O MgO N Fe2O3 SiO2 Na2O F Al2O3 1号样 50.1 28.3 10.8 3.7 2.2 1.0 0.77 0.85 0.60 0.56 0.26 0.42 2号样 53.7 27.2 9.48 3.68 1.26 1.13 0.88 0.52 0.48 0.48 0.40 0.35 注:1号样为实验所用脱硫灰;2号样与1号样为同种工艺但来源于不同工厂的脱硫灰。 -
[1] LIU R, GUO B, REN A, et al. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory[J]. Waste Management and Research, 2010, 28: 865-871. doi: 10.1177/0734242X09339952 [2] ZAREMBA T, MOKROSZ W, HEHLMANN J, et al. Properties of the wastes produced in the semi-dry FGD installation[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(2): 439-443. doi: 10.1007/s10973-007-8112-x [3] LIANG H, SHI L, YANG G. Improving sludge dewaterability by adding the semi-dry flue gas desulfurization residue under microwave radiation[J]. Clean -Soil, Air, Water, 2014, 42(9): 1239-1247. doi: 10.1002/clen.201200644 [4] HE J, SHI L. Modified flue gas desulfurization residue (MFGDR): A new type of acidic soil ameliorant and its effect on rice planting[J]. Journal of Cleaner Production, 2012, 24: 159-167. doi: 10.1016/j.jclepro.2011.11.065 [5] MA X, KANEKO T, TASHIMO T, et al. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science, 2000, 55: 4643-4652. doi: 10.1016/S0009-2509(00)00090-7 [6] WANG X, LI Y, ZHU T, et al. Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model[J]. Chemical Engineering Science, 2015, 264: 479-486. doi: 10.1016/j.cej.2014.11.038 [7] LI X, CHEN Q, MA B, et al. Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics[J]. Fuel, 2012, 102: 674-680. doi: 10.1016/j.fuel.2012.07.010 [8] DUABN S, LIAO H, CHENG F, et al. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag[J]. Construction and Building Materials, 2018, 187: 1113-1120. doi: 10.1016/j.conbuildmat.2018.07.241 [9] KOST D A, BIGHAM J M, STEHOUWER R C, et al. Chemical and physicalproperties of dry flue gas desulfurization products[J]. Journal of Environmental Quality, 2005, 34: 676-686. doi: 10.2134/jeq2005.0676 [10] 李茜. 半干法脱硫灰中CaSO3低温转化技术研究[J]. 河北工业科技, 2010, 27(2): 118-135. doi: 10.7535/hbgykj.2010yx02015 [11] DONG Y, REN X, ZHANG S, et al. Research on oxidation of CaSO3 in dry desulhurizatoin slag[J]. Environmental Engineering, 2012, 30(6): 95-97. [12] 康凌晨, 卢丽君, 李富智, 等. 半干法烧结烟气脱硫灰的化学成分分析方法研究[J]. 化学工程与装备, 2016, 45(10): 210-212. [13] BIGHAM J M, KOST D A R, STEHOUWER C, et al. Mineralogical and engineering characteristics of dry flue gas desulfurization products[J]. Fuel, 2005, 84: 1839-1848. doi: 10.1016/j.fuel.2005.03.018 [14] 董悦, 任旭, 张硕, 等. 干法脱硫渣中亚硫酸钙氧化研究[J]. 环境工程, 2012, 30(6): 95-97. [15] CHENG C, AMAYA M, LIN S, et al. Leaching characterization of dry flue gas desulfurization materials produced from different flue gas sources in China[J]. Fuel, 2017, 204: 195-205. doi: 10.1016/j.fuel.2017.05.016 [16] SHI L, XU P, XIE K, et al. Preparation of a modified flue gas desulphurization residueand its effect on pot sorghum growth and acidic soil amelioration[J]. Journal of Hazardous Materials, 2011, 192: 978-985. doi: 10.1016/j.jhazmat.2011.05.102 [17] 郭斌, 卞京凤, 任爱玲. 半干法烧结烟气脱硫灰中亚硫酸钙氧化研究[J]. 环境污染与防治, 2009, 31(7): 1-4. doi: 10.3969/j.issn.1001-3865.2009.07.002 [18] PAULA R, MEDEIROS J L, QUEIROZ O, et al. Fluidized bed treatment of residues of semi-dry flue gas desulfurizatiunits of coal-fired power plants for conversion of sulfites to sulfates[J]. Energy Conversion and Management, 2017, 143: 173-187. doi: 10.1016/j.enconman.2017.03.078 [19] CAILLAHUA M C, MOURA F J. Technical feasibility for use of FGD gypsum as an additive setting time retarder for portland cement[J]. Journal of Materials Research and Technology, 2018, 7(2): 190-197. doi: 10.1016/j.jmrt.2017.08.005 [20] 詹鹏, 杨新亚. 高碱性烟气脱硫灰中亚硫酸钙含量分析方法[J]. 环境科学与技术, 2013, 36(3): 155-159. [21] 纪宪坤. 流化床燃煤固硫灰渣几种特性利用研究[D]. 重庆: 重庆大学, 2007. [22] LIU H, FENG Y, LIU H, et al. Study of the bed agglomeration in the straw-fired fluidized bed[J]. Energy Sources, 2010, 32(15): 1470-1478. doi: 10.1080/15567030902756113