Processing math: 100%

电絮凝对电厂循环冷却水中硬度的去除

刘思琦, 李一兵, 曹迪, 张娟娟, 惠劭华, 朱海洋, 曹宏琨, 李宽, 李武林, 冒冉, 赵旭. 电絮凝对电厂循环冷却水中硬度的去除[J]. 环境工程学报, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049
引用本文: 刘思琦, 李一兵, 曹迪, 张娟娟, 惠劭华, 朱海洋, 曹宏琨, 李宽, 李武林, 冒冉, 赵旭. 电絮凝对电厂循环冷却水中硬度的去除[J]. 环境工程学报, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049
LIU Siqi, LI Yibing, CAO Di, ZHANG Juanjuan, HUI Shaohua, ZHU Haiyang, CAO Hongkun, LI Kuan, LI Wulin, MAO Ran, ZHAO Xu. Removal of hardness from circulating cooling water of power plant by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049
Citation: LIU Siqi, LI Yibing, CAO Di, ZHANG Juanjuan, HUI Shaohua, ZHU Haiyang, CAO Hongkun, LI Kuan, LI Wulin, MAO Ran, ZHAO Xu. Removal of hardness from circulating cooling water of power plant by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049

电絮凝对电厂循环冷却水中硬度的去除

    作者简介: 刘思琦(1994—),女,硕士研究生。研究方向:电絮凝技术。E-mail:1134740426@qq.com
    通讯作者: 李一兵(1968—),男,学士,教授级高工。研究方向:环境工程。E-mail:lybhebut@sina.com
  • 基金项目:
    国家自然科学基金资助项目(51578532)
  • 中图分类号: X703

Removal of hardness from circulating cooling water of power plant by electrocoagulation

    Corresponding author: LI Yibing, lybhebut@sina.com
  • 摘要: 以某电厂冷却塔循环冷却水为处理对象,利用电絮凝法,以铝板为牺牲阳极去除水中的Ca2+和Mg2+,分别考察了电絮凝过程中不同电流密度、电解时间、溶液初始pH、阳极极板数量对总硬度去除率的影响。结果表明:增加电流密度、延长电解时间有利于Ca2+和Mg2+的去除;当电流密度为10 mA·cm−2,电解时间为90 min时,Ca2+和Mg2+去除率分别达到93.5%和95.8%,总硬度去除率为94.6%;相对于酸性和中性条件,碱性条件更有利于Ca2+和Mg2+的去除,当初始pH为10时,Ca2+和Mg2+去除率分别达到85.4%和97.7%,总硬度去除率为93.5%;随极板数量的增加,Ca2+和总硬度去除率均有所提高;投加Na2CO3有利于Ca2+和总硬度的去除。上述结果可为进一步提高电絮凝过程中总硬度的去除率提供参考。
  • 城市卫生填埋场中生活垃圾在卫生填埋过程中,经微生物分解、发酵等反应,产生大量有毒有害的垃圾渗滤液,对填埋场周边生态环境系统构成严重危险[1]。垃圾渗滤液的处置流程通常采用“厌氧-缺氧-好氧”组合生物工艺脱氮并降解有机污染物,但要使垃圾渗滤液达标排放,需进一步结合深度处理工艺。在垃圾渗滤液深度处置工艺中,纳滤技术因其优异的污染物去除效果而备受关注,MAGALHAES等[2]通过纳滤膜能够实现90%以上的COD去除率。但纳滤深度处理工艺会产生处理体积约15%~30%的纳滤浓缩液[3]。相较于垃圾渗滤液,垃圾渗滤液纳滤浓缩液中因含有更高浓度的有机难降解污染物、药物污染物、无机盐等[4],使得生化系统难以对其进一步处置,因此,亟需一种垃圾渗滤液纳滤浓缩液生化预处理工艺以提高其可生化性。

    垃圾渗滤液纳滤浓缩液常规处理方法有回灌法、蒸发法和高级氧化法[5]。回灌法直接将浓缩液回流至垃圾填埋场填埋层,具有运行简便,处理成本低的优势,但长期回灌会造成填埋场渗滤液水质严重恶化并影响填埋层稳定性[6]。蒸发法通过加热蒸发的方式,可快速处置垃圾渗滤液纳滤浓缩液,但该方法对处置设备的抗腐蚀要求很高[7]。高级氧化法(advanced oxidation processes, AOPs)主要利用强氧化性的活性自由基(羟基自由基(·OH)、氯自由基、超氧自由基等[8])能高效分解、矿化难降解有机污染物,以提高垃圾渗滤液纳滤浓缩液的可生化性,但AOPs也存在药剂消耗量大和运行成本高等问题[9]。臭氧(O3)氧化法是AOPs中广泛应用于污水处理的一种工艺,O3在水体中可形成O3分子、单线态氧和·OH等一系列强氧化自由基[10]。其中O3分子和单线态氧具有选择氧化性,可选择性降解含有不饱和键的物质[11-12],而·OH则可对绝大多数污染物均有较好的去除效果[13]。ZHAO等[14]通过O3预处理渗滤液纳滤浓缩液,COD去除率可达到25%左右,挥发性脂肪酸质量浓度从18.14 mg·L−1提高至101.70 mg·L−1,其中大分子有机污染物可高效转化为可降解小分子有机物,渗滤液纳滤浓缩液的可生化性得到显著提高。HE等[15]构建的γ-Al2O3/O3体系处理垃圾渗滤液浓缩液,在γ-Al2O3投加量为50 g·L−1,O3投加量为22 mg·min−1,初始pH为7.3,反应温度为30 ℃,处理时间为30 min的最佳条件下,COD去除率可达70%,(BOD5/COD)B/C可从0.01提高到0.2。尽管目前O3氧化在催化剂领域的研究取得了良好进展,但O3催化剂在长期运行中的存在严重的失活问题极大限制其实际应用。HE等[16]在O3催化氧化处理实际废水中发现在O3氧化工艺稳定运行12个月后,O3催化剂的催化处理COD效率由56%回落至14.5%。此外,O3在水中较低的溶解度和传质系数导致其利用率低,也阻碍基于O3的AOPs工艺用于垃圾渗滤液纳滤浓缩液的处理。因此,采用新的O3氧化技术应用于垃圾渗滤液纳滤浓缩液的高效处理已成为未来的着重研究的方向。

    臭氧微纳米气泡技术(O3/micro-nanobubbles, O3/MNBs)是将微纳米气泡技术与O3氧化技术高效结合的一种工艺。微纳米气泡技术常采用水力空化,通过改变流体水力条件造成局部压力减小而引发空化效应,产生的微纳米气泡尺寸一般为0.2~50 μm,能够在水中停留数小时[17]。这使得O3可以更有加效的溶于水中,改善了O3溶解度低和传质系数低的问题,提高O3利用率[18]。此外,微纳米气泡较小的直径会导致气泡内部产生较高的压力,进一步加大了O3的溶解度[18]。ZHENG等[19]采用O3/MNBs和常规O3法处理晴纶废水,相同条件下,O3/MNBs可实现42%的COD去除率,B/C从0.04提升到0.13,而常规O3法的COD去除率仅有17%,B/C从0.04提升到0.08。当前O3/MNBs在有机污染物降解方面取得了一定的成果,但该技术的应用仍多停留于模拟废水,在实际废水中的应用鲜有报道。

    鉴于此,本研究将采用絮凝-O3/MNBs耦合工艺高效处理垃圾渗滤液纳滤浓缩液,探究耦合工艺中絮凝阶段的絮凝剂投加量、絮凝时间、絮凝转速以及O3/MNBs工艺的进气量、反应时间、反应温度等工艺参数对垃圾渗滤液纳滤浓缩液中污染物去除及可生化性的影响。并深入考察了絮凝-O3/MNBs耦合工艺对双酚A(Bisphenol A, BPA)、磺胺嘧啶(Sulfadiazine, SDZ)、磺胺甲恶唑(Sulfamethoxazole, SMX)和萘普生(Naproxen, NPX)等典型药物物质的去除效能。本研究为絮凝-O3/MNBs耦合在垃圾渗滤液纳滤浓缩液预处理工艺的实际工程运用中提供科学的技术支持。

    实验中所采用的垃圾渗滤液纳滤浓缩液采集自佛山市高明区苗村白石坳垃圾填埋场一厂,渗滤液纳滤浓缩液的基本水质参数:COD为(4752±140) mg·L−1,BOD5为(427±30) mg·L−1。实验试剂甲醇、乙腈、甲酸等为色谱级,聚合硫酸铁(polymerized ferrous sulfate, PFS)、聚丙烯酰胺(polyacrylamide, PAM)、氢氧化钠、硫酸、BPA、SDZ、SMX和NPX等为分析纯,上述试剂均采购自阿拉丁试剂(中国)。实验仪器包括多功能数控消解仪(昌鸿DIS-36B,中国),微纳米气泡发生器(禹创AD-24030,山东),O3发生器(同林3S-TS10,中国),磁力搅拌器(艾卡C-MAG HS-7,德国)。

    1)絮凝实验。絮凝实验示意图见图1(a),取1 L垃圾渗滤液纳滤浓缩液于烧杯中。置于磁力搅拌器上,加入适量质量浓度为30%的PFS溶液,以600 r·min−1快速混合60 s,随后在一定范围内调节转速,反应结束后加入适量质量分数(3‰)PAM溶液,200 r·min−1搅拌60 s,随后静置10 min,取上清液。絮凝实验选取絮凝时间(0~60 min)、絮凝剂投加量(0~12 g·L−1)及絮凝转速(0~400 r·min−1)为主要的技术参数进行研究,探究絮凝预处理垃圾渗滤液纳滤浓缩液的最优条件,每批实验重复2次。

    图 1  絮凝实验示意图和O3/MNBs实验反应器装置
    Figure 1.  Schematic diagram of flocculation experiments and reactor setup for O3/MNBs experiments

    2) O3/MNBs实验。絮凝实验完成后,取4 L絮凝处理后的垃圾渗滤液纳滤浓缩液(基本水质参数:COD为(1230±37) mg·L−1,BOD5为(270±15) mg·L−1)于O3/MNBs反应器装置中,O3/MNBs反应器装置如图1(b)所示。该装置高30 cm,内径14 cm,水浴层宽2 cm,有效容积4.6 L。本实验中的O3发生器以纯氧为气源产生O3气体,气体中O3的质量浓度为80 mg·L−1,O3气体进入MNBs发生器与垃圾渗滤液纳滤浓缩液絮凝上清液混合,通过高速旋转和加压溶解作用获得含MNBs的水悬浮液。O3/MNBs反应器装置中未反应的O3通过反应器顶部通气孔进入质量浓度为2%碘化钾(KI)吸收液。O3/MNBs高效氧化处理垃圾渗滤液纳滤浓缩液的实验选取O3进气量(50~500 mL·min−1)、初始pH(3~11)和反应温度(10~50 ℃)等为主要影响因素进行研究,考察其对垃圾渗滤液纳滤浓缩液可生化性的影响,每批实验重复3次。

    1)水质指标分析。化学需氧量采用COD测定仪(哈希DR1010,美国)测定,pH采用pH计(三信SX 751,上海)测定,5天生化需氧量(BOD5)采用BOD测定仪(赛莱默OxiTop IS12,德国)测定,色度和腐殖质采用紫外分光光度计(岛津UV2700,日本)测定,腐殖质以紫外分光光度计在254 nm波长处的吸光度计,色度计算方法[18]如式(1)所示。

    stringUtils.convertMath(!{formula.content}) (1)

    式中:C为色度;A436A525A620分别为紫外分光光度计在波长为436、525和620 nm波长处的吸光度。

    2)药品和个人护理品污染物分析。本研究中的药品和个人护理品(pharmaceutical and personal care products, PPCPs)污染物检测通过固相萃取法富集浓缩,过膜后装入液相小瓶,浓缩后待测样品4 ℃保存。PPCPs污染物采用高效液相色谱仪(赛默飞Ultimate 3000,美国)进行检测,色谱柱型号为AcclaimTM 120 C18(5 μm,4.6 mm×150 mm),检测方法见表1

    表 1  PPCPs污染物检测条件
    Table 1.  Detection conditions for PPCPs contaminants
    污染物 流动相比例 流速/(mL·min−1) 检测波长/nm 温度/℃
    双酚A 甲醇∶超纯水=70∶30 1.0 225 30
    萘普生 甲醇∶0.1%甲酸水=70∶30 1.0 254 30
    磺胺嘧啶 甲醇∶0.1%甲酸水=35∶65 1.0 269 30
    磺胺甲恶唑 甲醇∶0.1%甲酸水=35∶65 1.0 275 30
     | Show Table
    DownLoad: CSV

    3) 发光细菌急性毒性检测。急性毒性检测采用费氏弧菌(金达清创V.fischeri,北京)作为急性毒性检测的实验菌种,急性毒性检测标准采用硫酸锌作为阳性对照,以质量浓度2%的氯化钠溶液作为空白对照。急性毒性检测时将样品加入培养好的V.fischeri菌液,放入生物发光检测仪内振荡10 s,然后置于空气中暴露15 min后,测定发光值。发光抑制率计算方法见式(2),根据不同的发光抑制率判别水质急性毒性风险等级的标准为:E<30%时,属低毒;30%≤E<50%时,属中毒;50%≤E<70%时,属重毒;70%≤E<100%时,属高毒;E≥100%时,属剧毒[20]

    stringUtils.convertMath(!{formula.content}) (2)

    式中:E为发光抑制率,%;I为样品暴露15 min后的发光值;I0为空白组暴露15 min后的发光值。

    采用絮凝工艺对垃圾渗滤液纳滤浓缩液进行预处理,能有效去除垃圾渗滤液纳滤浓缩液中的胶体和大分子有机物[21],降低后续O3/MNBs工艺的处理能耗,并提高处理效率,对垃圾渗滤液纳滤浓缩液的高效处理有着重要作用。游丽华[22]采用混凝耦合微气泡O3氧化处理焦化废水生化尾水,可实现83.1%的COD去除率,其中混凝工艺去除效果占比可达到46.1%。

    本实验所采用的PFS絮凝剂,水解形成[Fe(H2O)6]3+、[Fe2(H2O)3]3+、[Fe(H2O)2]3+等多核络离子可使垃圾渗滤液纳滤浓缩液中的胶体物质脱稳,形成絮体沉降下来以此去除污染物[23]。本实验通过调整絮凝工艺的时间、PFS投加量和絮凝转速等参数研究污染物的最佳去除条件,结果如图2所示。

    图 2  不同絮凝条件对垃圾渗滤液纳滤浓缩液色度、腐殖质、COD和B/C处理效果的影响
    Figure 2.  Influence of different flocculation conditions on the treatment effect of colour, humus, COD and B/C of nanofiltration concentrate of landfill leachate

    在PFS投加量为9 g·L−1,絮凝转速为300 r·min−1的条件下,探究了絮凝时间0~60 min对絮凝工艺的影响,结果见图2(a)。可见,垃圾渗滤液纳滤浓缩液的色度、腐殖质及COD的去除率均随絮凝时间的延长而提高,在0~40 min内色度、腐殖质及COD去除率分别达到62.2%、46.9%和69.9%,B/C由0.09增至0.20。但进一步延长絮凝时间至60 min时,色度、腐殖质和COD的去除率分别为69.8%、52.7%和73.7%,B/C增至0.21。这一结果表明,垃圾渗滤液纳滤浓缩液絮凝工艺在0~40 min时,垃圾渗滤液纳滤浓缩液短时间内可形成大量絮体从而达到较高的去除率,但40 min后随着垃圾渗滤液纳滤浓缩液中的大分子污染物浓度的降低,絮体间的碰撞概率减小,去除效果增长有限。

    确定最佳絮凝时间为40 min,选取絮凝转速为300 r·min−1,以此探究PFS投加量在0~12 g·L−1时对絮凝效果的影响,结果如图2(b)所示。当PFS投加量为0~2 g·L−1时,垃圾渗滤液纳滤浓缩液的污染物去除效果较差,色度、腐殖质和COD的去除率仅为1.7%、0.5%和7.4%,B/C从0.09增至0.10;而在PFS投加量为4~10 g·L−1时,垃圾渗滤液纳滤浓缩液处理效果随着PFS投加量的增加而明显提高,当PFS投加量为10 g·L−1时,垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别提高至79.8%、59.2%和73.3%,B/C增至0.22。这一结果表明,在垃圾渗滤液纳滤浓缩液的PFS投加量为0~2 g·L−1时,形成的多核络离子较少,凝聚的絮体尺寸小、数量少,难以通过良好的网捕卷扫作用去除污染物[24]。随后增加垃圾渗滤液纳滤浓缩液的PFS投加量为4~10 g·L−1,垃圾渗滤液纳滤浓缩液中多核络离子数量也相应增加,这使得胶体与多核络离子不断碰撞脱稳,脱稳胶体进而被络离子吸附形成长链结构,并促进网捕卷扫作用将小絮体沉淀下来[24]。当PFS投加量进一步增加至12 g·L−1时,絮凝处理效果并无显著提高,这是由于过量的絮凝剂会使得絮体表面电荷发生改变,出现胶体再稳现象,去除率无法提高甚至降低[25]。因此,垃圾渗滤液纳滤浓缩液絮凝处理最佳PFS投加量为10 g·L−1

    在最佳絮凝时间40 min,最佳PFS投加量10 g·L−1的条件下,考察0~400 r·min−1转速对絮凝工艺处理效能的影响,结果如图2(c)所示。当转速为0~300 r·min−1时,絮凝效果随转速的增加而提高,色度、腐殖质及COD去除率分别从0 r·min−1的20.4%、14.2%和13.3%提高至300 r·min−1下的79.8%、59.2%和73.3%,B/C由0.18增至0.22。而当絮凝转速增至400 r·min−1时,相较于300 r·min−1垃圾渗滤液纳滤浓缩液絮凝效果出现下降,色度、腐殖质及COD去除率由79.8%、59.2%和73.3%下降至74.0%、55.3%和69.4%,B/C从0.22降至0.21。上述结果表明,适宜搅拌强度是保证PFS、胶体以及絮体间能够充分接触的必要条件,需要注意的是,在搅拌强度过高时,已经形成的絮体会被水的剪切力破碎从而致使去除率下降[26]

    根据以上实验结果,絮凝时间40 min、PFS投加量10 g·L−1、絮凝转速300 r·min−1为垃圾渗滤液纳滤浓缩液最佳絮凝条件。较GU等[27]用PFS处理渗滤液浓缩液的COD去除效果(44.4%)有较大提高。尽管絮凝去除了大部分污染物,絮凝处理后的垃圾渗滤液纳滤浓缩液可生化性依然较差[28],B/C仅为0.22,仍需进一步处理以提高可生化性。

    1) O3进气量对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。垃圾渗滤液纳滤浓缩液经絮凝处理后,尽管COD去除率达到73.3%,但B/C仍较低,无法保证后续生物工艺深度处理效果。因此,本实验采用O3/MNBs高级氧化技术进一步提高垃圾渗滤液纳滤浓缩液的可生化性。O3作为氧化剂直接参与氧化反应,其使用量直接影响整个O3/MNBs处理的效果。实验控制O3气体中O3质量浓度为80 mg·L−1,通过改变O3进气量来探究O3投加量对垃圾渗滤液纳滤浓缩液处理效果的影响。

    在初始pH为(5.8±0.2)、反应温度为(25±1) ℃的条件下,研究了O3进气量(50~500 mL·min−1)对O3/MNBs处理垃圾渗滤液纳滤浓缩液效果的影响,结果如图3所示。可见,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD去除率由O3进气量为50 mL·min−1条件下的35.3%、60.8%和10.3%提高至400 mL·min−1的77.6%、75.1%和26.5%。但当进一步提高O3进气量,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD的去除率均无明显增效,这与WU等[29]的研究结果相似。与色度、腐殖质及COD去除率随O3进气量增加而逐步上升的情况不同,O3/MNBs出水B/C在低O3进气量时出现了轻微降低的现象,B/C从垃圾渗滤液纳滤浓缩液絮凝处理后出水时的0.22分别降至50 mL·min−1下的0.14和100 mL·min−1下的0.13。进一步增加O3进气量,O3/MNBs出水B/C出现明显改善,在进气量由200 mL·min−1增至400 mL·min−1的条件下,O3/MNBs出水B/C由0.21增至0.44。但当O3进气量进一步增加至500 mL·min−1时,O3/MNBs出水B/C再次降低。这可能是由于水中O3含量较低时,O3优先与可生物降解污染物进行反应,BOD组分浓度下降;随着O3进气量的提高,O3与难以生物降解的耗氧有机物(以COD计)反应逐步占优,分解大分子难降解有机物并生成小分子有机物,BOD组分浓度上升;O3过量时,多余的O3会与·OH反应[30],导致处理效果不佳,垃圾渗滤液纳滤浓缩液的B/C出现下降。综合考虑,O3/MNBs工艺最佳参数O3进气量为400 mL·min−1。O3投加量是影响O3/MNBs效能的重要因素,但并不是唯一因素,可通过调控其他因素来提高O3/MNBs工艺的处理效果。

    图 3  不同O3进气量对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响
    Figure 3.  Effects of different ozone intakes on the treatment of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate

    2)初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。O3氧化方式分为O3分子的直接氧化和·OH的间接氧化,·OH氧化还原电位(2.80 eV)比O3分子的氧化还原电位(2.07 eV)更高,具有更强的氧化性,同时,较O3分子选择性氧化,·OH可以对绝大多数污染物进行降解[31]。并且O3分子与·OH在O3/MNBs反应体系内存在如式(3)~(5)的反应过程,两者均与反应体系的pH密切相关:酸性条件下,体系以O3分子为主;而碱性条件下,体系以·OH为主[32]。O3/MNBs工艺通过改变垃圾渗滤液纳滤浓缩液絮凝处理后的出水初始pH,考察初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。

    确定最佳O3进气量为400 mL·min−1,在反应温度为(25±1) ℃时,探究初始pH(3、5、7、9、11)对垃圾渗滤液纳滤浓缩液絮凝上清液处理效果的影响,结果如图4所示。由图4(a)可知,当初始pH为3~5时,垃圾渗滤液纳滤浓缩液脱色率随着反应时间一直稳步上升,分别达到了73.3%和80.0%。在pH为7时,色度可完全去除,继续提高初始pH,完全脱色所用时间也越来越短。同时,提高垃圾渗滤液纳滤浓缩液的初始pH对腐殖质去除率也有增益,垃圾渗滤液纳滤浓缩液腐殖质去除率由pH=3时的71.7%增加到pH=11时的80.8%。此外,图4(b)结果显示初始pH对COD去除率和B/C的影响显著,pH=3时,COD去除率为26.3%;pH=11时,COD去除率为38.9%。B/C由pH=3时0.43提高到pH=11时的0.62,垃圾渗滤液纳滤浓缩液的可生化性大幅提升。上述结果表明,提高进水初始pH能够有效提高O3/MNBs体系对垃圾渗滤液纳滤浓缩液絮凝上清液中污染物的去除效果。从反应过程中pH变化(图4(c))可知,在初始pH=3时,反应体系pH从最初的pH=3提高至pH=3.51。这表明O3分子基本未消耗氢氧根离子产生·OH,此时,O3/MNBs反应体系以O3分子氧化为主,使得O3/MNBs体系具有氧化选择性,只能降解含有不饱和键的物质,整体污染物去除率较低[31]。后续提高初始pH,反应过程中pH均成下降趋势,表明O3分子消耗氢氧根离子生成·OH,随着初始pH提高,反应过程中pH下降趋势愈大,这是因为随着氢氧根离子浓度大幅增加,O3分子加速分解为·OH。同时,有研究[33]表明,MNBs表面通常带有负电荷,这意味着阴离子氢氧根将聚集在气-液界面,O3在界面处以更快的速度产生·OH。此外,MNBs的坍缩会产生更多的·OH[34],进一步提高垃圾渗滤液纳滤浓缩液絮凝上清液中的·OH的含量,最终使O3/MNBs工艺进水初始pH=11时,垃圾渗滤液纳滤浓缩液污染物去除率及出水B/C最高。因此,O3/MNBs反应体系处理垃圾渗滤液纳滤浓缩液絮凝上清液的最佳初始pH为11。

    图 4  不同初始pH对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响以及反应过程中pH的变化
    Figure 4.  Effects of different initial pH on the treatment effect of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate and the change of pH during the reaction process
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)

    3)温度对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。温度对传统O3氧化的影响较为显著,王新典等[35]研究发现单一O3体系在温度由15 ℃升到65 ℃时,对苯酚溶液的降解率从73.4%提高到89.2%。李玉英等[36]研究了在不同温度条件下,微电解-O3处理水杨酸的效能,水杨酸去除率由15 ℃的78.9%增至30 ℃的96.5%。因此,本实验研究了反应温度对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的影响。

    在最佳O3进气量400 mL·min−1,最佳初始pH=11的条件下,考察反应温度10~50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响,结果如图5所示。可见,在反应温度为10 ℃时,色度、腐殖质及COD去除率分别为100.0%、74.7%及33.5%,B/C从0.22增至0.58。反应温度20~50 ℃条件下,垃圾渗滤液纳滤浓缩液的脱色率均在40 min时达到95.0%左右,在80 min可实现色度的完全去除;垃圾渗滤液纳滤浓缩液的腐殖质去除率在80 min时达到80.0%左右,延长反应时间并无明显增效。由图5(b)可见,垃圾渗滤液纳滤浓缩液的COD去除率在20~50 ℃内无显著变化,均随时间逐步提高,最后去除率为37.0%左右;垃圾渗滤液纳滤浓缩液的B/C在20~50 ℃条件下的变化与COD去除率近似,B/C均从0.22增至0.62左右,上述结果表明在反应温度为10 ℃时,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能会略微降低,这一结果可能是O3分子在水体中存在传质阻力因降温而增大的现象[37],致使O3分子分解缓慢,大量O3分子直接逸散至空气中,参与反应的O3浓度降低。在反应温度20~50 ℃的条件下,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能均有所提高,这表明升温改善了O3分子传质阻力大的问题。需要注意的是,在反应温度为20~50 ℃时,反应温度从20 ℃增至50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能无显著影响。这可能是由于随着反应温度的升高,O3的传质效率和反应速率会有所提高,但存在着温度升高O3因分子热运动在垃圾渗滤液纳滤浓缩液中溶解度下降的问题[38]。从反应活化能角度来看,升温会促进溶液中的放热反应,但同时也会抑制存在的吸热反应。垃圾渗滤液纳滤浓缩液含有大量污染物,在O3/MNBs实验中同时发生大量的吸热和放热反应,当垃圾渗滤液纳滤浓缩液中所有放热反应和吸热反应叠加在一起所呈现出来的表观活化能数值比较小时,O3/MNBs体系的反应速率对反应温度的变化就会比较迟钝,体现为反应温度对垃圾渗滤液纳滤浓缩液污染物去除率并无明显影响。这与游丽华[22]研究温度对微气泡O3氧化去除污染物效果得出的结论相似。综合考虑,选择30 ℃为最佳反应温度。综上所述,在O3进气量400 mL·min−1、初始pH=11、反应温度为30 ℃的条件下可以实现O3/MNBs的最佳处理效果。

    图 5  不同温度对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响
    Figure 5.  Effect of different temperatures on the treatment effect of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate

    为进一步研究絮凝-O3/MNBs耦合工艺对垃圾渗滤液纳滤浓缩液可生化性的影响,本实验在垃圾渗滤液纳滤浓缩液中选取代表性的PPCPs,如BPA、SDZ、SMX和NPX等药物污染物进行深入研究。有研究表明,现有污水处理厂的活性污泥体系中的微生物无法有效去除大部分PPCPs[39],同时PPCPs会对微生物产生毒害作用[40]。因此,垃圾渗滤液纳滤浓缩液中的高浓度PPCPs的去除对垃圾渗滤液纳滤浓缩液可生化的影响尤为重要。

    本研究采用的絮凝耦合O3/MNBs工艺对垃圾渗滤液纳滤浓缩液中PPCPs污染物有较高的去除效率,结果如图6(a)所示。最佳条件下的絮凝工艺对垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX去除率分别为32.3%、30.8%、34.5%和25.7%,BPA、SDZ、SMX及NPX的质量浓度分别从垃圾渗滤液纳滤浓缩液原液的194.1、29.4、25.0和20.3 μg·L−1降至絮凝工艺出水的131.5、20.3、16.4和15.1 μg·L−1。而在进一步的O3/MNBs处理中,垃圾渗滤液纳滤浓缩液中的BPA、SDZ、SMX和NPX去除率增至60.4%、100.0%、80.4%和67.7%。这一结果表明,垃圾渗滤液纳滤浓缩液通过絮凝工艺去除PPCPs的效能是有限的,絮凝出水进一步通过O3/MNBs工艺处理,才可实现较高的PPCPs去除率。这可能是因为絮凝通过吸附电中和及网捕卷扫作用去除胶体物质,对于非胶体物质,主要通过PFS絮凝剂形成的铁盐氢氧化物网状沉淀裹挟去除[41],PPCPs这类结构尺寸较小的物质可穿过较大孔径的网眼留在垃圾渗滤液纳滤浓缩液絮凝出水中。在进一步的O3/MNBs工艺中,垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX等PPCPs通过O3分子和·OH氧化降解[42-45],母体被分解成小分子物质甚至是完全矿化。絮凝-O3/MNBs耦合工艺处理BPA、SDZ、SMX及NPX等难降解物质的过程与垃圾渗滤液纳滤浓缩液中B/C的变化相互验证:絮凝工艺在去除垃圾渗滤液纳滤浓缩液大分子有机物的同时也去除了部分小分子有机物,使得B/C从垃圾渗滤液纳滤浓缩液原液的0.09增至絮凝出水的0.22,可生化性增幅较小,而后的O3/MNBs工艺在降解大分子有机物的同时也生成了小分子有机物,垃圾渗滤液纳滤浓缩液可生化性显著提高,B/C从絮凝出水的0.22增至0.62。

    图 6  絮凝-O3/MNBs耦合工艺处理垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX和NPX的效能以及整个体系生物毒性的变化
    Figure 6.  Efficacy of the coupled flocculation-O3/MNBs process treating of BPA, SDZ, SMX and NPX in nanofiltration concentrates of landfill leachate and changes in whole system biotoxicity

    垃圾渗滤液纳滤浓缩液因含有高浓度有机物、无机盐和重金属等污染物,具有相当高的生物毒性,本实验采用V.fischeri法检测其生物毒性,并以发光抑制率作为生物毒性的直观体现。垃圾渗滤液纳滤浓缩液原液的发光抑制率高达92.4%,属高毒水体,对于生物工艺的微生物种群有着极高的毒害作用。垃圾渗滤液纳滤浓缩液进行生物处置前,须经预处理工艺降低水质毒性。

    在絮凝-O3/MNBs耦合工艺最佳实验条件下,垃圾渗滤液纳滤浓缩液的生物毒性变化如图6(b)所示,絮凝工艺对垃圾渗滤液纳滤浓缩液生物毒性的处理效果非常显著,发光抑制率从垃圾渗滤液纳滤浓缩液原液的92.4%降至垃圾渗滤液纳滤浓缩液絮凝处理出水的50.6%,水质毒性等级从高毒降为重毒,生物毒性大幅降低。而在O3/MNBs中进一步反应,水中的O3分子和·OH通过加成反应、亲电反应、亲核反应和链式反应[13]来使大分子物质发生开环或是断链,有机物分子结构发生变化使得生物毒性降低。此外,O3/MNBs可以对垃圾渗滤液纳滤浓缩液中的重金属络合物进行破络,释放出的部分金属离子水解沉淀,减轻了垃圾渗滤液纳滤浓缩液重金属带来的生物毒性,絮凝处理后的垃圾渗滤液纳滤浓缩液对发光细菌的抑制率从50.6%降至20.3%。水质毒性等级从重毒降为低毒,生物毒性进一步降低。絮凝-O3/MNBs耦合工艺使垃圾渗滤液纳滤浓缩液的生物毒性从92.4%降至20.3%,水质毒性等级从原液的高毒级别降至絮凝-O3/MNBs耦合工艺处理出水的低毒级别,极大减轻了后续生物工艺的负荷,有效提高垃圾渗滤液纳滤浓缩液的可生化性,为垃圾渗滤液纳滤浓缩液进一步生物处置可提供良好的条件。

    1)在絮凝实验中,在絮凝时间为40 min,PFS投加量为10 g·L−1,絮凝转速为300 r·min−1的最佳条件下,垃圾渗滤液纳滤浓缩液的色度、腐殖质和COD去除率分别达到79.8%、59.2%和73.3%,B/C从0.09增至0.22,垃圾渗滤液纳滤浓缩液的可生化性得到改善,并为后续O3/MNBs工艺的高效处理创造有利条件。

    2) O3进气量为400 mL·min−1,初始pH=11,反应温度为30 ℃的条件可以实现O3/MNBs的最佳处理效果,经絮凝处理后的垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别为100.0%、80.8%和38.9%,B/C从0.22增至0.62,垃圾渗滤液纳滤浓缩液可生化性得到显著提升。

    3)絮凝-O3/MNBs耦合工艺处理垃圾渗滤液纳滤浓缩液的B/C变化及纳滤浓缩液中BPA、SDZ、SMX和NPX等新污染物降解效率的研究一致表明絮凝-O3/MNBs耦合工艺是提升垃圾渗滤液纳滤浓缩液可生化性的有效方法,最佳处置条件下能有效减弱垃圾渗滤液纳滤浓缩液72.1%生物毒性。

  • 图 1  电絮凝反应装置

    Figure 1.  Experimental device used in the electrocoagulation process

    图 2  电流密度对Ca2+、Mg2+浓度以及总硬度去除效果的影响

    Figure 2.  Effect of current density on Ca2+, Mg2+ and hardness removal

    图 3  电流密度对反应后溶液pH的影响

    Figure 3.  Effect of current density on the solution pH after reaction

    图 4  电解时间对Ca2+、Mg2+和总硬度去除效果的影响

    Figure 4.  Effect of electrolysis time on Ca2+, Mg2+ and hardness removal

    图 5  溶液初始pH对Ca2+、Mg2+、总硬度去除效果的影响

    Figure 5.  Effect of initial pH on Ca2+, Mg2+ and hardness removal

    图 6  初始pH为10对Ca2+、Mg2+、总硬度去除效果的影响

    Figure 6.  Effect of initial pH 10 on Ca2+, Mg2+ and hardness removal

    图 7  极板数量对Ca2+、Mg2+、总硬度去除效果的影响

    Figure 7.  Effect of the number of anodes on Ca2+, Mg2+ and hardness removal

    图 8  投加Na2CO3对Ca2+、Mg2+、总硬度去除效果的影响

    Figure 8.  Effect of the sodium carbonate addition on Ca2+, Mg2+ and hardness removal

  • [1] OTHMANI M, AISSA A, BACHOUA H, et al. Surface modification of calcium-copper hydroxyapatites using polyaspartic acid[J]. Applied Surface Science, 2013, 264: 886-891. doi: 10.1016/j.apsusc.2012.10.182
    [2] 李培元. 火力发电厂水处理及水质控制[M]. 北京: 中国电力出版社, 1999.
    [3] NAYUNIGARI M K, MAITY A, AGARWAL S, et al. Curcumin-malic acid based green copolymers for control of scale and microbiological growth applications in industrial cooling water treatment[J]. Journal of Molecular Liquids, 2016, 214(95 Suppl): 400-410.
    [4] 李宏秀, 李文杰, 于宝缘. 电厂循环水排污水回用[J]. 华电技术, 2011, 33(6): 78-80. doi: 10.3969/j.issn.1674-1951.2011.06.030
    [5] YAN W, LI W X, LIU F, et al. Removal of hardness from RO concentrate of paper mill effluents with NF membrane for water reuse[J]. Desalination and Water Treatment, 2017, 84: 59-68. doi: 10.5004/dwt.2017.21051
    [6] CHOI J H, KIM B T. Hardness removal in membrane capacitive deionization with a selective cation exchange membrane[J]. Desalination and Water Treatment, 2017, 66: 97-102. doi: 10.5004/dwt.2017.20211
    [7] 刘玉华, 丁海洋. 电厂循环冷却回用水的去除硬度工艺研究[J]. 炼油与化工, 2012, 23(2): 11-13.
    [8] MALAKOOTIAN M, MANSOORIAN H J, MOOSAZADEH M. Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water[J]. Desalination, 2010, 255(1/2/3): 67-71.
    [9] ZHAO S, HUANG G, CHENG G, et al. Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes[J]. Desalination, 2014, 344: 454-462. doi: 10.1016/j.desal.2014.04.014
    [10] CHEN Y, BAYGENTS J C, FARRELL J. Evaluating electrocoagulation and chemical coagulation for removing dissolved silica from high efficiency reverse osmosis (HERO) concentrate solutions[J]. Journal of Water Process Engineering, 2017, 16: 50-55. doi: 10.1016/j.jwpe.2016.12.008
    [11] HAKIZIMANA J N, GOURICH B, VIAL C H, et al. Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis[J]. Desalination, 2016, 393: 90-101. doi: 10.1016/j.desal.2015.12.025
    [12] SCHULZ M C, BAYGENTS J C, FARRELL J. Laboratory and pilot testing of electrocoagulation for removing scale-forming species from industrial process waters[J]. International Journal of Environmental Science and Technology, 2009, 6(4): 521-526. doi: 10.1007/BF03326091
    [13] HAFEZ O M, SHOEIB M A, EL-KHATEEB M A, et al. Removal of scale forming species from cooling tower blowdown water by electrocoagulation using different electrodes[J]. Chemical Engineering Research and Design, 2018, 136: 347-357. doi: 10.1016/j.cherd.2018.05.043
    [14] 周振, 姚吉伦, 庞治邦, 等. 电絮凝技术在水处理中的研究进展综述[J]. 净水技术, 2015, 34(5): 9-15. doi: 10.3969/j.issn.1009-0177.2015.05.002
    [15] THAKUR L S, MONDAL P. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation[J]. Journal of Environmental Management, 2017, 190: 102-112.
    [16] 王文东, 杨宏伟, 蒋晶, 等. 水温和pH对饮用水中铝形态分布的影响[J]. 环境科学, 2009, 30(8): 2259-2262. doi: 10.3321/j.issn:0250-3301.2009.08.013
    [17] 栾兆坤, 冯利, 汤鸿霄. 水解聚合铝溶液中形态分布的定量模拟研究[J]. 环境科学学报, 1995, 15(1): 39-47.
  • 期刊类型引用(3)

    1. 周福伟,周小燕,王蛟平,张刚. 循环冷却水DSA电极电化学除垢中试试验. 净水技术. 2022(01): 90-95 . 百度学术
    2. 彭思伟,薛侨,刘康乐,罗程,汤昱,史超,王子杰,林子增,王郑. 电絮凝技术在水处理领域的研究进展. 煤炭与化工. 2020(03): 133-137+144 . 百度学术
    3. 巩梦,文方,谢海燕. 几种药剂对高盐废水中钙镁离子的去除性能研究. 新疆环境保护. 2020(03): 1-8 . 百度学术

    其他类型引用(5)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.4 %DOWNLOAD: 3.4 %HTML全文: 91.8 %HTML全文: 91.8 %摘要: 4.8 %摘要: 4.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 77.6 %其他: 77.6 %Akola: 0.1 %Akola: 0.1 %Anwo: 0.0 %Anwo: 0.0 %Ashburn: 0.1 %Ashburn: 0.1 %Beijing: 7.9 %Beijing: 7.9 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 0.0 %Changsha: 0.0 %Chengdu: 0.2 %Chengdu: 0.2 %Chicago: 0.1 %Chicago: 0.1 %Chongqing: 0.0 %Chongqing: 0.0 %Dongguan: 0.0 %Dongguan: 0.0 %Fuyang: 0.0 %Fuyang: 0.0 %Gaocheng: 0.2 %Gaocheng: 0.2 %Guadalajara: 0.1 %Guadalajara: 0.1 %Guangzhou: 0.2 %Guangzhou: 0.2 %Guangzhou Shi: 0.3 %Guangzhou Shi: 0.3 %Guiyang: 0.0 %Guiyang: 0.0 %Haidian: 0.1 %Haidian: 0.1 %Hangzhou: 0.7 %Hangzhou: 0.7 %Hefei: 0.1 %Hefei: 0.1 %Hengshui: 0.1 %Hengshui: 0.1 %Hohhot: 0.1 %Hohhot: 0.1 %Jinan: 0.2 %Jinan: 0.2 %Jinrongjie: 2.3 %Jinrongjie: 2.3 %Kunming: 0.0 %Kunming: 0.0 %Kunshan: 0.0 %Kunshan: 0.0 %Luoyang: 0.1 %Luoyang: 0.1 %Mountain View: 0.3 %Mountain View: 0.3 %Nanjing: 0.3 %Nanjing: 0.3 %Nanqiao: 0.8 %Nanqiao: 0.8 %New Taipei: 0.0 %New Taipei: 0.0 %Newark: 0.1 %Newark: 0.1 %Ningbo: 0.0 %Ningbo: 0.0 %Oakland: 0.1 %Oakland: 0.1 %Panjin: 0.1 %Panjin: 0.1 %Phitsanulok: 0.1 %Phitsanulok: 0.1 %Qingdao: 0.0 %Qingdao: 0.0 %Qinhuangdao: 0.0 %Qinhuangdao: 0.0 %Qinnan: 0.0 %Qinnan: 0.0 %Safi: 0.1 %Safi: 0.1 %Sagar: 0.2 %Sagar: 0.2 %Shanghai: 0.7 %Shanghai: 0.7 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.0 %Shenzhen: 0.0 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Singapore: 0.0 %Singapore: 0.0 %Suzhou: 0.1 %Suzhou: 0.1 %Taiyuan: 0.3 %Taiyuan: 0.3 %Tehran: 0.1 %Tehran: 0.1 %The Bronx: 0.1 %The Bronx: 0.1 %Tianjin: 0.3 %Tianjin: 0.3 %Tongchuanshi: 0.0 %Tongchuanshi: 0.0 %Waterloo: 0.2 %Waterloo: 0.2 %Woodlands: 0.1 %Woodlands: 0.1 %Wuhan: 0.2 %Wuhan: 0.2 %Xi'an: 0.1 %Xi'an: 0.1 %Xiamen: 0.0 %Xiamen: 0.0 %Xining: 0.0 %Xining: 0.0 %Xintai: 0.1 %Xintai: 0.1 %XX: 1.8 %XX: 1.8 %Yantai: 0.0 %Yantai: 0.0 %Yuncheng: 0.0 %Yuncheng: 0.0 %Zhabei: 0.2 %Zhabei: 0.2 %Zhengzhou: 0.3 %Zhengzhou: 0.3 %丽水: 0.0 %丽水: 0.0 %亳州: 0.0 %亳州: 0.0 %克拉玛依: 0.0 %克拉玛依: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.5 %北京: 0.5 %北海: 0.0 %北海: 0.0 %南京: 0.0 %南京: 0.0 %台州: 0.0 %台州: 0.0 %吕梁: 0.0 %吕梁: 0.0 %广州: 0.0 %广州: 0.0 %杭州: 0.0 %杭州: 0.0 %榆林: 0.0 %榆林: 0.0 %石家庄: 0.0 %石家庄: 0.0 %苏州: 0.1 %苏州: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.0 %衢州: 0.0 %郑州: 0.2 %郑州: 0.2 %银川: 0.0 %银川: 0.0 %长沙: 0.0 %长沙: 0.0 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.0 %青岛: 0.0 %其他AkolaAnwoAshburnBeijingChang'anChangshaChengduChicagoChongqingDongguanFuyangGaochengGuadalajaraGuangzhouGuangzhou ShiGuiyangHaidianHangzhouHefeiHengshuiHohhotJinanJinrongjieKunmingKunshanLuoyangMountain ViewNanjingNanqiaoNew TaipeiNewarkNingboOaklandPanjinPhitsanulokQingdaoQinhuangdaoQinnanSafiSagarShanghaiShenyangShenzhenShijiazhuangSingaporeSuzhouTaiyuanTehranThe BronxTianjinTongchuanshiWaterlooWoodlandsWuhanXi'anXiamenXiningXintaiXXYantaiYunchengZhabeiZhengzhou丽水亳州克拉玛依内网IP北京北海南京台州吕梁广州杭州榆林石家庄苏州衡阳衢州郑州银川长沙阳泉青岛Highcharts.com
图( 8)
计量
  • 文章访问数:  6394
  • HTML全文浏览数:  6394
  • PDF下载数:  96
  • 施引文献:  8
出版历程
  • 收稿日期:  2019-06-12
  • 录用日期:  2019-08-13
  • 刊出日期:  2020-04-01
刘思琦, 李一兵, 曹迪, 张娟娟, 惠劭华, 朱海洋, 曹宏琨, 李宽, 李武林, 冒冉, 赵旭. 电絮凝对电厂循环冷却水中硬度的去除[J]. 环境工程学报, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049
引用本文: 刘思琦, 李一兵, 曹迪, 张娟娟, 惠劭华, 朱海洋, 曹宏琨, 李宽, 李武林, 冒冉, 赵旭. 电絮凝对电厂循环冷却水中硬度的去除[J]. 环境工程学报, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049
LIU Siqi, LI Yibing, CAO Di, ZHANG Juanjuan, HUI Shaohua, ZHU Haiyang, CAO Hongkun, LI Kuan, LI Wulin, MAO Ran, ZHAO Xu. Removal of hardness from circulating cooling water of power plant by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049
Citation: LIU Siqi, LI Yibing, CAO Di, ZHANG Juanjuan, HUI Shaohua, ZHU Haiyang, CAO Hongkun, LI Kuan, LI Wulin, MAO Ran, ZHAO Xu. Removal of hardness from circulating cooling water of power plant by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 977-983. doi: 10.12030/j.cjee.201906049

电絮凝对电厂循环冷却水中硬度的去除

    通讯作者: 李一兵(1968—),男,学士,教授级高工。研究方向:环境工程。E-mail:lybhebut@sina.com
    作者简介: 刘思琦(1994—),女,硕士研究生。研究方向:电絮凝技术。E-mail:1134740426@qq.com
  • 1. 河北工业大学土木与交通学院,天津 300401
  • 2. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 3. 江苏京源环保股份有限公司,南通 226000
基金项目:
国家自然科学基金资助项目(51578532)

摘要: 以某电厂冷却塔循环冷却水为处理对象,利用电絮凝法,以铝板为牺牲阳极去除水中的Ca2+和Mg2+,分别考察了电絮凝过程中不同电流密度、电解时间、溶液初始pH、阳极极板数量对总硬度去除率的影响。结果表明:增加电流密度、延长电解时间有利于Ca2+和Mg2+的去除;当电流密度为10 mA·cm−2,电解时间为90 min时,Ca2+和Mg2+去除率分别达到93.5%和95.8%,总硬度去除率为94.6%;相对于酸性和中性条件,碱性条件更有利于Ca2+和Mg2+的去除,当初始pH为10时,Ca2+和Mg2+去除率分别达到85.4%和97.7%,总硬度去除率为93.5%;随极板数量的增加,Ca2+和总硬度去除率均有所提高;投加Na2CO3有利于Ca2+和总硬度的去除。上述结果可为进一步提高电絮凝过程中总硬度的去除率提供参考。

English Abstract

  • 随着科技及城市化与工业化水平的飞速发展,工业用水量大幅增加,约占总用水量的30%,工业用水中有80%用来冷却运行设备。为充分有效地利用水资源,须将冷却水循环使用,故称为循环冷却水[1]。而电厂中的循环冷却水用量几乎占全厂总用水量的97%以上[2]。目前,电厂中的冷却系统一般为开式循环系统,循环冷却水在与空气接触的条件下长期运行,水分不断蒸发,使水中存在的各种无机离子和有机物质富集浓缩。其中,浓度不断增加的硬度离子(主要是Ca2+和Mg2+)会导致系统结垢、腐蚀和微生物的大量滋生等[3],对冷却塔的热性能产生严重的负面影响。因此,硬度离子的浓度必须低于在传热表面结垢的最低浓度,这就需要运行过程中连续更换部分循环水,从而导致较高硬度的废水大量排放。通过去除或降低水中硬度离子的浓度,可以增加冷却水的循环次数,减少补充水量,有效减少冷却塔运行过程中产生的循环排污水量。因此,降低循环冷却水的硬度至关重要[4]

    去除水中硬度的主要方法包括膜分离法、反渗透法、离子交换法、加药软化法和电絮凝法等[5-8]。电絮凝法处理废水是利用阳极金属的溶出发生水解-聚合反应,产生具有强吸附能力的絮凝体,络合吸附水中污染物并聚集成团,通过沉降或气浮分离使污染物得到去除。电絮凝法具有去除污染物种类多(如大分子有机物、重金属离子、氟离子等)、效率高、适用pH范围广、装置紧凑、占地面积小等优势。电絮凝法可对多种水(如饮用水、工业过程水、反渗透水和海水等[8-11])进行软化,但将其应用于去除电厂冷却塔循环冷却水中结垢物质的研究较少。SCHULZ等[12]研究了电絮凝体系中铝和铁电极对电厂冷却塔排污水中的Ca2+和Mg2+的去除率,结果表明铝电极比铁电极对Ca2+和Mg2+有更好的去除率,电絮凝反应中生成2 mmol·L−1的铝可以去除20%~40%的Ca2+和Mg2+。HAFEZ等[13]研究了在电絮凝体系中使用铝、铁、锌电极对去除水中硬度离子和SiO2的影响,认为Al电极比Zn和Fe电极更有效地从电厂冷却塔排污水中去除硬度离子,对总硬度去除率可达到55.4%。如何进一步提高电絮凝过程对硬度的去除率,仍然有待进一步的研究。同时,不同水质对电絮凝的影响较大,因此,对不同来源的水进行电絮凝去除硬度效果的研究也具有重要意义。

    本研究采用铝板电絮凝法去除某电厂冷却塔循环冷却水中的硬度,利用阳极电解产生铝离子,通过絮凝作用去除Ca2+和Mg2+等;为提高水中总硬度的去除率,对电絮凝过程中的影响因素包括电流密度、电解时间、溶液初始pH等进行研究;同时,对电絮凝过程中Ca2+和Mg2+等离子的去除机理也进行了探讨。

    • 本研究用水为某电厂循环冷却水。此循环冷却水呈碱性,pH为7.86,所含重碳酸盐碱度和碳酸盐碱度分别为175.2、3.4 mg·L−1,电导率为1 492 µS·cm−1,水样中Ca2+、Mg2+、Sr4+、Na+、Al3+、Fe3+、F、ClNO3SO24和硅元素含量分别为74.6、41.4、0.7、56、3.5、0.04、11.2、180.6、29.6、303.5和2.7 mg·L−1

      实验试剂:无水碳酸钠(Na2CO3)、氢氧化钠(NaOH)、盐酸(HCl),均为分析纯,购于上海阿拉丁生化科技股份有限公司。

      实验装置如图1所示,阳极(铝板)和阴极(不锈钢板)分别通过电极线与DH1765-1 型程控直流稳压稳流电源的相关输出端连接,使电絮凝体系在恒定电流下发生反应;MS-H-Pro型磁力搅拌器提供恒定搅拌速度,阳极和阴极的有效反应面积为30 cm2,极板间距为1 cm。电絮凝有效工作容积为500 mL。

    • 在反应开始前,将所需极板在5%的盐酸溶液中浸泡30 min,然后用砂纸打磨,并用超纯水洗净,待用。

      反应过程中,磁力搅拌器提供恒定搅拌速度400 r·min−1,直流电源提供稳定电流,反应时间90 min,每隔15 min取样5 mL,使用0.2 μm滤膜过滤;使用PHS-3E型pH计测定反应后水样的pH,使用9800 型电感耦合等离子光谱仪测定Ca2+和Mg2+浓度,水样总硬度(以CaCO3计)计算方法如式(1)所示。

      式中:R为总硬度(以CaCO3计),mg·L−1C1为Ca2+浓度,mg·L−1C2为Mg2+浓度,mg·L−1

    • 电流密度的大小会影响电絮凝反应中阳极的溶解速率、气泡的生成和体系pH的变化,从而影响絮凝剂的生成速率和絮凝效果。图2显示了不同电流密度对Ca2+、Mg2+及总硬度去除效果的影响。由图2可知,Ca2+的去除率随着电流密度的增加而不断提高,Mg2+的去除率在电流密度从5 mA·cm−2增加到10 mA·cm−2时有所提高,在电流密度为10~20 mA·cm−2时几乎不变。总硬度的去除率随着电流密度的增加也不断提高。在电流密度为20 mA·cm−2时,Ca2+、Mg2+以及总硬度的去除率可以达到93.5%、95.8%、94.6%,最终Ca2+、Mg2+的浓度以及总硬度为4.9、1.8、19.5 mg L−1。由于电流密度在20 mA·cm−2时,Ca2+、Mg2+以及总硬度的去除率很高(接近100%),不利于后续实验中研究其他条件对电絮凝过程中Ca2+、Mg2+以及总硬度去除率的影响,故后续的研究均在电流密度为10 mA·cm−2的条件下展开。

      在电絮凝反应系统中主要发生的反应如式(2)~式(8)所示。阳极反应见式(2)和式(3),阴极反应见式(4)~式(6),沉淀反应见式(7)和式(8)。

      随着电流密度的增加,阳极溶解速率增加,阴极析氢速率也不断提高,使得絮凝剂和OH的量也相应增加。在室温下,Mg(OH)2、CaCO3、Ca(OH)2和MgCO3的溶度积分别为5.6×10−12、5.0×10−9、4.7×10−6、6.8×10−6。由此可推断,Ca2+和Mg2+去除的主要原因是:Mg2+消耗水中存在的OH,生成大量的Mg(OH)2沉淀(式(5)),Ca2+消耗水样中的碳酸盐碱度和重碳酸盐碱度,生成CaCO3沉淀(式(6)~式(7))。由图3可知,随着电流密度的增加,反应结束时溶液的pH也随之增大,从而使得反应过程中OH生成速率增加,导致Mg(OH)2沉淀生成速率提高,且Mg2+沉淀更加完全。同时,水中的碳酸盐碱度和重碳酸盐碱度很快消耗完全,过量的OH可使Ca2+形成Ca(OH)2沉淀,使得Ca2+和Mg2+的去除率随电流密度的增大而升高,总硬度去除率升高。当电流密度为10 mA·cm−2时,体系中生成的OH可使Mg2+去除率在反应90 min时达到95.4%,继续增加电流密度,Mg2+去除率几乎不变。这些在反应过程中逐渐生成的Mg(OH)2、CaCO3和Ca(OH)2沉淀,被电絮凝反应生成的絮凝剂通过压缩双电层、吸附架桥、集卷网捕等作用吸附并形成聚合物沉淀[14],或在阴、阳极产生的氢气、氧气作用下,发生气浮作用至液体表面,从而得到去除。

    • 电解时间会影响电絮凝反应中阳极的溶解量和气泡的生成,从而影响产生絮凝剂的量和絮凝效果。图4为不同电解时间对Ca2+、Mg2+以及总硬度去除效果的影响结果。由图4可知,在105 min内,随着电解时间的延长,絮凝剂和OH量增加[15],生成的Mg(OH)2、CaCO3和Ca(OH)2沉淀量也随之增加,被电絮凝反应生成的絮凝剂吸附并形成聚合物而得到去除[14],所以,Ca2+和Mg2+的去除率升高,使总硬度去除率随电解时间的延长而不断升高。但当电解时间从90 min延长到105 min时,Mg2+去除率可达到95.4%,几乎不再升高,Ca2+去除率升高,使总硬度去除率从83.9%升高到84.7%,考虑到当电解时间增加15 min而总硬度去除率升高较少为0.8%,所以采用90 min的电解时间较为经济。此时,Ca2+、Mg2+以及总硬度的去除率为73.2%、95.4%、83.9%;Ca2+、Mg2+的浓度以及总硬度降低至20、1.9、57.9 mg·L−1

    • pH会改变体系中钙和镁的存在形式,对水体中铝的形态和溶解铝质量浓度影响也非常大[16]图5为不同初始pH对Ca2+、Mg2+以及总硬度去除效果的影响。由图5可知,溶液初始pH=4时,钙和镁以Ca2+和Mg2+的形式存在,反应90 min后,Ca2+和Mg2+去除率较低,溶液初始pH为7、7.86、9、10时,钙和镁首先以Ca2+和Mg2+的形式存在,随着pH的增加,有一部分钙和镁以CaCO3和Mg(OH)2的形式存在。反应90 min后,随着pH的增加,Ca2+和Mg2+的去除率逐渐升高,总硬度去除率逐渐升高。在pH=10时,Ca2+、Mg2+以及总硬度的去除率达到最大,分别为85.4%、97.7%、93.5%,此时Ca2+和Mg2+的浓度以及总硬度降低到8.5、1.2、26.5 mg L−1。这是因为初始溶液为酸性时,反应体系中铝的存在形式主要是Al3+[17],且pH较低时,CaCO3、Mg(OH)2和Ca(OH)2沉淀的形成会受到抑制。在电絮凝反应过程中产生的OH首先被H+消耗,随着反应时间的延长,pH进一步升高,CaCO3和Mg(OH)2沉淀形成,絮体生成,pH继续升高,Ca(OH)2沉淀形成,最终导致Ca2+和Mg2+的去除率升高。但pH=11时,Ca2+、Mg2+以及总硬度的去除率降低,这是因为pH过高,虽然有利于CaCO3、Mg(OH)2和Ca(OH)2沉淀的形成,但会导致絮体溶解或以Al(OH)4絮体的形式存在[14],使被絮体中和的Ca2+、Mg2+与被絮体吸附并形成聚合物沉淀的CaCO3和Mg(OH)2沉淀的量减少,总硬度去除率降低。

      溶液初始pH会影响体系中钙和镁的存在形式和沉淀去除效果。由图6可知,在未进行电絮凝反应的条件下,调节溶液初始pH为10,Ca2+、Mg2+以及总硬度的去除率可达69.8%、78.0%、70.7%。这一现象说明Ca2+和Mg2+可通过电絮凝过程中阴极产生的OH生成Mg(OH)2、CaCO3和Ca(OH)2沉淀。但此时Ca2+、Mg2+以及总硬度去除率低于电絮凝反应下的去除率,且在电絮凝反应前,调节循环水初始pH为10,可进一步提高电絮凝过程中Ca2+、Mg2+以及总硬度的去除率。这进一步说明了在电絮凝反应中存在Mg(OH)2、CaCO3和Ca(OH)2沉淀被电絮凝反应生成的絮凝剂吸附并形成聚合物沉淀[14]的过程,这会不断促进Mg(OH)2、CaCO3和Ca(OH)2沉淀的生成,最终导致Ca2+、Mg2+以及总硬度去除率升高。

    • 利用串联的方式增加极板数量会影响单位时间内阳极的溶解总量,进而影响絮凝物含量。图7为极板数量对Ca2+、Mg2+以及总硬度去除效果的影响。由图7可知,当阳极电极数量从1块增加到4块时,Ca2+去除率从73.2%升高到79.2%。这是因为阳极电极数量从1块增加到4块时,阳极金属溶出量增加,反应结束后,pH由7.84升高到8.91,OH含量增加,有利于电絮凝反应中Ca2+的进一步去除;而Mg2+去除率已达到95.5%,浓度降低至1.6 mg L−1,去除率几乎不变;总硬度去除率可从83.9%升高到87.0%。

    • 根据实验水质,水样中Ca2+和Mg2+浓度分别为74.6 mg·L−1和41.4 mg·L−1,总硬度为359.0 mg·L−1,假设Ca2+、Mg2+完全转化成CaCO3、MgCO3沉淀,则需CO23量为3.6 mmol·L−1(Na2CO3),本研究中取Na2CO3浓度为3 mmol·L−1图8为投加3 mmol·L−1 Na2CO3对Ca2+、Mg2+、总硬度去除率的影响结果。由图8可知,Na2CO3的加入有利于进一步提高电絮凝反应中Ca2+的去除率,去除率从73.2%升高到87.7%,Mg2+去除率几乎不再升高,总硬度去除率从83.9%升高到91.9%。而单独投加3 mmol·L−1 Na2CO3,总硬度去除率较低,为79.7%,其原因可能为:一方面,反应中缺少电絮凝过程中的絮凝作用;另一方面,MgCO3溶度积大于Mg(OH)2溶度积。因此,单独投加Na2CO3时,Mg2+的去除率低于电混凝过程中Mg2+的去除率。

    • 1)对于循环冷却水中的硬度离子,增加电流密度和延长电解时间均有利于Ca2+、Mg2+以及总硬度的去除。当电流密度为10 mA·cm−2,电解时间为90 min时,Ca2+和Mg2+的去除率分别可达到73.2%和95.4%,总硬度的去除率可达到83.9%。

      2)相对于酸性条件和中性条件,碱性条件更有利于Ca2+、Mg2+以及总硬度的去除。但pH为11时,虽然pH过高有利于CaCO3、Mg(OH)2和Ca(OH)2沉淀的形成,但会导致絮体溶解或以Al(OH)4絮体的形式存在,使被絮体中和的Ca2+、Mg2+与被絮体吸附并形成聚合物沉淀的CaCO3和Mg(OH)2沉淀的量减少,最终使总硬度去除率反而降低。pH为10时,Ca2+、Mg2+以及总硬度去除率得到进一步提高,分别达到85.4%、97.7%、93.5%。pH过高,总硬度去除率会降低。

      3)增加阳极板数量、向溶液中投加Na2CO3,均可以进一步提高Ca2+去除率,进而进一步提高了总硬度去除率。

    参考文献 (17)

返回顶部

目录

/

返回文章
返回