落地油泥土壤性质对超声除油效果的影响

陈东, 高迎新, 李枫, 杨敏. 落地油泥土壤性质对超声除油效果的影响[J]. 环境工程学报, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097
引用本文: 陈东, 高迎新, 李枫, 杨敏. 落地油泥土壤性质对超声除油效果的影响[J]. 环境工程学报, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097
CHEN Dong, GAO Yingxin, LI Feng, YANG Min. Influence of oil sludge soil properties on oil removal efficiency by ultrasonic treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097
Citation: CHEN Dong, GAO Yingxin, LI Feng, YANG Min. Influence of oil sludge soil properties on oil removal efficiency by ultrasonic treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097

落地油泥土壤性质对超声除油效果的影响

    作者简介: 陈东(1985—),男,博士研究生。研究方向:油田污水污泥处理。E-mail:dongchen902@163.com
    通讯作者: 高迎新(1968—),男,博士,研究员。研究方向:工业污水处理。E-mail:gyx@rcees.ac.cn
  • 基金项目:
    内蒙古科技项目((2018)1188)
  • 中图分类号: X741

Influence of oil sludge soil properties on oil removal efficiency by ultrasonic treatment

    Corresponding author: GAO Yingxin, gyx@rcees.ac.cn
  • 摘要: 落地油泥是油田产生的一类危险固体废弃物,其无害化处理是目前各大油田所面临的重大挑战之一。为了深入认识超声处理过程中油泥土壤性质与超声处理除油效果之间的关系,以不同油田典型落地油泥为研究对象,超声处理后对其土壤残留含油量、土壤颗粒级配、土壤化学组成等进行分析。结果表明:油泥中土壤颗粒粒径较大的大庆、大港落地油泥经超声处理后的除油效果均在60%以上,而土壤颗粒粒径较小的冀东落地油泥超声除油率仅为11%;同时,超声除油效果较好的大庆、大港落地油泥中的钙氧化物含量较低(分别为4.84%和5.94%),而超声除油效果差的冀东落地油泥中的钙氧化物含量较高(11.57%)。进一步的模拟实验结果表明,钙氧化物含量高的土壤对原油的吸附量大、吸附强度高、超声除油效果差,而钙氧化物含量低的土壤吸附量小、吸附强度低、超声除油效果好。以上结果可为油田落地油泥超声处理技术的开发及规模化应用提供指导。
  • 河流上覆水中的重金属可以通过沉淀、吸附、络合等作用,在河床表层底泥中富集[1-2]。当水体条件发生改变时,底泥中的重金属会通过氧化还原、溶解、解吸等作用,从河床表层底泥中释放,造成上覆水体的污染[3-4]。国内外普遍使用疏浚治理河湖底泥,但是疏浚工程会产生大量含有重金属的疏浚底泥,疏浚底泥含水率高、热值低,不适合传统焚烧方法处理[5-6]。近年来,稳定化技术被用于重金属废水、污染土壤等治理工作,通过加入药剂使沉积物中重金属发生物理化学反应,从而降低重金属的溶解性和迁移性,以达到良好的稳定化效果[7]。传统的稳定化药剂采用水泥、磷灰石等化学药剂,但存在处理后土壤板结、增容等缺点[8]。因此,本研究拟采用壳聚糖、膨润土、生物炭等天然材料,开发处理效果好、价廉易得的重金属稳定剂。

    壳聚糖 (CTS) 是第二大天然线性化合物,具有无毒、无害、生物可降解性以及能通过自身丰富的基团络合重金属等特性,是一种良好的吸附重金属的材料[9]。宋俊颖等[10]利用CTS处理重金属污染土壤,当CTS投加量为7%时,铜离子的稳定化率达到92.36%。YAN等[11]利用CTS处理Cr和Hg复合型重金属污染的土壤,7 d后,土壤中有效态重金属的含量降低明显且残渣态含量升高。我国膨润土矿产资源丰富,价格低廉,具有较大的表面积、良好的吸附性、离子交换性和黏结性等优势,在底泥重金属稳定化技术中广泛应用[12]。杨秀敏等[13]通过等温吸附实验,研究了钠基膨润土对Cu2+、Zn2+、Cd2+的吸附情况,发现钠基膨润土 (NaBent) 对3种金属具有良好的吸附能力,能够降低土壤中有效型重金属的含量。这2种材料在我国产量大且易得,因此,可以使用CTS对NaBent进行改性,得到一种处理底泥重金属能力更高的复合型稳定剂。

    本研究采用壳聚糖改性钠基膨润土稳定剂 (NaBent-CTS) 对底泥中的Cu2+、Zn2+、Cd2+进行单一和复合的重金属稳定化实验,通过改变稳定剂投加量、底泥pH和底泥液固比寻求稳定重金属的最佳工况点;通过毒性特征沥滤方法 (TCLP) 进行重金属浸取,以重金属稳定化率作为处理效果的重要指标,探究实验条件的改变对重金属稳定化效果的影响以及重金属之间存在的竞争吸附关系,旨在为温瑞塘河底泥重金属稳定化处理提供相关的研究基础。

    实验疏浚底泥取自温州市温瑞塘河,使用环保绞吸式挖泥船采集底泥样品。将采集到的样品灌入洁净的聚乙烯桶中,密封后运回实验室自然风干,研磨,过100目筛,分析其各理化指标。疏浚底泥含水率为55.43%,溶解性有机碳 (DOC) 质量分数为265.63 mg·kg−1,pH为7.68,总磷质量分数为1.22 g·kg−1,氨氮质量分数为30.57 mg·kg−1,重金属Cu、Zn、Cd的质量分数分别为188.62、386.89和161.28 mg·kg−1。对疏浚底泥采用TCLP法进行重金属浸取,浸取后重金属Cu2+、Zn2+和Cd2+的质量浓度分别为0.793、0.960 和1.421 mg·L−1

    由测试结果可知,疏浚底泥中的Zn、Cu和Cd的含量均超出《围填海工程填充物质成分限值》 (GB 30736-2014) 的要求,因此将Zn、Cu和Cd3种重金属作为研究对象。

    以未受重金属污染的温瑞塘河底泥为母质,分别添加锌、铜和镉的标准储备液进行实验底泥的配制。保持实验底泥含水率为50%左右,灌入洁净的聚乙烯桶中,在密封、室温的条件下放置14周后,室内自然风干,研磨,过100目筛备用。Cu2+、Zn2+和Cd2+实验底泥重金属浸取液质量浓度分别为1.598、1.714和1.701 mg·L−1

    本实验以无毒无害、价廉易得为标准,选取CTS和NaBent作为稳定药剂的制作材料,实验药剂信息如表1所示。

    表 1  实验药剂信息
    Table 1.  Information of experimental agents
    序号名称种类化学式纯度稳定机理厂家
    1CTS有机(C6H11NO4)N化学纯羟基、氨基等高分子基团与重金属离子螯合配位Adamas
    2NaBent无机Nax(H2O)4(Al2-xMg0.83) (Si4O10) (OH)2分析纯Na+、Al2+、Mg2+等离子与重金属离子发生离子交换反应Adamas
     | Show Table
    DownLoad: CSV

    取6 g CTS (90%+) 溶于150 mL的5%醋酸溶液中,使用折叶式搅拌器将其缓慢充分溶解。向壳聚糖溶液中,缓慢加入30 g NaBent充分浸润3 h,在46 ℃恒温水浴锅中,连续搅拌4 h成糊状,加入一定量的氢氧化钠溶液,调节pH至9,缓慢搅拌10 min,沉淀壳聚糖2 h,用蒸馏水冲洗沉淀至pH为7~8,在转速为3 500 r·min−1的条件下离心分离15 min,取下层沉淀,放入烘箱在85 ℃下烘干,研磨,过100目筛,制得壳聚糖负载率为9.22%的NaBent-CTS。

    称取风干过筛的底泥样品60 g,保持底泥pH为7,底泥液固比为1.5∶1,以稳定剂投加量 (稳定剂与干底泥的质量之比) 为1%、3%、5%、7%、10%进行单一重金属和复合重金属稳定化实验;保持稳定剂投加量为5%,底泥液固比为1.5∶1,以底泥pH为5、6、7、8、9进行单一重金属和复合重金属稳定化实验。保持稳定剂投加量为5%,底泥pH为7,以底泥液固比 (液体体积与干底泥质量之比,单位为mL∶g) 为1∶1、1.3∶1、1.5∶1、1.7∶1、2∶1进行单一重金属和复合重金属稳定化实验,每个样品充分混匀8 h,室温下密封放置7 d,进行稳定化处理,稳定后的底泥放置在实验室,自然风干,研磨,过100目筛,每组实验均设置3个平行,均以未经处理的底泥作为对照。

    稳定化后的底泥采用TCLP法和我国固体废物标准浸取程序 (水平振荡法,HVM法) 进行重金属的浸取[14]。由于各实验底泥pH均大于5,因此选用2号浸取剂 (将5.7 mL冰醋酸溶入去离子水中,定容至1 L,保持溶液pH为2.88±0.05) 。称取12 g实验底泥,置于500 mL锥形振荡瓶中,按照液固比=20∶1加入浸取剂,在25 ℃条件下,恒温水浴水平往复振荡20 h,用稀硝酸淋洗抽滤器,用0.45 μm的滤膜过滤收集浸取液,4 ℃下密封保存,待测。稳定化率计算方法见式 (1) 。

    η=c0c1c0×100% (1)

    式中:η为重金属的稳定化率;c0为加稳定剂前底泥样品的重金属浸取液质量浓度;c1为加稳定剂后底泥样品中重金属浸取液质量浓度。

    针对稳定化14 d后和未经处理的疏浚底泥,采用BCR连续提取法对其中的重金属进行连续提取。测定不同阶段提取的重金属质量分数,计算疏浚底泥中酸可提取态、可氧化态、可还原态和残渣态的重金属占比,稳定性由大到小为残渣态、可还原态、可氧化态、酸可提取态。

    使用XRD、SEM、FT-IR、XPS、BET表征手段,观察NaBent-CTS微观结构及形貌特征,分析其晶相组成、晶面取向和基团结构等表面特性。

    1) FT-IR分析。图1为CTS、NaBent和NaBent-CTS的红外光谱。在CTS红外光谱中,3 438 cm−1处的吸收峰为氨基N—H和羟基O—H的伸缩振动吸收峰,2 926 cm−1处的吸收峰为C—H伸缩振动吸收峰,1 657 cm−1处的吸收峰为酰胺Ⅰ谱带吸收峰,1 593 cm−1处的吸收峰为酰胺Ⅱ谱带吸收峰,1 420 cm−1处的吸收峰为羟基O—H面内弯曲振动吸收峰,1 161 cm−1处为伯羟基O—H的吸收峰,1 072 cm−1处为仲羟基O—H的吸收峰[15]。在NaBent红外光谱中,3 618 cm−1处为NaBent层间Si—Al—OH中羟基O—H伸缩振动峰,3 476 cm−1处为层间水分子的O—H羟基伸缩振动峰,1 632 cm−1处为NaBent层间水分子O—H弯曲振动峰,990 cm−1处为Si—O—Si不对称伸缩振动峰,515 cm−1处为Si—O—Al弯曲振动峰[16]。由NaBent-CTS与CTS和NaBent的红外光谱比较结果可知:3 624 cm−1处的吸收峰显著增强,峰面积变大,说明壳聚糖进入钠基膨润土层间,使层间的O—H羟基基团增多;1 428 cm−1处羟基弯曲振动吸收峰增强,在1 113 cm−1处出现羟基弯曲振动吸收峰,说明壳聚糖成功负载在钠基膨润土上;3 434 cm−1处为钠基膨润土层间水分子O—H羟基伸缩振动峰与壳聚糖中氨基N—H弯曲振动峰的合并峰;507 cm−1处Si—O—Al吸收峰面积和强度增大,表明在Si—O—Al处发生了化学吸附,1 657 cm−1与1 593 cm−1处的酰胺谱带吸收峰消失,因此,壳聚糖上的酰胺与Si—O—Al之间可能发生了化学吸附;994 cm−1处为Si—O—Si与羟基O—H振动峰的合并峰。

    图 1  CTS、NaBent和NaBent-CTS的FT-IR
    Figure 1.  FT-IR spectra of CTS, NaBent and Nabent-CTS

    2) XRD分析。由图2可知,NaBent与NaBent-CTS衍射峰首峰的位置θ分别为3.58°和3.567 5°。层间距可根据Bragg方程[17]计算得出。计算方法见式 (2) 。

    图 2  NaBent和NaBent-CTS的XRD
    Figure 2.  XRD patterns of NaBent and Nabent-CTS
    2dsinθ=nλ (2)

    式中:d为层间距;θ为入射线与反射晶面之间的夹角;λ为波长,Cu靶Ka射线 (λ=0.154 06 nm) ;n为反射级数,n=1。

    由式 (2) 可知,NaBent的层间距为1.233 6 nm,NaBent-CTS的层间距为1.237 9 nm,NaBent层间距在负载CTS前后未发生明显改变,由红外光谱分析结果可知,存在部分CTS进入NaBent层间。

    3) SEM与BET分析。由图3可知,NaBent的外貌发生了明显的变化,NaBent颗粒表面结构较平整,NaBent-CTS颗粒表面更加粗糙。经BET分析,NaBent与NaBent-CTS的比表面积分别为21.036 m2·g−1和14.609 m2·g−1,NaBent改性后比表面积减少,这是因为CTS负载在NaBent表面,堵塞了孔隙,导致比表面积降低[18]

    图 3  NaBent和NaBent-CTS的SEM
    Figure 3.  SEM images of NaBent and Nabent-CTS

    1) 复合前后稳定效果的比较。由图4~图6可知,在pH为7、液固比为1.5:1时,随着3种重金属稳定剂投加量的递增,Cu2+、Zn2+和Cd2+的稳定化率也逐渐递增,达到一定投加量后,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定化率趋于稳定。对比3种稳定剂效果,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定效果最佳,且在较低的投加量下可达到较好的稳定效果。投加量为5%时,Cu2+的稳定化率达到稳定,浸取液质量浓度由1.714 mg·L−1降至0.213 mg·L−1,稳定化率为87.56%;投加量为7%时,Zn2+的稳定化率达到稳定,浸取液质量浓度由1.598 mg·L−1降至0.226 mg·L−1,稳定化率为85.85%;投加量为7%时,Cd2+的稳定化率达到稳定,浸取液质量浓度由1.701 mg·L−1降至0.277 mg·L−1,稳定化率为83.71%。与NaBent-CTS相比,CTS稳定重金属效果较差,NaBent稳定效果最差,均在投加量为10%时,稳定化率达到最大。

    图 4  3种稳定剂对Cu2+的稳定效果
    Figure 4.  Stabilization effect of three kinds of stabilizer on Cu2+
    图 5  3种稳定剂对Zn2+的稳定效果
    Figure 5.  Stabilization effect of three kinds of stabilizer on Zn2+
    图 6  3种稳定剂对Cd2+的稳定效果
    Figure 6.  Stabilization effect of three kinds of stabilizer on Cd2+

    由此可知,CTS改性NaBent后,NaBent-CTS稳定重金属的能力得到提升,并且在较低投加量的情况下达到较好的稳定效果。虽然NaBent改性后比表面积有一定程度的降低,但NaBent中的CTS中含有大量的羟基和氨基,这2类基团对重金属有极强的螯合能力,通过CTS表面的内扩散作用,重金属离子更易进入NaBent中,与Na+、Al3+等金属离子发生离子交换作用,使NaBent表现出较高的吸附性能[19]

    2) NaBent-CTS投加量对单一重金属稳定化率的影响。图7表明了在pH为7与实验底泥液固比为1.5∶1时,稳定剂投加量的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。随着稳定剂投加量的增加,Cu2+、Zn2+和Cd2+的稳定化率也随之升高,达到一定程度后稳定化率基本保持稳定。Cu2+、Zn2+和Cd2+的稳定化率分别在药剂投加量为5%、7%和7%时达到稳定,稳定化率为87.56%、85.85%和83.71%。

    图 7  稳定剂投加量对实验底泥中单一重金属稳定化率的影响
    Figure 7.  Effects of dosage of stabilizer on stabilization rate of single heavy metal in sediment

    NaBent-CTS中存在氨基官能团与羟基官能团,具有与重金属离子形成配位键的能力,从而螯合重金属,并且稳定剂中含有众多Na+、Al3+离子,可通过离子交换作用来吸附重金属。随着稳定剂投加量的增大,能够提供的配位键的数量与吸附比表面积不断增多,能够吸附更多的重金属离子,使3种重金属离子的稳定化率不断提高;稳定剂投加量继续增大,稳定剂颗粒之间相互黏结,比表面积减少,导致稳定化率增幅变小。

    3) 底泥pH对单一重金属稳定化率的影响。图8表明了在稳定剂投加量为5%与实验底泥液固比为1.5:1时,底泥pH对Cu2+、Zn2+和Cd2+稳定化率的影响。3种重金属稳定化率均随pH的上升呈先升高后降低的趋势,Cu2+、Zn2+和Cd2+稳定化率分别在pH为7、6和7时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.283 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.346 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.433 mg·L−1,稳定化率分别为83.47%、78.35%和74.57%。出现上述现象的原因如下:当pH小于7时,H+的质量浓度较高,占据了稳定剂的吸附位,与重金属离子形成竞争吸附关系,导致重金属稳定化率较低;当pH大于7时,部分OH会与重金属离子形成沉淀,难以被稳定剂吸附,经过TCLP浸取实验,氢氧化物沉淀溶于酸性浸取剂中,导致稳定化率下降。

    图 8  pH对实验底泥中单一重金属稳定化率的影响
    Figure 8.  Effect of pH on stabilization rate of single heavy metal in sediment

    4) 底泥液固比对单一重金属稳定化率的影响。图9表明了在pH为7与稳定剂投加量为5%时,实验底泥液固比的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。液固比对3种重金属稳定化率影响不明显,Cu2+、Zn2+和Cd2+稳定化率分别在液固比为1.3∶1、1.7∶1和1.5∶1时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.260 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.251 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.338 mg·L−1,稳定化率分别为84.82%、84.32%和80.13%。出现上述趋势的原因如下,在液固比较小的条件下,溶剂中的重金属质量浓度与底泥孔隙水中的重金属质量浓度在较短的时间内达到平衡,抑制了底泥孔隙水中的重金属向溶剂中扩散的趋势[20]。随着液固比逐渐升高,溶剂与底泥孔隙水中的重金属质量浓度需要在较长的时间内达到平衡,使得扩散作用能够在较长时间内持续进行,释放到溶剂中的重金属也增多,使稳定化率增加。并且含水率不同的实验底泥在7 d稳定化期中内部成分的变化也不同,会间接影响底泥中矿物颗粒与胶体颗粒之间的相互作用,从而改变实验底泥中重金属的存在形态和活性[21]

    图 9  液固比对实验底泥中单一重金属稳定化率的影响
    Figure 9.  Effects of liquid to solid ratio on stabilization of single heavy metal in sediment

    图10可知,在pH为7与疏浚底泥液固比为1.5∶1时,稳定剂投加量对复合重金属的稳定化率存在较大的影响。随着稳定剂投加量的不断增大,Cu2+、Zn2+和Cd2+稳定化率也逐渐升高。在稳定剂投加量为5%时,稳定化率达到了最佳值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.211 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.278 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.591 mg·L−1,稳定化率分别为73.36%、71.00%、58.38%。

    图 10  稳定剂投加量对复合重金属稳定化率的影响
    Figure 10.  Effect of stabilizer dosage on stabilization rate of composite heavy metals

    在稳定剂投加量超过5%时,Zn2+和Cd2+稳定化率呈现下降的趋势。这可能是稳定剂颗粒之间相互黏结,比表面积减少,导致重金属离子之间竞争吸附作用增强。而竞争力较弱的Zn2+和Cd2+脱离吸附位点,导致稳定化率下降。

    图11可知,在稳定剂投加量为5%与疏浚底泥液固比为1.5:1时,底泥pH的变化对复合重金属稳定化率的影响非常明显。在pH为7时,复合重金属稳定化率达到了最大值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.549 mg·L−1,稳定化率分别为77.24%、75.03%、61.33%。

    图 11  底泥pH对复合重金属稳定化率的影响
    Figure 11.  Effect of pH of sediment on stabilization rate of composite heavy metals

    图12可知,在pH为7与稳定剂投加量为5%时,随着底泥液固比的增大,Cu2+、Zn2+和Cd2+的稳定化率逐渐上升。在液固比为1.5:1时逐渐稳定,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.592 mg·L−1,稳定化率分别为77.26%、75.11%、58.32%。

    图 12  底泥液固比对复合重金属稳定化率的影响
    Figure 12.  Effects of liquid to solid ratio in sediment on stabilization of composite heavy metals

    Cd2+的稳定化率随着底泥液固比增大出现降低的趋势。原因可能是,随着液固比的增大,含水率升高,释放到溶剂中的重金属也增多,但稳定剂表面的吸附位点数量一定,使竞争能力较差的Cd2+脱离吸附位点,导致稳定化率下降。

    综上所述,在稳定剂投加量为5%、底泥pH为7、底泥液固比为1.5:1时,NaBent-CTS对复合重金属的稳定化率最好,稳定化率分别达到75.95%、73.71%和59.00%。3种重金属离子之间的竞争吸附关系为Cu2+>Zn2+>Cd2+

    图13图14所示,在稳定化处理底泥前,Cu2+、Zn2+、Cd2+的存在形态以酸可提取态和可还原态这两种不稳定形态占比较大,可氧化态和残渣态这两种稳定形态占比较小。经NaBent-CTS稳定化处理14 d后,可氧化态和残渣态这两种形态占比显著提高,表明NaBent-CTS具有良好的稳定重金属的效果。

    图 13  NaBent-CTS处理底泥前后各重金属存在形态变化
    Figure 13.  Changes of each heavy metal forms in sediment before and after NaBent-CTS treatment
    图 14  NaBent-CTS稳定后底泥重金属形态占比
    Figure 14.  Proportion of heavy metal forms in sediment after NaBent-CTS stabilization

    重金属离子与NaBent-CTS结合后,与稳定剂中的羟基和氨基发生螯合配位作用,并且稳定剂中含有Na+、Al3+等可交换离子,将以酸可提取态和可还原态存在的重金属变成了可氧化态与残渣态的存在形态,从而降低底泥中重金属污染生态环境的风险。

    图15为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的XPS全谱图。可以看出,稳定化处理Cu2+、Zn2+和Cd2+后,XPS图谱中出现Cu2p、Zn2p和Cd3d的轨道峰,充分证明Cu2+、Zn2+和Cd2+已吸附在NaBent-CTS上。NaBent-CTS稳定化处理重金属后,XPS图谱中的Na1s谱峰几乎消失,说明稳定化过程中Cu2+、Zn2+、Cd2+与Na+发生离子交换反应,导致稳定剂中Na+含量骤减。

    图 15  稳定化处理单一重金属前后的XPS
    Figure 15.  XPS spectra before and after stabilization treatment of a single heavy metal

    图16为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的FT-IR光谱图。可以看出,NaBent-CTS稳定Cu2+、Zn2+、Cd2+后没有新的峰出现,3 624、3 405、1 636、1 428、1 113、987 cm−1处的羟基与氨基特征峰发生偏移并且峰强度降低,这是由于重金属与基团之间发生了螯合反应;507 cm−1处Si—O—Al特征峰出现波数偏移与强度降低,这是由于重金属与稳定剂中Al3+离子发生了离子交换反应。稳定化处理Cu2+、Zn2+和Cd2+后,特征峰削弱强度不同,说明NaBent-CTS对Cu2+、Zn2+和Cd2+之间出现选择性吸附。由特征峰削弱强度可知,NaBent-CTS对重金属稳定能力由强到弱为Cu2+>Zn2+>Cd2+,这符合稳定剂处理复合重金属污染底泥的实验结果。

    图 16  稳定化处理单一重金属前后的FT-IR
    Figure 16.  FT-IR spectra before and after stabilization of a single heavy metal

    综上所述,NaBent-CTS稳定重金属过程中存在螯合反应与离子交换反应,重金属离子的螯合配位可能是由CTS中的氨基和羟基、Si—Al—OH和层间水分子O—H的互相作用,这样生成的螯合物可能是高交联的结构,稳定性极强。

    1) 由NaBent-CTS表面特性分析结果可知,NaBent和CTS之间存在化学吸附,大量CTS吸附在NaBent表面,稳定剂表面粗糙但比表面积降低。

    2) 经过CTS改性后的NaBent稳定重金属的能力显著提高,在投加量为5%时,可达到较好的稳定效果。在投加量为5%、pH为7、液固比为1.3∶1时,NaBent-CTS对Cu2+重金属污染底泥的处理效果最好。在投加量为7%、pH为6、液固比为1.7∶1时,NaBent-CTS对Zn2+重金属污染底泥的处理效果最好。在投加量为7%、pH为7、液固比为1.5∶1时,NaBent-CTS对Cd2+重金属污染底泥的处理效果最好。

    3) NaBent-CTS投加量为5%、pH为7、液固比为1.5∶1时,NaBent-CTS对复合重金属污染底泥的重金属稳定化效果最好,Cu2+、Zn2+、Cd2+稳定化率分别达到75.95%、73.71%和59.00%;NaBent-CTS稳定化处理复合重金属污染底泥时,Cu2+、Zn2+、Cd2+之间存在竞争吸附作用,竞争力由强到弱为Cu2+>Zn2+>Cd2+

    4) 采用BCR法分析稳定化处理14 d后底泥中Cu2+、Zn2+、Cd2+的存在形态,可以看出,在NaBent-CTS处理后,底泥中Cu2+、Zn2+、Cd2+的存在形态更加稳定,可氧化态与残渣态比例大幅上升。

  • 图 1  不同落地油泥的超声处理效果

    Figure 1.  Oil removal effect from the oil sludge in different oilfields by ultrasonic treatment

    图 2  落地油泥中土壤颗粒粒径分布

    Figure 2.  Particle size distribution of oil sludge soils

    图 3  落地油泥土壤中主要元素组成

    Figure 3.  Major element composition of oil sludge soil

    图 4  油泥土壤组成对原油吸附量及超声处理除油效果的影响

    Figure 4.  Influence of oil sludge soil composition on crude oil adsorption and oil removal efficiency by ultrsonic

    表 1  3种落地油泥的组分构成

    Table 1.  Compositions of oil sludge from different oilfields

    样品编号油泥来源含水/%含油/%含固/%
    JD-L冀东油田8.53±0.122.70±0.1288.99±0.12
    DQ-L大庆油田22.02±1.639.552±1.668.43±1.63
    DG-L大港油田17.65±1.797.815±1.775.91±1.79
    样品编号油泥来源含水/%含油/%含固/%
    JD-L冀东油田8.53±0.122.70±0.1288.99±0.12
    DQ-L大庆油田22.02±1.639.552±1.668.43±1.63
    DG-L大港油田17.65±1.797.815±1.775.91±1.79
    下载: 导出CSV

    表 2  落地油泥土壤颗粒粒径分布及其比表面积

    Table 2.  Particle size distribution and surface areas of oil sludge soils

    油泥样品油泥来源比表面积/(m2·kg−1)粒径/μm
    d10d50
    DQ-L大庆油田311.39.4113.0
    DG-L大港油田194.925.3254.0
    JD-L冀东油田424.35.191.2
    油泥样品油泥来源比表面积/(m2·kg−1)粒径/μm
    d10d50
    DQ-L大庆油田311.39.4113.0
    DG-L大港油田194.925.3254.0
    JD-L冀东油田424.35.191.2
    下载: 导出CSV

    表 3  落地油泥土壤中矿物定性及半定量分析结果

    Table 3.  Qualitative and semi-quantitive results of minerals in oil sludge soils from different oilfields

    油泥名称PDF卡片号化学式RIR 相对含量/%结晶度/%
    大庆落地油泥01-086-1628SiO23.0936.0023.64
    01-084-0982Na(AlSi3O8)0.6650.00
    01-071-1543K(AlSi3O8)0.7514.00
    大港落地油泥01-085-1054SiO23.076.9042.47
    01-076-0228AlPO43.0112.90
    01-075-0296KCl6.071.00
    01-084-0982Na(AlSi3O8)0.6679.20
    冀东落地油泥01-086-1629SiO23.1052.0027.72
    01-072-1245Na(AlSi3O8)0.6648.00
    油泥名称PDF卡片号化学式RIR 相对含量/%结晶度/%
    大庆落地油泥01-086-1628SiO23.0936.0023.64
    01-084-0982Na(AlSi3O8)0.6650.00
    01-071-1543K(AlSi3O8)0.7514.00
    大港落地油泥01-085-1054SiO23.076.9042.47
    01-076-0228AlPO43.0112.90
    01-075-0296KCl6.071.00
    01-084-0982Na(AlSi3O8)0.6679.20
    冀东落地油泥01-086-1629SiO23.1052.0027.72
    01-072-1245Na(AlSi3O8)0.6648.00
    下载: 导出CSV

    表 4  原油在土壤表面的吸附过程分析

    Table 4.  Analysis of the adsorption process of crude oil in the soil surface

    模拟油泥土壤来源Logistic模型参数R2
    y1y2x0p
    冀东落地油泥5.0712.122.328.660.997
    大港落地油泥2.0010.311.935.600.950
    模拟油泥土壤来源Logistic模型参数R2
    y1y2x0p
    冀东落地油泥5.0712.122.328.660.997
    大港落地油泥2.0010.311.935.600.950
    下载: 导出CSV
  • [1] 孔令荣, 夏福军, 荆国林. 国内含油污泥的综合利用方法[J]. 能源环境保护, 2011, 25(3): 1-4. doi: 10.3969/j.issn.1006-8759.2011.03.001
    [2] 刘志林, 完石光, 于莹. 石化含油污泥的资源化利用[J]. 环境保护与循环经济, 2010, 30(12): 58-61. doi: 10.3969/j.issn.1674-1021.2010.12.021
    [3] 郭绍辉, 彭鸽威, 闫光绪, 等. 国内外石油污泥处理技术研究进展[J]. 现代化工, 2008(3): 36-39. doi: 10.3321/j.issn:0253-4320.2008.z2.008
    [4] 李鹏华, 李岩涛, 张清宇. 含油污泥的无害化和资源化研究[J]. 精细石油化工进展, 2008, 9(8): 21-23. doi: 10.3969/j.issn.1009-8348.2008.08.007
    [5] RIVAS F J. Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments[J]. Journal of Hazardous Materials, 2006, 138(2): 234-251. doi: 10.1016/j.jhazmat.2006.07.048
    [6] SCALA F, CHIRONE R. Fluidized bed combustion of alternative solid fuels[J]. Experimental Thermal & Fluid Science, 2004, 28(7): 691-699.
    [7] HOU J R, LIU Z C, ZHANG S F, et al. The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2005, 47(3/4): 219-235.
    [8] KARAMALIDIS A K, VOUDRIAS E A. Release of Zn, Ni, Cu, SO24 and CrO24 as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge[J]. Journal of Hazardous Materials, 2007, 141(3): 591-606. doi: 10.1016/j.jhazmat.2006.07.034
    [9] RAMAMURTHY V. Characterization of biosurfactant synthesis in a hydrocarbon utilizing bacterial isolate[J]. Journal of Biochemistry, 2003, 81: 175-180.
    [10] URUM K, PEKDEMIR T. Evaluation of biosurfactants for crude oil contaminated soil washing[J]. Chemosphere, 2004, 57(9): 1139-1150. doi: 10.1016/j.chemosphere.2004.07.048
    [11] MULLIGAN C N. Environmental applications for biosurfactants[J]. Environmental Pollution, 2005, 133(2): 183-198. doi: 10.1016/j.envpol.2004.06.009
    [12] LAI C C, HUANG Y C, WEI Y H, et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of Hazardous Materials, 2009, 167(1): 609-614.
    [13] FISHER J A, AND M J S, STOTT A D. Accelerated solvent extraction: An evaluation for screening of soils for selected U.S. EPA semivolatile organic priority pollutants[J]. Environmental Science & Technology, 1997, 31(4): 1120-1127.
    [14] TAIWO E A, OTOLORIN J A. Oil recovery from petroleum sludge by solvent extraction[J]. Liquid Fuels Technology, 2009, 27(8): 836-844.
    [15] HU G, LI J, ZENG G. Recent development in the treatment of oily sludge from petroleum industry: A review[J]. Journal of Hazardous Materials, 2013, 261(13): 470-490.
    [16] BRIDLE T R, PRITCHARD D. Energy and nutrient recovery from sewage sludge via pyrolysis[J]. Water Science & Technology, 2004, 50(9): 169-175.
    [17] KIM Y, PARKER W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil[J]. Bioresource Technology, 2008, 99(5): 1409-1416. doi: 10.1016/j.biortech.2007.01.056
    [18] KWAK T H, MAKEN S, LEE S, et al. Environmental aspects of gasification of Korean municipal solid waste in a pilot plant[J]. Fuel, 2006, 85(14): 2012-2017.
    [19] SANKARAN S, PANDEY S, SUMATHY K. Experimental investigation on waste heat recovery by refinery oil sludge incineration using fluidised-bed technique[J]. Environmental Letters, 1998, 33(5): 829-845.
    [20] HEJAZI R F, TAHIR H. Landfarm performance under arid conditions. 2. Evaluation of parameters[J]. Environmental Science & Technology, 2004, 38(8): 2457-2469.
    [21] MURALI K R, SASINDRAN P. Structural and optical properties of sonoelectrochemically deposited CdSe films[J]. Journal of Materials Science, 2004, 39(20): 6347-6348. doi: 10.1023/B:JMSC.0000043605.15446.60
    [22] POLLET B, LORIMER J P, PHULL S S, et al. Sonoelectrochemical recovery of silver from photographic processing solutions[J]. Ultrasonics Sonochemistry, 2000, 7(2): 69-76. doi: 10.1016/S1350-4177(99)00027-9
    [23] KANG J, SHIN Y, TAK Y. Growth of etch pits formed during sonoelectrochemical etching of aluminum[J]. Electrochimica Acta, 2006, 51(5): 1012-1016.
    [24] LIU Y C, LIN L H. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods[J]. Electrochemistry Communications, 2004, 6(11): 1163-1168. doi: 10.1016/j.elecom.2004.09.010
    [25] 杨继生, 徐辉. 超声波处理油泥砂脱油实验研究[J]. 石油学报(石油化工), 2010, 26(2): 300-304.
    [26] 赵晓非张, 刘立新, 等. 新型油泥处理技术展望[J]. 化工进展, 2016, 35(S1): 276-280.
    [27] NA S, PARK Y, HWANG A, et al. Effect of ultrasound on surfactant-aided soil washing[J]. Japanese Journal of Applied Physics, 2007, 46(7): 4775-4778.
    [28] NING X, WANG W, HAN P, et al. Effects of ultrasound on oily sludge deoiling[J]. Journal of Hazardous Materials, 2009, 171(1): 914-917.
    [29] FENG D, ALDRICH C. Sonochemical treatment of simulated soil contaminated with diesel[J]. Advances in Environmental Research, 2000, 4(2): 103-112. doi: 10.1016/S1093-0191(00)00008-3
    [30] JIN Y, ZHENG X, CHU X, et al. Oil recovery from oil sludge through combined ultrasound and thermochemical cleaning treatment[J]. Industrial & Engineering Chemistry Research, 2012, 51(27): 9213-9217.
    [31] CALLESEN I, KECK H, ANDERSEN T J. Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000-method uncertainty including the effect of hydrogen peroxide pretreatment[J]. Journal of Soils and Sediments, 2018, 18(7): 2500-2510. doi: 10.1007/s11368-018-1965-8
    [32] 杨雅秀, 苏昭冰. 粘土矿物X射线衍射法定量研究(下)[J]. 中国非金属矿工业导刊, 1994(5): 19-25.
    [33] 刘玉祥, 王开亮, 胡沛青, 等. 页岩中矿物组分测定方法探讨[J]. 天然气地球科学, 2015, 26(9): 1737-1743.
    [34] 杨雅秀, 苏昭冰, 陈正国. 粘土矿物X射线衍射法定量研究(上)[J]. 建材地质, 1994(4): 28-34.
  • 期刊类型引用(8)

    1. 梁涛,张楠楠,李鹏宇. 油田井场落地油来源及消减措施探讨. 化工安全与环境. 2024(03): 59-61 . 百度学术
    2. 刘瑭羽,李洪瑞,侯成林,张杰,付丽霞,王昌鑫,郭渊明. 固体颗粒含量与粒径分布影响含油污泥超声分离过程的机制. 环境工程学报. 2024(09): 2512-2521 . 本站查看
    3. 杨建建,李文林,王伟建. 超声波技术在石油工业危险废物处置中的应用研究综述. 北部湾大学学报. 2023(02): 33-40 . 百度学术
    4. 康定宇,林海,牛东坡,田刚,徐瑞,张志勇,罗一菁,张忠智. 含油污泥特性及处理技术研究进展. 中国环境科学. 2023(08): 4106-4120 . 百度学术
    5. 仝坤,谢加才,谢水祥,吴宣章,孔德宁,薛男. 含油污泥化学热洗技术研究进展. 化工环保. 2023(06): 744-749 . 百度学术
    6. 吴限,陈晓晓,冯恩临,马诚,李丽华. 超声萃取-数字图像比色法快速测定含油污泥含油率. 应用化工. 2022(10): 3098-3101+3105 . 百度学术
    7. 张鼎,杨子奕,焦艳军,方申文,段明. 密度泛函法模拟筛选清洗原油污染土壤用胆碱类低共熔溶剂中的氢键供体. 石油化工. 2021(07): 669-674 . 百度学术
    8. 李文英,李阳,马艳飞,张俊锋,李秋红,何芳. 含油污泥资源化处理方法进展. 化工进展. 2020(10): 4191-4199 . 百度学术

    其他类型引用(2)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.9 %DOWNLOAD: 3.9 %HTML全文: 91.9 %HTML全文: 91.9 %摘要: 4.3 %摘要: 4.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 81.5 %其他: 81.5 %Ashburn: 0.4 %Ashburn: 0.4 %Beijing: 8.6 %Beijing: 8.6 %Brooklyn: 0.1 %Brooklyn: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chengbei: 0.2 %Chengbei: 0.2 %Chengdu: 0.2 %Chengdu: 0.2 %Chongqing: 0.2 %Chongqing: 0.2 %Dongguan: 0.1 %Dongguan: 0.1 %Hangzhou: 0.4 %Hangzhou: 0.4 %Hefei: 0.2 %Hefei: 0.2 %Hongyuan: 0.1 %Hongyuan: 0.1 %Itabuna: 0.1 %Itabuna: 0.1 %Jinrongjie: 1.5 %Jinrongjie: 1.5 %Kunshan: 0.1 %Kunshan: 0.1 %Los Angeles: 0.1 %Los Angeles: 0.1 %Newark: 0.1 %Newark: 0.1 %Pune: 0.1 %Pune: 0.1 %Qingdao: 0.4 %Qingdao: 0.4 %Shanghai: 0.4 %Shanghai: 0.4 %Shenyang: 0.1 %Shenyang: 0.1 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Shizishan: 0.1 %Shizishan: 0.1 %Taiyuan: 0.5 %Taiyuan: 0.5 %Tianjin: 0.1 %Tianjin: 0.1 %Tirana: 0.1 %Tirana: 0.1 %XX: 1.8 %XX: 1.8 %Yantai: 0.1 %Yantai: 0.1 %Yinchuan: 0.1 %Yinchuan: 0.1 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %北京: 0.7 %北京: 0.7 %南京: 0.2 %南京: 0.2 %台州: 0.1 %台州: 0.1 %昆明: 0.1 %昆明: 0.1 %湛江: 0.1 %湛江: 0.1 %郑州: 0.5 %郑州: 0.5 %其他AshburnBeijingBrooklynChang'anChangshaChengbeiChengduChongqingDongguanHangzhouHefeiHongyuanItabunaJinrongjieKunshanLos AngelesNewarkPuneQingdaoShanghaiShenyangShijiazhuangShizishanTaiyuanTianjinTiranaXXYantaiYinchuanYunchengZhengzhou北京南京台州昆明湛江郑州Highcharts.com
图( 4) 表( 4)
计量
  • 文章访问数:  3232
  • HTML全文浏览数:  3232
  • PDF下载数:  64
  • 施引文献:  10
出版历程
  • 收稿日期:  2019-04-16
  • 录用日期:  2019-10-24
  • 刊出日期:  2020-02-01
陈东, 高迎新, 李枫, 杨敏. 落地油泥土壤性质对超声除油效果的影响[J]. 环境工程学报, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097
引用本文: 陈东, 高迎新, 李枫, 杨敏. 落地油泥土壤性质对超声除油效果的影响[J]. 环境工程学报, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097
CHEN Dong, GAO Yingxin, LI Feng, YANG Min. Influence of oil sludge soil properties on oil removal efficiency by ultrasonic treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097
Citation: CHEN Dong, GAO Yingxin, LI Feng, YANG Min. Influence of oil sludge soil properties on oil removal efficiency by ultrasonic treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 545-551. doi: 10.12030/j.cjee.201904097

落地油泥土壤性质对超声除油效果的影响

    通讯作者: 高迎新(1968—),男,博士,研究员。研究方向:工业污水处理。E-mail:gyx@rcees.ac.cn
    作者简介: 陈东(1985—),男,博士研究生。研究方向:油田污水污泥处理。E-mail:dongchen902@163.com
  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院大学,北京 100049
  • 3. 乌海工业废水处理技术研究所,乌海 016000
基金项目:
内蒙古科技项目((2018)1188)

摘要: 落地油泥是油田产生的一类危险固体废弃物,其无害化处理是目前各大油田所面临的重大挑战之一。为了深入认识超声处理过程中油泥土壤性质与超声处理除油效果之间的关系,以不同油田典型落地油泥为研究对象,超声处理后对其土壤残留含油量、土壤颗粒级配、土壤化学组成等进行分析。结果表明:油泥中土壤颗粒粒径较大的大庆、大港落地油泥经超声处理后的除油效果均在60%以上,而土壤颗粒粒径较小的冀东落地油泥超声除油率仅为11%;同时,超声除油效果较好的大庆、大港落地油泥中的钙氧化物含量较低(分别为4.84%和5.94%),而超声除油效果差的冀东落地油泥中的钙氧化物含量较高(11.57%)。进一步的模拟实验结果表明,钙氧化物含量高的土壤对原油的吸附量大、吸附强度高、超声除油效果差,而钙氧化物含量低的土壤吸附量小、吸附强度低、超声除油效果好。以上结果可为油田落地油泥超声处理技术的开发及规模化应用提供指导。

English Abstract

  • 落地油泥是石油开采过程中产生的一种固体废弃物,因其环境危害大,已被列入国家危险固体废弃物名录[1-4]。对其进行有效处理,无疑具有重要的环境保护效益。目前,常用的油泥处理技术有焚烧、萃取、热解、氧化、热洗、生物修复、固化/稳定化等[5-12]。其中,焚烧、热解等技术虽然除油效果很好,但无法回收其中的石油资源;而萃取、热洗等技术存在处理成本高、原油回收效率低等问题[13-20]

    近年来,利用超声波处理油泥技术受到广泛关注。研究发现,超声波的“空化效应”可弱化土壤对原油的黏附作用,提高原油的清洗效率[21-24]。与现有的其他技术相比较,超声波处理技术具有分离效果好、成本低、操作简单等优点[21-26]。然而,研究中也发现,利用超声波处理不同来源油泥时存在效果不稳定、原油回收效率差异大等问题[27-30],具体原因仍然不清楚,但怀疑与油泥中土壤的性质有关。

    本研究选取了3种具有代表性的油田落地油泥,在分析土壤颗粒级配、化学组成的基础上,着重考察了土壤性质对超声处理除油效果的影响。同时,利用脱油后的油田油泥土壤进行了原油吸附和超声除油模拟实验,以期为油田落地油泥超声处理技术的开发及规模化应用提供指导。

  • 实验所用油泥样品取自冀东、大庆、大港3个油田生产作业所产生的新鲜落地油泥。现场去除落地油泥中的杂草、树枝、生活垃圾及大块岩石后,将样品密封于黑色取样袋内,运回实验室4 ℃保存。

    实验试剂为三氯甲烷、无水硫酸钠、四氯化碳、30%双氧水、盐酸等试剂,均为分析纯,购自国药化学试剂集团。

    实验仪器:红外测油仪(126+,吉林北光,中国);X射线衍射(X’Pert PRO MPD,荷兰PANalytical分析仪器有限公司,荷兰);激光粒度仪(Mastersizer 3000,马尔文,英国);X射线荧光光谱(ARL Perform’X4200,赛默飞世尔科技(中国)有限公司,中国)。

  • 取100 g新鲜油泥样品,加水400 g,在60 ℃恒温水浴、50 r·min−1搅拌的条件下,用0.33 W·cm−2、25 kHz的超声波进行超声处理30 min,处理结束,静置沉淀或离心分离后,取下层土壤烘干,测定土壤中残余原油含量,每组实验重复3次。

  • 以三氯甲烷为萃取剂,采用索氏提取法去除冀东及大港落地油泥中的原油,风干后研磨过筛,取0.25~0.50 mm(35~60目)的土壤为模拟用土。将模拟土壤搅拌均匀后,称取10.0 g土壤、2.0 g蒸馏水,分别加入冀东原油1.0、2.0、3.0、5.0、7.0 g,充分搅拌均匀后,密封于45 ℃,恒温老化24 h,每组重复3次。恒温老化结束后,加40 mL热水(45 ℃)并在45 ℃恒温搅拌10 min(50 r·min−1),搅拌结束后,静置沉淀,除去上层水及未吸附的原油,取下层土壤约2.0 g,烘干后测定原油的吸附量。然后再加40 mL 温度为60 ℃的热水,按照与上述油泥超声处理同样的操作进行处理后,测定土壤中的剩余含油量。

  • 1)油泥组分分析。用烘干至恒重的玻璃培养皿,取50 g左右经过搅拌混匀的新鲜油泥样品3份进行称重,然后在65 ℃下烘24 h,转移至干燥器中冷却至室温再称重,计算油泥含水量。

    将烘干后的油泥样品原样磨碎,混匀后随机取样1.00 g,转移至100 mL的分液漏斗中,加入红外测油专用的四氯化碳50.0 mL,在200 r·min−1下振荡30 min,静置10 min后,将萃取液通过装填有无水硫酸钠的层析柱,去掉最先流出的滤液35 mL,取后续滤液1.0 mL转移至25 mL比色管中,用测油专用四氯化碳定容,按照《水质 石油类和动植物油类的测定 红外分光光度法》(HJ 637-2012)使用红外测油仪测定油泥含油量。含固量为原样与含油、含水量之差。

    2)土壤颗粒分析。将烘干的油泥原样用三氯甲烷萃取除去原油,研磨后去掉石块和杂物,按四分法,取5.0 g土壤于100 mL烧杯中,加入20 mL H2O2(10%)溶液、加热至沸腾,使其充分反应,自然冷却后,再加入20 mL HCl(10%)溶液,加热至沸腾;自然冷却后,加蒸馏水至80 mL,置于超声波清洗机中超声15 min后静置24 h[31]。预处理结束,抽去上层蒸馏水,搅拌均匀后用激光粒度仪测试土壤颗粒粒径。

    3)土壤元素及矿物种类分析。将用三氯甲烷萃取后的土壤研磨后过200目土壤筛,取筛下混合均匀的土壤样品约10 g左右,置于200 ℃下恒温2 h,然后转移至干燥器中冷却,用于X射线荧光光谱分析和X射线衍射仪分析,并按照RIR因子法计算土壤中矿物的相对含量[32-34]

  • 3个油田落地油泥中的水分、石油类和固体含量见表1。由表1可知,落地油泥中含有3%~10%的石油类、68%~90%的土壤、9%~22%的水分。其中,冀东落地油泥的固相含量最高,含油率、含水率最低;大庆落地油泥中的固相含量最低,含油率和含水率均为最高;大港落地油泥的3项含量处于冀东和大庆落地油泥之间。

  • 已有研究[27-30]表明, 在使用超声处理技术处理油田油泥时,不同地域来源油泥的原油去除率差异较大。本研究所选取的3种代表性的落地油泥也来自于不同地域的油田,超声处理前后土壤中原油含量如图1所示。超声处理后,大庆、大港、冀东落地油泥土壤固相中残余原油含量分别为(1.62±1.15)%、(3.18±0.32)%、(2.4±0.45)%,原油去除率分别为83.10%、59.33%、11.22%,与已有研究结果一致。其中,大庆落地油泥的处理效果最好,处理后的土壤含油量基本可以达到标准(<2%);大港落地油泥次之,冀东落地油泥的处理效果最差。

  • 图2为3种落地油泥土壤的粒径分布情况。落地油泥中土壤颗粒粒径分布极不均匀,均表现出双峰分布的特征。大庆落地油泥土壤颗粒粒径分布分别在100 μm和500 μm左右出现极值,其中100 μm附近的土壤颗粒所占比重最大。大港油泥土壤颗粒的第1个峰出现在300~400 μm处,第2个则出现在2 000 μm处。而冀东落地油泥颗粒在2~60 μm处出第1个扁平峰,在500~700 μm处出现第2个陡峭峰。通过比较3种土壤颗粒粒径和比表面积(表2)发现,冀东油田落地油泥土壤粒径最小、比表面积最大,这可能是造成冀东落地油泥超声处理效果较差的重要原因。此外,采用不同粒径的河沙为模拟土壤、冀东原油为模拟油的模拟实验结果也验证了土壤颗粒越大,超声处理效果越好,土壤颗粒粒径越小,超声处理效果越差。

  • 落地油泥土壤中化学氧化物质量分数大于0.5%的元素含量如图3所示。由图3可知,硅、铝、铁、钙等含量相对较高,其中,硅氧化物含量最高。不同来源的油泥中铁和铝氧化物含量基本相同,而硅氧化物和钙氧化物有较大差异。在大港、大庆、冀东落地油泥土壤中,硅氧化物的含量分别为61.17%、62.27%、55.42%;钙氧化物含量分别为4.84%、5.94%、11.57%。大庆和大港落地油泥中的硅氧化物含量显著高于冀东落地油泥,而冀东落地油泥中钙氧化物含量比大庆、大港落地油泥高出1倍左右。超声处理后,大庆、大港落地油泥的除油效果较好,冀东落地油泥的效果最差,这表明油泥土壤中的硅氧化物及钙氧化物含量可能与除油效果有关。

    进一步对油泥土壤中的矿物组成进行分析,XRD结果表明,落地油泥土壤中矿物的结晶度较低,钙、铁等氧化物全部以非晶态形式存在,只有小部分的硅氧化物和铝氧化物以晶体形式存在(见表3)。晶体矿物主要有二氧化硅、硅酸铝钾、硅酸铝钠、磷酸铝等,其中,二氧化硅和硅酸铝钠是油泥土壤中共有的晶体矿物,占晶体矿物总量的50%以上。因此,很难从油泥土壤中晶体矿物的种类和结晶度来评价油泥的超声处理效果。

    在冀东落地油泥和大港落地油泥的土壤中,钙氧化物和硅氧化物含量差异较大。选择这2种组成不同的脱油后油泥土壤,以冀东原油为模拟油开展原油吸附和超声除油模拟实验,结果如图4所示。

    模拟油泥的原油吸附量随原油添加量的增加而增大,当添加量增加到3.0 g,即原油质量占土壤质量的30%时,吸附基本达到平衡。采用Langmuir模型和多分子层吸附的BET模型拟合分析,拟合效果较差。而用Logistic模型处理,修正后的R2均大于0.9,拟合效果好。Logistic模型的计算方法如式(1)所示。

    式中:y为土壤中原油质量比;x为原油添加量,g;回归参数y1y2x0p分别为y的最小值、y的最大值、曲线拐点及与拐点处斜率相关的参数。由拟合结果(表4)可知,Logistic方程可以很好地反映原油在土壤中的吸附过程,冀东落地油泥土壤的最大吸附量为12.12%,大港落地油泥土壤的最大吸附量为10.31%。由此可见,钙氧化物含量高的冀东落地油泥土壤对原油的吸附量大于钙氧化物含量低的大港落地油泥土壤。

    在经过超声处理后,冀东土壤配制的油泥的残余含油量随着原油吸附量的增加而增加,吸附平衡后土壤中原油的去除率为(47.3±4.0)%。而大港土壤配制的模拟油泥残余含油量并未随吸附量的增加而增加,吸附平衡后土壤中原油的去除率为(87.3±1.0)%。这表明钙氧化物含量高的土壤与冀东原油的吸附作用强,超声处理后油泥中原油的去除率低。

  • 1)油泥土壤颗粒级配分布宽为0.5~2 000 μm,且不同土壤级配的油泥超声除油效果不同。粒径大的土壤颗粒超声除油效果较好,粒径小的土壤颗粒超声除油效果差。

    2)原油在土壤中的吸附符合Logistic模型。钙氧化物含量高的土壤对原油的吸附量大、吸附强度高、超声处理效果较差;而钙氧化物含量低的吸附量小、吸附强度弱、超声处理效果较好。

    3)模拟油泥的超声处理效果均优于实际油泥,除实际油泥的土壤颗粒级配分布宽以外,油泥的老化时间也可能是影响油泥超声处理效果的重要因子,其具体机理有待进一步的研究。

参考文献 (34)

返回顶部

目录

/

返回文章
返回