-
随着我国肉鸡、蛋鸡集约化养殖的发展,鸡粪产量不断增加。据不完全统计,2015年,鸡粪(包括尿液)排放量高达3.93×109 t[1]。大量未经处理的鸡粪直接排放,对水体、土壤、大气等环境造成严重污染[2]。鸡粪富含有机质,具有较高的能源转化潜力[3],仅2015年,鸡粪产沼潜力高达2.75×1011 m3,折算为标准状况下的天然气体积,可达1.72×1011 m3[4]。因此,厌氧消化是降低鸡粪污染、实现其资源化利用的有效处理方法[5],特别是高固体(总固体浓度(TS)>6%[6])鸡粪厌氧消化因较高的产能效率以及较少的二次污染物产生量而具有广泛的工程应用前景。
在典型畜禽粪便中,鸡粪的蛋白质组分最高,为牛粪、猪粪的2倍[7],在厌氧消化的水解阶段,易被转化为氨氮(包括
${\rm{NH}}_4^{+} $ 和游离氨NH3)[8]。氨氮浓度超过临界值后,对厌氧菌的正常生理代谢产生不利影响,导致消化效率低下,出现氨抑制现象[9]。而高固体鸡粪厌氧消化面临着更大的氨抑制风险,使得消化过程中进料浓度的提升存在一定困难。据报道,鸡粪厌氧消化的进料TS负荷阈值为5%~6%[10-11],提高负荷不仅伴随着氨氮浓度的上升,还会限制系统传质能力而加剧氨抑制[12],影响发酵性能和体系稳定性。DALKILIC等[13]采用两相完全混合式厌氧反应器(continuous stirred tank reactor, CSTR)进行鸡粪半连续发酵实验,结果表明,当进料TS由3.7%增至8.25%,氨氮和挥发性脂肪酸(volatile fatty acids,VFAs)分别累积至3.5 g·L−1和6.0 g·L−1时,挥发性固体(volatile solid,VS)产气率逐步减少。NIU等[14]利用CSTR研究TS为10%的鸡粪高温厌氧消化,发现反应器连续运行45 d后,其稳定性随氨氮的上升而明显降低。乔玮等[15]采用批次实验,对不同进料TS条件下鸡粪连续中温消化的污泥进行活性测试,发现当鸡粪TS为10%时,氨氮的大量累积导致微生物利用乙酸的产甲烷能力下降了59%。目前,研究[16-18]普遍认为,采用逐步提升消化体系氨氮水平的方式驯化微生物,是强化厌氧菌耐氨能力,维持反应器稳定运行的有效途径。但以逐级提高进料浓度为基础而实现的高固体鸡粪连续厌氧消化性能仍须深入探讨。为此,本研究通过逐级提高进料TS的方法,利用CSTR研究不同进料浓度下鸡粪中温厌氧消化的长期运行效果,探究不同氨氮浓度对消化产气性能和有机物降解性能的影响,揭示高固体鸡粪消化过程中氨抑制的形成规律,为大力发展以高固体鸡粪为原料的沼气工程提供参考。
进料浓度对鸡粪连续中温厌氧消化的影响
Effect of feeding concentration on continuous mesophilic anaerobic digestion of chicken manure
-
摘要: 针对高固体鸡粪厌氧消化运行困难问题,利用完全混合式厌氧反应器(CSTR),通过逐级提高进料总固体浓度(TS)的方法,研究不同进料TS((5.20±0.56)%、(7.24±0.36)%、(9.30±0.26)%和(6.22±0.26)%)的鸡粪连续中温厌氧消化效果。实验结果表明,进料TS由(5.20±0.56)%提高为(9.30±0.26)%,挥发性固体(VS)产气率由(0.64±0.05) L·g−1下降为0.07 L·g−1,有机物去除率明显减少,挥发性脂肪酸(VFAs)由(0.53±0.02) g·L−1累积至(1.62±0.02) g·L−1,总氨氮浓度(TAN)和游离氨浓度(FA)分别由(1.06±0.11) g·L−1和(0.07±0.02) g·L-1累积至3.40 g·L−1和0.68 g·L−1,消化过程受到氨抑制。采用Boltzmann模型对不同氨氮浓度下VS产甲烷率和VS去除率进行模拟,拟合结果表明,TAN升高所引发的FA持续累积导致高固体鸡粪厌氧消化氨抑制逐步形成,与VS产甲烷率相比,VS去除率对氨氮的抑制响应具有滞后性。降低进料TS至(6.22±0.26)%,氨抑制得到有效缓解,但反应器处于“抑制稳定状态”。因此,为保证反应器长期高效平稳运行,建议鸡粪连续中温厌氧消化的进料浓度不超过7.24%。研究为高固体鸡粪厌氧消化的工程化应用提供参考。Abstract: Difficult operation is a main problem for anaerobic digestion of high solid chicken manure. In this study, continuous mesophilic anaerobic digestion of chicken manure was carried out in a 6 L continuous stirring tank reactor (CSTR). The anaerobic digestion performance of this CSTR at different feeding concentrations ((5.20±0.56)%, (7.24±0.36)%, (9.30±0.26)% and (6.22±0.26)% based on total solid (TS)) was studied through the stepwise increase of feeding concentration. The obtained results indicated that anaerobic digestion suffered from ammonia inhibition when feeding concentration increased from (5.20±0.56)% to (9.30±0.26)%, the gas production of volatile solid (VS) dropped from (0.64±0.05) L·g−1 to 0.07 L·g−1 and the organic matter removal rate decreased significantly. Additionally, the volatile fatty acids (VFAs) accumulated from (0.53±0.02) g·L−1 to (1.62±0.02) g·L−1, the total ammonia nitrogen concentration (TAN) and free ammonia concentration (FA) accumulated from (1.06±0.11) g·L−1 and (0.07±0.02) g·L−1 to 3.40 g·L−1 and 0.68 g·L−1, respectively. The methane production and VS removal rate at different ammonia concentrations were simulated by Boltzmann model. The fitted results indicated that continuous FA accumulation induced by elevated TAN resulted in the gradual occurrence of ammonia inhibition in anaerobic digestion of high solid chicken manure. In comparison with methane production, the response of VS removal rate to ammonia inhibition had a lag period. However, ammonia inhibition was effectively alleviated when feeding concentration was adjusted to (6.22±0.26)%, and the reactor presented " inhibited steady state”. Therefore, to ensure efficient and stable operation of continuous reactor, it is suggested that feeding concentration of chicken manure continuous anaerobic digestion is not higher than 7.24%. This study provides a reference for the engineering application of anaerobic digestion of high solid chicken manure.
-
Key words:
- chicken manure /
- anaerobic digestion /
- feeding concentration /
- ammonia inhibition
-
表 1 接种泥和各阶段基质特性
Table 1. Characteristics of seed sludge and substrate of each phase
接种泥及阶段 运行时间/d TS/% VS/% pH TCOD/(g·L−1) SCOD/(g·L−1) TAN/(g·L−1) OLR/(g·(L·d)−1) 接种泥 0 1.18±0.05 0.74±0.05 7.15±1.20 3.25±0.14 1.00±0.16 0.24±0.04 — 阶段1 1~34 5.20±0.56 4.00±0.24 7.30±0.46 45.7±0.46 1.48±0.40 1.26±0.04 1.32±0.11 阶段2 35~55 7.24±0.36 5.51±0.56 7.54±0.26 68.2±0.37 1.27±0.07 1.24±0.03 1.81±0.07 阶段3 56~75 9.30±0.26 7.26±0.31 7.61±0.43 90.8±0.26 1.29±0.07 1.58±0.04 2.45±0.05 阶段4 76~100 6.22±0.26 4.78±0.32 7.40±0.13 54.1±0.26 1.40±0.04 1.20±0.07 1.57±0.03 注:TCOD为总化学需氧量;SCOD为溶解性化学需氧量;TAN为总氨氮浓度;OLR为有机负荷(以VS计)。 表 2 不同进料TS条件下厌氧消化效果参数的变化
Table 2. Variation of performance parameters of anaerobic digestion at different feeding concentrations
阶段 容积产气率/(L·(L·d)−1) VS产气率/(L·g−1) CH4/% CO2/% TS/% TS去除率/% VS去除率/% TCOD去除率/% 1 0.75±0.18b 0.64±0.05a 62.4±2.6a 33.0±2.2b 2.11±0.24c 59.4±2.1a 66.7±4.1a 73.2±3.6a 2 0.96±0.21a 0.54±0.03b 58.9±1.4b 39.6±3.4a 2.91±0.24b 60.9±1.7a 63.1±4.5ab 71.0±2.4a 3 1.03~0.18 0.34~0.07 58.2~47.1 35.1~45.7 3.85~7.04 58.1~23.4 64.3~39.2 69.2~42.3 4 0.51±0.10c 0.33±0.07c 53.0±1.7c 37.4±2.2a 3.23±0.21a 48.4±2.8b 60.1±2.5b 63.5±2.9b 注:数据后不同小写字母表示不同阶段之间差异显著(P<0.05)。 表 3 不同进料TS条件下厌氧消化稳定性参数的变化
Table 3. Variation of stability parameters of anaerobic digestion at different feeding concentrations
阶段 pH 碱度(以CaCO3计)/(g·L−1) VFAs/(g·L−1) VFAs/碱度 TAN/(g·L−1) FA/(g·L−1) 1 7.67±0.19c 6.68±0.06b 0.53±0.02c 0.06±0.01a 1.06±0.11c 0.07±0.02b 2 7.89±0.41b 11.9±0.32a 0.65±0.04b 0.06±0.02a 1.51±0.03b 0.15±0.02a 3 8.17±0.04a 13.0~15.2 1.62±0.02a 0.07~0.13 1.63~3.40 0.23~0.68 4 7.80±0.17b 8.05±0.89b 0.75±0.04b 0.08±0.02a 1.88±0.16a 0.17±0.05a 注:数据后不同小写字母表示不同阶段之间差异显著(P<0.05)。 表 4 模型拟合动力学参数和抑制阈值
Table 4. Kinetic parameters of model fitting and inhibition thresholds
抑制因子 指标 动力学参数 抑制阈值 A1 A2 x0 dX IC10/(g·L−1) IC50/(g·L−1) IC80/(g·L−1) TAN VS产甲烷率 0.37±0.02 0.07±0.01 1.70±0.04 0.15±0.05 1.48 1.84 2.35 VS去除率 69.2±3.11 38.7±5.06 2.22±0.19 0.35±0.16 2.04 2.60 3.87 FA VS产甲烷率 0.39±0.03 0.07±0.01 0.21±0.02 0.06±0.02 0.10 0.24 0.41 VS去除率 73.8±9.50 37.3±8.67 0.33±0.08 0.14±0.11 0.28 0.49 0.76 -
[1] 刘茹飞, 陈刚, 王明超, 等. 我国典型禽畜粪便资源化技术研究[J]. 再生资源与循环经济, 2017, 10(3): 37-40. doi: 10.3969/j.issn.1674-0912.2017.03.015 [2] 潘君廷, 马俊怡, 郜天磊, 等. 膨润土改善鸡粪厌氧消化产酸产甲烷特性[J]. 农业工程学报, 2016, 32(8): 246-252. doi: 10.11975/j.issn.1002-6819.2016.08.035 [3] 马旭光, 江滔, 唐琼, 等. 油菜秸秆和鸡粪比例及含固率对其发酵产甲烷特性的影响[J]. 农业工程学报, 2018, 34(12): 236-244. doi: 10.11975/j.issn.1002-6819.2018.12.029 [4] 张心如, 毛长青, 杜干英, 等. 成都市农村有机废弃污染物沼气潜力测算[J]. 畜禽业, 2017, 28(5): 69-71. [5] 裴梦富, 强虹, 杨祎楠, 等. 利用逐级提高进料浓度的方法启动完全混合反应器处理鸡粪[J]. 环境工程学报, 2018, 12(6): 1825-1832. doi: 10.12030/j.cjee.201711113 [6] 盛迎雪, 曹秀芹. 高固体污泥厌氧消化技术特点及存在问题分析[J]. 北京建筑大学学报, 2016, 32(2): 41-45. doi: 10.3969/j.issn.1004-6011.2016.02.008 [7] 韩娅新, 张成明, 陈雪兰, 等. 不同农业有机废弃物产甲烷特性比较[J]. 农业工程学报, 2016, 32(1): 258-264. doi: 10.11975/j.issn.1002-6819.2016.01.036 [8] YIN F B, DONG H M, ZHANG W Q, et al. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline[J]. Bioresource Technology, 2017, 250: 247-255. [9] 孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064 [10] KELLEHER B P, LEAHY J J, HENIHAN A M, et al. Advances in poultry litter disposal technology: A review[J]. Bioresource Technology, 2002, 83(1): 27-36. doi: 10.1016/S0960-8524(01)00133-X [11] BUJOCZEK G, OLESZKIEWICZ J, SPARLING R, et al. High solid anaerobic digestion of chicken manure[J]. Journal of Agricultural Engineering Research, 2000, 76(1): 51-60. doi: 10.1006/jaer.2000.0529 [12] 周曼, 邓良伟, 杨红男, 等. 鸡粪中温干式沼气发酵启动阶段温度变化对产气性能的影响[J]. 农业环境科学学报, 2018, 37(8): 1785-1792. doi: 10.11654/jaes.2018-0415 [13] DALKILIC K, UGURLU A. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system[J]. Journal of Bioscience and Bioengineering, 2015, 120(3): 315-322. doi: 10.1016/j.jbiosc.2015.01.021 [14] NIU Q G, HOJO T, QIAO W, et al. Characterization of methanogenesis, acidogenesis and hydrolysis in thermophilic methane fermentation of chicken manure[J]. Chemical Engineering Journal, 2014, 244: 587-596. doi: 10.1016/j.cej.2013.11.074 [15] 乔玮, 熊林鹏, 毕少杰, 等. 梯度提高进料浓度对鸡粪连续中温发酵产甲烷的影响[J]. 农业工程学报, 2018, 34(9): 233-239. doi: 10.11975/j.issn.1002-6819.2018.09.029 [16] 张玉秀, 孟晓山, 王亚炜, 等. 畜禽废弃物厌氧消化过程的氨氮抑制及其应对措施研究进展[J]. 环境工程学报, 2018, 12(4): 985-998. doi: 10.12030/j.cjee.201706043 [17] WU S B, NI P, LI J X, et al. Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control[J]. Bioresource Technology, 2016, 205(1): 75-81. [18] 胡崇亮, 张栋, 戴翎翎, 等. 厌氧消化过程氨抑制研究进展[J]. 环境工程, 2016, 34(12): 23-27. [19] 习彦花, 张丽萍, 崔冠慧, 等. 中药渣不同有机负荷厌氧发酵工艺参数分析[J]. 环境工程学报, 2017, 11(4): 2433-2438. doi: 10.12030/j.cjee.201602035 [20] ANTHONISEN A C, LOEHR R C, SRINATH T B S P G. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal of Water Pollution Control Federation, 1976, 48(5): 835-852. [21] LV Z P, HU M, HARMS H, et al. Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters[J]. Bioresource Technology, 2014, 167(2): 251-259. [22] PENG X W, NGES I A, LIU J. Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes[J]. Renewable Energy, 2016, 85: 12-18. doi: 10.1016/j.renene.2015.06.023 [23] 覃亚宏. 有机负荷对餐厨垃圾干式厌氧消化系统性能的影响[D]. 重庆: 重庆大学, 2015. [24] PROCHÁZKA J, DOLEJŠ P, MÁCA J, et al. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen[J]. Applied Microbiology & Biotechnology, 2012, 93(1): 439-447. [25] HAO L P, MAZÉAS L, LÜ F, et al. Effect of ammonia on methane production pathways and reaction rates in acetate-fed biogas processes[J]. Water Science & Technology, 2017, 75(8): 1839-1848. [26] 聂红. 高浓度鸡粪厌氧发酵产甲烷的氨抑制研究[D]. 北京: 中国石油大学, 2016. [27] 唐波, 李蕾, 何琴, 等. 总氨氮在餐厨垃圾厌氧消化系统中的积累及其抑制作用[J]. 环境科学学报, 2016, 36(1): 210-216. [28] 高文萱, 张克强, 梁军锋, 等. 氨胁迫对猪粪厌氧消化性能的影响[J]. 农业环境科学学报, 2015, 34(10): 1997-2003. doi: 10.11654/jaes.2015.10.023 [29] NIELSEN H B, ANGELIDAKI I. Strategies for optimizing recovery of the biogas process following ammonia inhibition[J]. Bioresource Technology, 2008, 99(17): 7995-8001. doi: 10.1016/j.biortech.2008.03.049 [30] ALGAPANI D E, QIAO W, SU M, et al. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process[J]. Bioresource Technology, 2016, 216: 768-777. doi: 10.1016/j.biortech.2016.06.016 [31] SPROTT G D, PATEL G B. Ammonia toxicity in pure cultures of methanogenic bacteria[J]. Systematic & Applied Microbiology, 1986, 7(2): 358-363. [32] ASTALS S, PECES M, BATSTONE D J, et al. Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems[J]. Water Research, 2018, 143: 127-135. doi: 10.1016/j.watres.2018.06.021 [33] NIU Q G, QIAO W, QIANG H, et al. Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia[J]. Bioresource Technology, 2013, 146(10): 223-233. [34] 戴晓虎, 何进, 严寒, 等. 游离氨调控对污泥高含固厌氧消化反应器性能的影响[J]. 环境科学, 2017, 38(2): 679-687. [35] SUNG S, LIU T. Ammonia inhibition on thermophilic anaerobic digestion[J]. Chemosphere, 2003, 53(1): 43-52. doi: 10.1016/S0045-6535(03)00434-X [36] 裴梦富. 阶段提高进料固体浓度对鸡粪厌氧消化的影响[D]. 杨凌: 西北农林科技大学, 2018. [37] ELHADJ T B, ASTALS S, GALÍ A, et al. Ammonia influence in anaerobic digestion of OFMSW[J]. Water Science & Technology, 2009, 59(6): 1153-1158.