[1] 刘茹飞, 陈刚, 王明超, 等. 我国典型禽畜粪便资源化技术研究[J]. 再生资源与循环经济, 2017, 10(3): 37-40. doi: 10.3969/j.issn.1674-0912.2017.03.015
[2] 潘君廷, 马俊怡, 郜天磊, 等. 膨润土改善鸡粪厌氧消化产酸产甲烷特性[J]. 农业工程学报, 2016, 32(8): 246-252. doi: 10.11975/j.issn.1002-6819.2016.08.035
[3] 马旭光, 江滔, 唐琼, 等. 油菜秸秆和鸡粪比例及含固率对其发酵产甲烷特性的影响[J]. 农业工程学报, 2018, 34(12): 236-244. doi: 10.11975/j.issn.1002-6819.2018.12.029
[4] 张心如, 毛长青, 杜干英, 等. 成都市农村有机废弃污染物沼气潜力测算[J]. 畜禽业, 2017, 28(5): 69-71.
[5] 裴梦富, 强虹, 杨祎楠, 等. 利用逐级提高进料浓度的方法启动完全混合反应器处理鸡粪[J]. 环境工程学报, 2018, 12(6): 1825-1832. doi: 10.12030/j.cjee.201711113
[6] 盛迎雪, 曹秀芹. 高固体污泥厌氧消化技术特点及存在问题分析[J]. 北京建筑大学学报, 2016, 32(2): 41-45. doi: 10.3969/j.issn.1004-6011.2016.02.008
[7] 韩娅新, 张成明, 陈雪兰, 等. 不同农业有机废弃物产甲烷特性比较[J]. 农业工程学报, 2016, 32(1): 258-264. doi: 10.11975/j.issn.1002-6819.2016.01.036
[8] YIN F B, DONG H M, ZHANG W Q, et al. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline[J]. Bioresource Technology, 2017, 250: 247-255.
[9] 孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064
[10] KELLEHER B P, LEAHY J J, HENIHAN A M, et al. Advances in poultry litter disposal technology: A review[J]. Bioresource Technology, 2002, 83(1): 27-36. doi: 10.1016/S0960-8524(01)00133-X
[11] BUJOCZEK G, OLESZKIEWICZ J, SPARLING R, et al. High solid anaerobic digestion of chicken manure[J]. Journal of Agricultural Engineering Research, 2000, 76(1): 51-60. doi: 10.1006/jaer.2000.0529
[12] 周曼, 邓良伟, 杨红男, 等. 鸡粪中温干式沼气发酵启动阶段温度变化对产气性能的影响[J]. 农业环境科学学报, 2018, 37(8): 1785-1792. doi: 10.11654/jaes.2018-0415
[13] DALKILIC K, UGURLU A. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system[J]. Journal of Bioscience and Bioengineering, 2015, 120(3): 315-322. doi: 10.1016/j.jbiosc.2015.01.021
[14] NIU Q G, HOJO T, QIAO W, et al. Characterization of methanogenesis, acidogenesis and hydrolysis in thermophilic methane fermentation of chicken manure[J]. Chemical Engineering Journal, 2014, 244: 587-596. doi: 10.1016/j.cej.2013.11.074
[15] 乔玮, 熊林鹏, 毕少杰, 等. 梯度提高进料浓度对鸡粪连续中温发酵产甲烷的影响[J]. 农业工程学报, 2018, 34(9): 233-239. doi: 10.11975/j.issn.1002-6819.2018.09.029
[16] 张玉秀, 孟晓山, 王亚炜, 等. 畜禽废弃物厌氧消化过程的氨氮抑制及其应对措施研究进展[J]. 环境工程学报, 2018, 12(4): 985-998. doi: 10.12030/j.cjee.201706043
[17] WU S B, NI P, LI J X, et al. Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control[J]. Bioresource Technology, 2016, 205(1): 75-81.
[18] 胡崇亮, 张栋, 戴翎翎, 等. 厌氧消化过程氨抑制研究进展[J]. 环境工程, 2016, 34(12): 23-27.
[19] 习彦花, 张丽萍, 崔冠慧, 等. 中药渣不同有机负荷厌氧发酵工艺参数分析[J]. 环境工程学报, 2017, 11(4): 2433-2438. doi: 10.12030/j.cjee.201602035
[20] ANTHONISEN A C, LOEHR R C, SRINATH T B S P G. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal of Water Pollution Control Federation, 1976, 48(5): 835-852.
[21] LV Z P, HU M, HARMS H, et al. Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters[J]. Bioresource Technology, 2014, 167(2): 251-259.
[22] PENG X W, NGES I A, LIU J. Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes[J]. Renewable Energy, 2016, 85: 12-18. doi: 10.1016/j.renene.2015.06.023
[23] 覃亚宏. 有机负荷对餐厨垃圾干式厌氧消化系统性能的影响[D]. 重庆: 重庆大学, 2015.
[24] PROCHÁZKA J, DOLEJŠ P, MÁCA J, et al. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen[J]. Applied Microbiology & Biotechnology, 2012, 93(1): 439-447.
[25] HAO L P, MAZÉAS L, LÜ F, et al. Effect of ammonia on methane production pathways and reaction rates in acetate-fed biogas processes[J]. Water Science & Technology, 2017, 75(8): 1839-1848.
[26] 聂红. 高浓度鸡粪厌氧发酵产甲烷的氨抑制研究[D]. 北京: 中国石油大学, 2016.
[27] 唐波, 李蕾, 何琴, 等. 总氨氮在餐厨垃圾厌氧消化系统中的积累及其抑制作用[J]. 环境科学学报, 2016, 36(1): 210-216.
[28] 高文萱, 张克强, 梁军锋, 等. 氨胁迫对猪粪厌氧消化性能的影响[J]. 农业环境科学学报, 2015, 34(10): 1997-2003. doi: 10.11654/jaes.2015.10.023
[29] NIELSEN H B, ANGELIDAKI I. Strategies for optimizing recovery of the biogas process following ammonia inhibition[J]. Bioresource Technology, 2008, 99(17): 7995-8001. doi: 10.1016/j.biortech.2008.03.049
[30] ALGAPANI D E, QIAO W, SU M, et al. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process[J]. Bioresource Technology, 2016, 216: 768-777. doi: 10.1016/j.biortech.2016.06.016
[31] SPROTT G D, PATEL G B. Ammonia toxicity in pure cultures of methanogenic bacteria[J]. Systematic & Applied Microbiology, 1986, 7(2): 358-363.
[32] ASTALS S, PECES M, BATSTONE D J, et al. Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems[J]. Water Research, 2018, 143: 127-135. doi: 10.1016/j.watres.2018.06.021
[33] NIU Q G, QIAO W, QIANG H, et al. Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia[J]. Bioresource Technology, 2013, 146(10): 223-233.
[34] 戴晓虎, 何进, 严寒, 等. 游离氨调控对污泥高含固厌氧消化反应器性能的影响[J]. 环境科学, 2017, 38(2): 679-687.
[35] SUNG S, LIU T. Ammonia inhibition on thermophilic anaerobic digestion[J]. Chemosphere, 2003, 53(1): 43-52. doi: 10.1016/S0045-6535(03)00434-X
[36] 裴梦富. 阶段提高进料固体浓度对鸡粪厌氧消化的影响[D]. 杨凌: 西北农林科技大学, 2018.
[37] ELHADJ T B, ASTALS S, GALÍ A, et al. Ammonia influence in anaerobic digestion of OFMSW[J]. Water Science & Technology, 2009, 59(6): 1153-1158.