Processing math: 100%

Na型粉末树脂回收废水中低浓度氨氮

彭飞, 张焕祯, 何文妍, 房阔, 王凯军. Na型粉末树脂回收废水中低浓度氨氮[J]. 环境工程学报, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009
引用本文: 彭飞, 张焕祯, 何文妍, 房阔, 王凯军. Na型粉末树脂回收废水中低浓度氨氮[J]. 环境工程学报, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009
PENG Fei, ZHANG Huanzhen, HE Wenyan, FANG Kuo, WANG Kaijun. Recovery of low concentration ammonia nitrogen in wastewater by Na-type powder resin[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009
Citation: PENG Fei, ZHANG Huanzhen, HE Wenyan, FANG Kuo, WANG Kaijun. Recovery of low concentration ammonia nitrogen in wastewater by Na-type powder resin[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009

Na型粉末树脂回收废水中低浓度氨氮

    作者简介: 彭飞(1995—),女,硕士研究生。研究方向:水污染控制与资源化。E-mail:18802210788@163.com
    通讯作者: 王凯军(1960—),男,博士,教授。研究方向:水污染控制与资源化。E-mail:wkj@tsinghua.edu.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2015ZX07509-001);中国博士后基金资助项目(2018M631489)
  • 中图分类号: X703.1

Recovery of low concentration ammonia nitrogen in wastewater by Na-type powder resin

    Corresponding author: WANG Kaijun, wkj@tsinghua.edu.cn
  • 摘要: 为探究Na型粉末树脂回收废水中低浓度氨氮的可行性,分别采用静态摇瓶与动态树脂柱方法进行实验研究。结果表明:预处理仅使粉末树脂吸附氨氮的能力降低了5%;在中性与酸性条件下,Na型粉末树脂对低浓度氨氮去除率均可达到99%;每增加2 g·L−1树脂投加量,氨氮去除率会提高20%,但吸附容量下降2.85 mg·g−1;钙镁离子的存在会降低Na型粉末树脂对氨氮的吸附容量,最大降低量为3.5 mg·g−1;由于钾离子与氨氮为同价离子,其影响不显著。Na型粉末树脂对氨氮的吸附符合Langmuir吸附等温线,吸附过程符合准二级动力学。根据实验结果,Na型粉末树脂静态运行方式适用于低浓度氨氮的回收,但动态运行方式下粉末树脂达到吸附饱和时间更短,因此,需要对运行方式进一步研究。
  • 酸雨作为工业过程伴生的环境问题,关乎全球环境. 作为酸雨污染大国,我国近40%面积受酸雨污染,对农业生产危害不容忽视[1-2]. 酸雨作用于叶面,诱发H+与叶片中阳离子竞争结合位点与离子替换,致细胞酸化坏死,酸雨中SO2经气孔对植株产生伤害[3-5]. 细胞内酸性物质累积使线粒体和叶绿体超微结构改变,导致叶绿素功能异常,呼吸及光合作用减弱[6];酸雨胁迫还引发活性氧累积,引起细胞膜脂质过氧化损伤[7],抑制抗氧化酶基因表达及活性[8]. 种子萌发和苗期生理生化指标受酸雨影响巨大[7]. 酸雨导致土壤酸化,使土壤中铝、镉等有害元素析出,抑制根系活性[9-10]、养分吸收、代谢及生长. 土壤酸化进一步造成微生物多样性[10]及活性降低[8],阻滞植物生长发育. 大量研究表明,玉米[11-12]、水稻[13]、小麦[14]其生长发育过程中物质转运吸收效率在pH低于5的条件下会明显受阻,当pH进一步降低到3以下时,多种作物的生理生态过程将出现停滞的现象[12]. 随着全球人口激增,酸雨威胁粮食生产安全. 人们通过农药及化肥增强作物抗性以期产量增加的努力,对环境和人体健康存在隐患. 因此,在当下无法控制酸雨污染、培育抗逆(酸雨)植株的现实条件下,寻找一种低污染、见效快、易推广的化控减灾技术与产品,迫在眉睫.

    农业上稀土元素(rare earth elements, REE)镧使用广泛[15-17]. 稀土施用水稻[13]、油菜[12]和黄瓜幼苗[18],其处理组氮、磷、钾等含量远高于对照组,生长更优. 油菜叶绿素含量、硝酸还原酶活性及根系活力、产量增效明显[12]. REE提高糯玉米幼苗PSⅡ最大量子产额和电子传递率,增强光合作用与抗氧化酶活性(减少丙二醛累积)及幼苗抗逆性[19]. 众多实践证明,La3+能提高玉米、苏丹草、紫花苜蓿[20-22]抗盐碱能力,降低玉米和小麦[14, 20]叶片蒸腾速率,增强植株抗逆性. 作为植物成分的氨基酸,既是植物生存的养分,也可凭其络合能力对植物的生理生态形成调节作用[23]. 如氨基酸浸种能缩短水稻与高粱种子萌发时间,提高淀粉酶活性与种子活力[24]. 甘氨酸缩短小油菜生育周期[24],提高烟草叶面积[25]、叶绿素含量及光合作用[25]. 色氨酸增加草莓叶厚(密)度,促进生长发育[26]. 脯氨酸能提高水稻细胞抗氧化酶活性及叶绿素和类胡萝卜素含量,减少丙二醛累积,增加植株抗逆性及生物量[27];氨基丁酸能提高烟草抗氧化酶活性,缓解盐碱对生长发育胁迫[25]. 谷氨酸提高严寒中小白菜叶含水量、鲜重、光合效率及对低温耐受性,甘氨酸增加棉花过氧化物酶等活,控制细胞活性氧水平,增强植株抗逆性[28].

    稀土-氨基酸络合物具优良性能、稳定结构、原料获取便捷、合成过程精炼,较单独施用更有优势,其以较高的性价比已成为提高植物抗逆性、用途广泛的产品之一. Zhong等[29]发现,镧螯合氨基酸能缓解铜离子对水稻胁迫;周芸[30]在研究氨基酸稀土微肥时也看到,它能有效提高花生果实干物质累积、果实密度及出仁率,促进增产. 遗憾的是,有关特定稀土螯合氨基酸用于作物化控减灾的研究尚少.

    本文采用模拟酸雨(pH3.0)处理玉米(Zea mays L.)、水稻(Oryza sativa L.)、小麦(Triticum aestivum L.)等3种作物的实验设计,运用生理生化等技术手段,初步研究新型氨基酸螯合镧(La(Ⅲ)-AA)对酸雨胁迫下植物质膜透性(MP)、抗氧化系统(过氧化物酶POD、过氧化氢酶CAT、超氧阴离子自由基ROS产生速率、丙二醛MDA含量)、光合作用能力(叶绿素含量)、脯氨酸(PRO)含量及氮代谢(硝酸还原酶NR)等生理指标影响,为酸雨胁迫下作物化控减灾,以及调控产品的选择提供依据.

    参照ZHONG等人[29]的研究成果,在60 ℃及pH8的条件下以10%碱性蛋白酶水解大豆分离蛋白(SPI) 2 h,随后经100 ℃高温灭活10 min,取上清液在4 ℃、10000 r·min−1下离心10 min. 50 ℃条件将上述制备液与La (NO3)3·6H2O以1.5∶1的体积比反应5 h制得螯合液. 将螯合液置于4 ℃、10000 r·min−1下离心10 min,上清液用丙酮沉淀干燥,最终得到氨基酸螯合镧(La(Ⅲ)-AA)供试品.

    经过前人研究可知,植物体生长发育过程中其表面叶绿素含量与逆境情况呈现负相关[31],且在酸雨胁迫过程中植物体内叶绿素含量会出现明显的降低,因此本次研究综合参照Zhong等[29]有关La(Ⅲ)-AA对Cu2+胁迫研究以及前期预实验针对La(Ⅲ)-AA对3种作物的喷施后叶绿素表现结果综合研判,确定20 mg·L−1的施用浓度作为本轮研究的施用浓度.

    模拟酸雨配制参考江南地区酸雨降水条件,并参照陈俊彤等[4]有关茼蒿的研究和实验用书方案[32]进行配制,其比例为SO24:NO3=4.7:1(V:V). 实验过程中先配制pH为1.0的酸雨储备液备用,后续施加过程中再依据研究需求与少量磷酸盐缓冲液混合制成pH为3.0的模拟酸雨,储备液及模拟酸雨的制备过程均采用pHS-29A酸度计进行pH校准.

    玉米(Zea mays L.)、水稻(Oryza sativa L.)、小麦(Triticum aestivum L.)由相城区种苗繁育基地提供,选取苗种茁壮,高度约为60 cm,5—6叶玉米(Zea mays L.)幼苗、高度约为45 cm,4—5叶水稻(Oryza sativa L.)幼苗和高度约为35 cm,2—3节小麦(Triticum aestivum L.)幼苗的种苗移栽,随后在实验室预栽培5—10 d以适应新的生长实验条件,选取繁育室温度控制在(25±2) ℃[32],以T5型全光谱组培灯作为辐射光源(OPPLE、T5-1058-18 W),光子通量密度设置为2000 μmol·m−2·s−1,光照距离为15 cm,并随幼苗生长而随时调整辐射光源高度[4, 19, 32]. 实验过程中,光暗比为9 h/15 h[32],每3 d进行一次换水,每日早晚各通气1次,实验过程均采用Hoagland培养液水基培养以满足植株幼苗的生长需求[30]. 实验过程中不同组别的设置方式如表1中所示.

    表 1  实验组叶片喷施方式
    Table 1.  Spraying method of leaves before experiment
    时间 Period对照组 BK Group酸雨组 AR Group叶喷组 BS Group
    第一天蒸馏水蒸馏水20 mg·L−1 La(Ⅲ)-AA
    第二天蒸馏水酸雨(pH 3.0)酸雨(pH 3.0)
     | Show Table
    DownLoad: CSV

    为增加喷施溶液在植物叶片表面的沾附能力,在蒸馏水中添加3—5滴聚山梨酯-80,La(Ⅲ)-AA 20 mg·L−1溶液及酸雨处理液中添加1—2滴为宜[4,33],实验周期内植株幼苗均栽种于15穴育苗盘(高度×边长为98 mm×75 mm)中,每穴1株幼苗以便处理.

    供试植株经表1方式处理后培养24 h开始计算实验时间,随后在实验时间第1、5、10、15 天对3种供试植株幼苗的组织进行生理指标测定,为减少人为测定误差,每个时间节点每个品种均随机选取3株进行测定,单一样本进行5次测定取平均值作为实验数据.

    质膜透性测定(MP),采用电导率法[34];过氧化物酶(POD)、超氧阴离子自由基产生速率(ROS)以及硝酸还原酶(NR)活性,其测定方法参照植物生理学实验指导(第五版)执行[32];丙二醛(MDA)含量,采用硫代巴比妥酸法测定[3]叶绿素含量,通过SPAD502手持式叶绿素仪直接测定法来表示[35];脯氨酸含量(PRO),采用磺基水杨酸-茚三酮法[35].

    研究中数据分析统计均采用SPSS 22.0软件进行,平均值、标准差和相对值,单因素方差分析差异性,采用最小显著性差数法(LSD),即以P<0.05作为差异显著的判断标准,图表采用Origin Pro 2017进行绘制.

    细胞质膜是分隔细胞内外环境屏障,用以维持细胞微环境稳态. 图1显示,随酸雨胁迫时间延长,玉米、水稻、小麦幼苗质膜透性较对照组(BK)增加(小麦15 d除外);预喷施La(Ⅲ)-AA组(BS)的3种作物,质膜透性增幅弱于酸雨组(玉米1 d除外),甚至低于BK组(玉米10 d、15 d,水稻10 d、15 d,小麦组5 d、10 d、15 d);BS组相对于AR组则是呈现降低态势(玉米1 d除外),其差异极值分别出现在10 d(玉米)、10 d(水稻)、10 d(小麦),BS组相对电导率仅为AR组的51.42%、54.22%和45.95%. 其质膜透性结果与姚梦婕等[34]对稀土铈对酸雨胁迫过程中水稻幼苗的防护具有相似的情况,表明质膜是非生物胁迫过程中逆境作用靶位,大量自由基攻击膜脂不饱和脂肪酸双键,细胞质膜氧化分解受损[4],失去离子筛选功能,进而导致大量有害离子和游离基团涌入胞内形成强大破坏力,最终造成加剧细胞膜脂过氧化,对质膜形成更严重破坏,植株生理功能不断恶化[5]. 酸雨胁迫下,质膜透性与相对电导率增加,植物受害加重,抗逆性减弱[36]. 而随着La(Ⅲ)-AA的施加其在植物叶片表面形成保护膜,氨基酸成分在提供营养物质的同时对酸性环境起到了良好的缓冲作用,进而对质膜起到良好保护 [4, 7],从而减少外界H+、SO2等有害物质输入诱发的植株体自由基成分的代谢失衡. La(Ⅲ)-AA所表现出的缓冲作用与冯宗炜[2]早期所提出的提高土壤缓冲能力进而防治酸雨的对策具有异曲同工之妙. 上述结果可知,酸雨胁迫使作物膜损伤、质膜透性增加. La(Ⅲ)-AA可明显增强植株细胞质膜稳定性,降低质膜透性,从而减轻酸雨胁迫对植株造成伤害.

    图 1  La(Ⅲ)-AA 对植株MP的影响
    Figure 1.  Effects of La(Ⅲ)-AA on Plant MP
    注:同一列中含有不同字母的数值间差异达到显著水平(P<0.05)下同)
    Note: The difference between the values of different letters in the same column reaches a significant level (P<0.05) (the same below)

    CAT酶能清除植物体内过氧化氢,防止质膜过氧化损伤,延缓植物衰老. 图2中数据直观的表明,小麦CAT活性相较于玉米和水稻,总体偏低,其酶活最高点也仅为玉米种BK组最低酶活的80.51%;植株体内CAT活性AR组低于BK组(水稻1 d、10 d、15 d除外),表明酸雨对于作物CAT酶活性有着抑制,且随着时间延长,系统的CAT酶活均出现了增长(水稻10 d除外);BS组其CAT活性相较于BK组有较为显著的提升,说明La(Ⅲ)-AA对作物体内CAT酶活有促进作用;而BS组酶活均高于AR组,且在3种作物中的差异极值分别出现在5 d(玉米)、1 d(水稻)、10 d(小麦),La(Ⅲ)-AA使得BS组相较于AR组种CAT活性显著提高了48.68%、29.43%、78.61%,结果表明酸雨使得作物体CAT酶活性受抑. 而La(Ⅲ)-AA 能够很好的消除酸雨对CAT酶的抑制作用,且使得CAT酶活大幅度提高,有效地对植株体内产生的过氧化氢起到应答作用,将植物体内过氧化氢含量维持在较为稳定的水平,更好地为作物生长发育提供保障.

    图 2  La(Ⅲ)-AA 对植株CAT的影响
    Figure 2.  Effects of La(Ⅲ)-AA on Plant CAT

    POD酶活性及同工酶表达形式与植物生长发育过程相关,其酶活随植株老化不断升高[4]. 图3数据可知,POD酶活在不同作物中呈现出较大差异,其在玉米植株中活性表现最低而在小麦中活性最高;单一植株组内数据比对不难发现,POD活性随着时间的延长总体呈现出下降的趋势,且酸雨胁迫下植株体内POD酶活性显著升高(除小麦1 d);La(Ⅲ)-AA则有效降低了酸雨胁迫下POD酶活,且在1 d(玉米)、10 d(水稻)、15 d(小麦)时使得其与AR组相差最大,分别为AR组的48.3%、57.92%、50.44%,以至于玉米1 d、10 d、15 d,水稻5 d、10 d,小麦5 d、10 d、15 d时,其POD活性低于BK组. 上述结果表明,酸雨胁迫下植株内过氧化物及游离自由基含量逐步增多,加速植株体的老化. 而La(Ⅲ)-AA有效地为植株提供了防护作用,减少其机体内过氧化物产生量,进而表现为POD含量大幅度降低,由此可见其某种程度上不仅能够有效地缓解酸雨胁迫对作物机体的破坏,而且对植物生理发育具有促进作用.

    图 3  La(Ⅲ)-AA 对植株POD的影响
    Figure 3.  Effects of La(Ⅲ)-AA on Plant POD

    植物体中两大标志性抗氧化酶系统(CAT和POD)的结果变化表明,植物在系统演化过程中,构建出修复逆境伤害的机制[13]. 酸雨胁迫下,作物自身应答机制发挥作用,体内抗氧化物酶协同作用,维持细胞稳态. 此轮研究结果中AR组CAT活性在出现显著低于BK组的现象,其与唐加红等[14]对小麦抗旱的研究有所出入,小麦在干旱胁迫下其体内的三大抗氧化酶系均呈现出明显的增长. 推测造成此次变化的主要原因是由于POD作用于不同底物,在氧化底物同时将氧还原成H2O2,后者被CAT再次分解(CAT活性增长存在一定延迟性),因此本轮研究中CAT酶活随时间延续呈渐增趋势(图2),而POD酶活增幅则明显趋前(图3). 而此种CAT略微延迟的现象在任鹏辉[22]对紫花苜蓿的抗盐胁迫过程中得以呈现. 植株通过CAT及POD酶活变化,不断调节自身机能,从而更好适应酸雨胁迫,为植株生长发育提供保障. 而通过上述BS组与AR组的数据分析结果可以了解到,La(Ⅲ)-AA能够有效缓解酸雨胁迫对抗氧化酶所产生的影响,因此La(Ⅲ)-AA对植物体抗氧化酶系起到了积极的促进作用.

    逆境条件下,植物产生较多ROS给机体造成不可逆转伤害,抑制植物长发育[22]. 玉米、水稻、小麦作物体内ROS含量如图4所示,由于物种差异ROS产生速率在玉米中远高于水稻和小麦;酸雨胁迫下AR组ROS产生速率相较BK组均有显著的增长;BS组在La(Ⅲ)-AA 作用下ROS速率得以降低,且均低于AR组和BK组(小麦10 d除外),BS组相较于AR组,在10 d(玉米)、1 d(水稻)、15 d(小麦)ROS降低最为明显,分别降低了28.44%、39.47%、42.31%. 以上数据得以证明酸雨对植株体的生长发育产生了较为严重的胁迫作用,其植株体的质膜受损从而加大其体内ROS的不断升高和累积,如不加以控制最终会造成不可逆的伤害,其与金琎等[11]对玉米的酸雨抗性研究具有相同的结果趋势. 而随着La(Ⅲ)-AA的施用其ROS速率得到了较为有效的抑制,其不仅能够缓解酸雨胁迫给植物体所带来的危害,而且能够对植株体生长发育环境形成优良的缓冲,减少植物所受到的环境胁迫影响.

    图 4  La(Ⅲ)-AA 对植株ROS的影响
    Figure 4.  Effects of La(Ⅲ)-AA on Plant ROS

    植株体过氧化最直接的产物便是MDA,其能够有效地反映植株体当前的健康水平[4]. 图5中数据可以清晰的观察到,玉米和小麦作物中MDA的水平随着培育时间的延长总体呈现上升的趋势,而水稻种的MDA则在5 d达到最高,随后逐步回落;随着酸雨对作物胁迫时间的逐步延长,玉米和小麦中的MDA均出现持续的累积,这两种作物MDA的最高值均出现在15 d的AR组,而水稻作物中的MDA在5 d后呈现稳步回落,直至15 d其组内3种处理方式作物中MDA含量接近,AR组及BS组回归到正常水平;除水稻15 d外,BS组中MDA的含量相较于AR组均有着显著的降低,其降低的峰值在5 d(玉米)、1 d(水稻)和5 d(小麦),分别降低了31.03%、34.78%、38.71%. 其结果与巩东辉等[16]对螺旋藻的生理生态指标研究具有一定的相似性. 在外界环境胁迫下细胞质膜失去了其原本的防护作用, ROS的大量增加加剧其胞内物质的过氧化,其过氧化产物MDA便呈现出增长趋势,进而其反作用于细胞质膜,亦是对其形成更严重破坏,植株生理功能不断恶化[5]. 由此可见,酸雨会加速MDA在植株体内的累积进而对植株体产生破坏作用. 而La(Ⅲ)-AA对酸雨胁迫下植物中MDA的产生具有缓解作用,能够较为有效的减少植物机体损伤.

    图 5  La(Ⅲ)-AA 对植株MDA的影响
    Figure 5.  Effects of La(Ⅲ)-AA on Plant MDA

    叶绿素是植物体光合作用及碳代谢的关键节点,其存在对植物体生长发育起到决定性作用. 图6可以了解到,叶绿素在3种作物叶片中的含量随着培育时间的延长总体呈现先扬后抑的趋势,BK组叶绿素最高点分别出现在10 d(玉米)、10 d(水稻)、5 d(小麦);酸雨的环境胁迫情况总体在水稻种体现的更为明显,其AR组的叶绿素含量均显著低于BK组,而在玉米和小麦体内则出现了分化,玉米组1 d时AR组叶绿素含量高于BK组14.71%,与此同时小麦组1 d和15 d中亦是出现AR组高于BK组的情况;而BS组中水稻和玉米作物的叶绿素含量相较AR组均有一定幅度的增长,水稻中为18.76%(10 d),玉米中为4.21%(10 d),而小麦作物中La(Ⅲ)-AA对其叶绿素含量反而会有降低的影响. 造成小麦作物中La(Ⅲ)-AA表现不佳的因素与李月福等[12]研究中油菜幼苗的应激过程具有一定的相似性,La(Ⅲ)的对植株叶绿素的改观效果与植株本体所受到的胁迫程度具有一定的相关性,其在不同胁迫状况下La(Ⅲ)的左右效果往往具有一定差异,此时适当调整降低La(Ⅲ)浓度便可获得较优的效果. 而酸雨胁迫过程中叶片细胞叶绿体结构受害,色素合成途径受阻,叶绿素合成量减少并伴随叶绿素降解[22],随胁迫时间延长,叶绿素含量渐降(图6)并因此影响植株体生理活性. 而La(Ⅲ)-AA能够在叶表面进入叶细胞后,供植物生长所需微量元素和必需氨基酸,从而缓解酸雨污染对细胞微环境扰动. 或将叶绿素中心的Mg取代,进而形成夹心螯合物,在提高叶绿素稳定性同时,也使其捕获波长较短能量较高光子的能力大幅提高,有助于光合效率提升[33],增强其对CO2催化能力,提高机体内糖类物质累积. 综合数据表明,不同植株体对酸雨和La(Ⅲ)-AA的作用不尽相同,但总体来说La(Ⅲ)-AA能够有效缓解酸雨所带来的影响.

    图 6  La(Ⅲ)-AA 对植株叶绿素含量的影响
    Figure 6.  Effects of La(Ⅲ)-AA on Plant chlorophyll content

    游离态PRO在构成植物蛋白的同时在维持渗透压、稳定分子结构、调节细胞氧化过程方面亦是具有重要作用[4]. PRO的改变情况如图7中所示,PRO在不同植物体中的含量总体趋于平稳,3组作物中BK组中PRO均在40 μg·g−1FW上下浮动;酸雨胁迫使得植物体做出对应的应答反应,3种作物中AR组的PRO含量均出现了显著的提高;而BS组中PRO含量相较于AR组均大幅度降低,3种作物中均在1 d出现最大的减少幅度,分别为36.23%(玉米)、47.17%(水稻)、41.82%(小麦),且在玉米和水稻中多次出现BS组低于BK组的现象. PRO并不是独立存在的个体,其在植株体受到外界环境胁迫的过程中会进行大量的累积[5],体内PRO与抗氧化物酶协同作用,维持细胞稳态. 即当亲水性强的PRO含量升高、游离态PRO广泛存在时,为稳定细胞内大分子蛋白,降低功能蛋白酸解及渗透压调节和平衡等代谢过程[7]提供保障[12]. 上述结果表明,酸雨对植株体生理生化产生了严重的干扰和破坏,PRO在植物体内大量的积累以稳定植物体细胞所带来的渗透压从而为植株更好的生长提供必要条件. 而La(Ⅲ)-AA为作物在酸雨胁迫下提供了优良的缓冲作用,使得酸雨危害大大的减少,为植物体抗逆性提供坚实的保障.

    图 7  La(Ⅲ)-AA 对植株PRO含量的影响
    Figure 7.  Effects of La(Ⅲ)-AA on Plant PRO

    硝酸还原酶(NR)是N元素有效利用的关键酶,其能够较直观地反映出植物体N代谢的强度[32]. NR活性如图7中所示,总体看来3种作物中NR活性呈现出先抑后扬的趋势,BK组均在10 d出现最低值,随后升高;AR组中NR活性均出现了不同程度降低;BS组NR活性具有大幅度提高,玉米(5 d、10 d、15 d)、水稻(5 d、10 d、15 d)、小麦(1 d、5 d)多次高于BK组,相较于AR组,在5 d(玉米)、10 d(水稻)、5 d(小麦)NR增幅最为显著,分别增长了21.37%、60.63%、46.50%,与AR组形成鲜明的对比. 酸雨胁迫下对叶绿素的影响逐渐传递并表现为到氮代谢过程的干扰,叶绿素含量渐降(图6)并因此影响NR酶活. 这是因为,NR酶是以细胞色素作为电子供体[35],色素合成受阻引起NR酶催化反应减弱(图8),细胞内NO3-还原成NO2-速率降低,降低植物氮代谢水平. 且亚硝酸盐转化NO是多种代谢途径的信号物质,如根系生长、营养物质吸收及有机酸代谢[18]. 植物氮代谢水平降低,影响其生长发育,降低抗逆性,最终表现为酸雨对3种作物伤害.

    图 8  La(Ⅲ)-AA 对植株NR活性的影响
    Figure 8.  Effects of La(Ⅲ)-AA on Plant NR

    而La(Ⅲ)-AA 施用后可以使得ROS进一步减少,与此同时保持了细胞微环境稳态,其最直接的结果便是,细胞叶绿体微结构、叶绿素含量与细胞色素电子传递链功能趋于正常,以满足NR酶促反应对光电子需求[30],确保NR酶活与细胞内NO3-还原成NO2-速率,维持植物氮代谢水平,以及信号物质NO参与的多种代谢途径调控[33]. 植物氮代谢正常对其生长发育、抗逆性不无裨益,并最终促进植物更好生长发育,产量提高.

    上述数据不难看出,酸雨对于植物体氮代谢具有较大的抑制作用,不利于植物生长. 而La(Ⅲ)-AA能够显著提升NR活性,增强植株体对酸雨胁迫的抗性,且其在一定程度上能够促进作物本身的氮代谢强度,提高物质积累,进而对作物生长发育过程形成增益.

    实验中还观察到,3种作物各项生理生化指标对酸雨胁迫强度、时长存在差异反应(图18),根据已有报道推测,或与3种作物对酸雨胁迫的敏感性有关. 如在耐酸性的生态适应上,水稻耐酸性强于小麦、玉米[37-38]. 当然,更准确的答案也许要在酸雨胁迫下,植物逆境基因确认与响应上寻求.

    (1)酸雨胁迫对3中经济作物造成显著损伤,作物体内MP、ROS产生速率、MDA含量、PRO含量、POD活性均显著升高. 与此同时,叶绿素含量、CAT活性、NR活性则显著降低;

    (2)预施La(Ⅲ)-AA溶液,可有效缓解酸雨对作物产生的胁迫伤害,MP、ROS产生速率、MDA含量、PRO含量降低,CAT和NR活性提高,POD活性趋于稳定;

    (3)预施La(Ⅲ)-AA产生防护效果,为化控酸雨损害作物的研究提供新的可行性.

  • 图 1  不同初始氨氮浓度下预处理对氨氮去除率和吸附容量的影响

    Figure 1.  Effect of pretreatment on ammonia nitrogen removal rate and adsorption capacity at different initial concentrations

    图 2  不同初始氨氮浓度下pH对氨氮去除率和吸附容量的影响

    Figure 2.  Effect of pH on ammonia nitrogen removal rate and adsorption capacity at different initial concentrations

    图 3  不同初始氨氮浓度下粉末树脂投加量对氨氮去除率和吸附容量的影响

    Figure 3.  Effect of powder resin dosage on ammonia nitrogen removal rate and adsorption capacityat different initial concentrations

    图 4  Na型粉末树脂吸附阳离子电子分布

    Figure 4.  Cation electron distribution adsorbed byNa-type powder resin

    图 5  不同初始氨氮浓度下再生次数对氨氮去除率和吸附容量的影响

    Figure 5.  Effects of different regeneration times on ammonia nitrogen removal rate and adsorption capacity

    图 6  吸附等温线拟合

    Figure 6.  Adsorption isotherm fitting

    图 7  准二级动力学拟合

    Figure 7.  Quasi-second-order dynamics fitting

    图 8  Na型粉末树脂和离子交换树脂动态吸附对比

    Figure 8.  Dynamic adsorption comparison of Na-type powder resin and ion exchange resin

    表 1  不同实验的控制变量

    Table 1.  Control variables of different experiments

    考察因素控制变量
    预处理pH粉末树脂投加量/(g·L−1)再生
    预处理预处理前中性4
    预处理后中性4
    pH预处理后44
    预处理后74
    预处理后84
    预处理后94
    预处理后104
    粉末树脂投加量预处理后71
    预处理后72
    预处理后74
    预处理后76
    再生预处理后74新鲜树脂
    预处理后74再生1次
    预处理后74再生2次
    预处理后74再生3次
    预处理后74再生4次
    考察因素控制变量
    预处理pH粉末树脂投加量/(g·L−1)再生
    预处理预处理前中性4
    预处理后中性4
    pH预处理后44
    预处理后74
    预处理后84
    预处理后94
    预处理后104
    粉末树脂投加量预处理后71
    预处理后72
    预处理后74
    预处理后76
    再生预处理后74新鲜树脂
    预处理后74再生1次
    预处理后74再生2次
    预处理后74再生3次
    预处理后74再生4次
    下载: 导出CSV

    表 2  不同初始氨氮浓度条件下不同粉末树脂投加量的吸附速率

    Table 2.  Adsorption rate of different powder resin dosages at different initial ammonia nitrogen concentrations

    粉末树脂投加量/(g·L−1)初始氨氮浓度/(mg·L−1)吸附速率/(mg·(g·min)−1)
    5 min10 min30 min60 min
    2201.660.130.010
    1005.640.440.070
    3006.731.310.050
    4200.810.120.010
    1002.750.570.030
    3004.621.050.120.03
    6200.460.150.010
    1001.690.930.080
    3004.170.920.060
    粉末树脂投加量/(g·L−1)初始氨氮浓度/(mg·L−1)吸附速率/(mg·(g·min)−1)
    5 min10 min30 min60 min
    2201.660.130.010
    1005.640.440.070
    3006.731.310.050
    4200.810.120.010
    1002.750.570.030
    3004.621.050.120.03
    6200.460.150.010
    1001.690.930.080
    3004.170.920.060
    下载: 导出CSV

    表 3  各分组模拟废水浓度

    Table 3.  Simulated wastewater concentration for each group mg·L−1

    分组名称NH3-NK+Mg2+Ca2+
    A202000
    B2010000
    C2002020
    D20020100
    E20010020
    F200100100
    G20202020
    H20100100100
    分组名称NH3-NK+Mg2+Ca2+
    A202000
    B2010000
    C2002020
    D20020100
    E20010020
    F200100100
    G20202020
    H20100100100
    下载: 导出CSV

    表 4  吸附等温线拟合系数

    Table 4.  Adsorption isotherm fitting coefficient

    LangmuirFreundlich
    R2qmaxKLR2nKF
    0.981 444.390.060 60.894 03.117.54
    LangmuirFreundlich
    R2qmaxKLR2nKF
    0.981 444.390.060 60.894 03.117.54
    下载: 导出CSV

    表 5  Na型粉末树脂极限吸附容量

    Table 5.  Na-type powder resin ultimate adsorption capacity

    次数吸附容量/(mg·g−1)次数吸附容量/(mg·g−1)次数吸附容量/(mg·g−1)次数吸附容量/(mg·g−1)
    14.7262.91111.55160.82
    24.8972.61121.23170.43
    34.4082.48131.37180.57
    43.9692.03141.02190.32
    53.62101.88150.96200.29
    次数吸附容量/(mg·g−1)次数吸附容量/(mg·g−1)次数吸附容量/(mg·g−1)次数吸附容量/(mg·g−1)
    14.7262.91111.55160.82
    24.8972.61121.23170.43
    34.4082.48131.37180.57
    43.9692.03141.02190.32
    53.62101.88150.96200.29
    下载: 导出CSV

    表 6  Na型粉末树脂和离子交换树脂对不同阳离子的去除率

    Table 6.  Removal rate of different cations by Na type powder resin and ion exchange resin %

    树脂类型NH3-NK+Mg2+Ca2+
    离子交换树脂35.6238.3457.1458.65
    Na型粉末树脂36.5135.0971.1187.03
    树脂类型NH3-NK+Mg2+Ca2+
    离子交换树脂35.6238.3457.1458.65
    Na型粉末树脂36.5135.0971.1187.03
    下载: 导出CSV
  • [1] 李丹, 沈存花, 刘佛财, 等. 低浓度氨氮废水处理技术研究进展[J]. 应用化工, 2018, 47(6): 1274-1280. doi: 10.3969/j.issn.1671-3206.2018.06.048
    [2] RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Marine Pollution Bulletin, 2002, 45: 17-23. doi: 10.1016/S0025-326X(02)00227-8
    [3] 刘亚敏, 郝卓莉. 高氨氮废水处理技术及研究现状[J]. 水处理技术, 2012, 38(S1): 7-11.
    [4] 廖小兵, 许玫英, 罗慧东, 等. 厌氧氨氧化在污水处理中的研究进展[J]. 微生物学通报, 2010, 37(11): 1679-1684.
    [5] 李久义, 吴念鹏, 刘滢, 等. 高浓度氨氮废水同步硝化反硝化性能研究[J]. 环境工程学报, 2007, 1(1): 68-73. doi: 10.3969/j.issn.1673-9108.2007.01.018
    [6] 刘肃力, 纪钦洪, 于广欣, 等. 藻类去除煤气化废水氨氮及总氮的实验研究[J]. 工业水处理, 2013, 33(7): 50-53. doi: 10.3969/j.issn.1005-829X.2013.07.014
    [7] SUN F Y, WANG X M, LI X Y. An innovative membrane bioreactor (MBR) system for simultaneous nitrogen and phosphorus removal[J]. Process Biochemistry, 2013, 48(11): 1749-1756. doi: 10.1016/j.procbio.2013.08.009
    [8] 白晓凤, 李子富, 闫园园, 等. 吹脱与鸟粪石沉淀组合工艺处理中温厌氧发酵沼液研究[J]. 农业机械学报, 2015, 46(12): 218-225. doi: 10.6041/j.issn.1000-1298.2015.12.029
    [9] 王延梅. 化学沉淀法处理高浓度氨氮废水[J]. 化工管理, 2018(11): 174. doi: 10.3969/j.issn.1008-4800.2018.32.123
    [10] 张宇, 孙宇明, 马文静, 等. 电渗析法处理氨氮废水研究进展[J]. 精细与专用化学品, 2017, 25(7): 24-26.
    [11] 杨朗, 李志丰. 低浓度氨氮废水的离子交换法脱氮[J]. 环境工程学报, 2012, 6(8): 2715-2719.
    [12] 王志杰, 宫徽, 王凯军. 离子交换富集回收生活污水超滤膜滤后出水的氨氮[J]. 环境工程学报, 2017, 11(5): 2633-2639. doi: 10.12030/j.cjee.201608036
    [13] 罗仙平, 张艳, 邓扬悟. 几种常见离子交换材料在氨氮废水处理中的应用[J]. 有色金属科学与工程, 2012, 3(6): 51-54.
    [14] 李红艳, 李亚新, 孙东刚. 处理高浓度氨氮废水的阳离子交换树脂筛选[J]. 化工学报, 2008, 59(9): 2339-2345. doi: 10.3321/j.issn:0438-1157.2008.09.030
    [15] 唐登勇, 郑正, 林志荣, 等. 天然沸石吸附低浓度氨氮废水的研究[J]. 环境科学与技术, 2010, 33(12): 206-209.
    [16] 唐登勇, 郑正, 郭照冰, 等. 改性沸石吸附低浓度氨氮废水及其脱附的研究[J]. 环境工程学报, 2011, 5(2): 293-296.
    [17] 刘宝敏, 林钰, 樊耀亭, 等. 强酸性阳离子交换树脂对焦化废水中氨氮的去除作用[J]. 郑州工程学院学报, 2003, 24(1): 46-49. doi: 10.3969/j.issn.1673-2383.2003.01.013
    [18] 吴达兵. 离子交换树脂对氨氮废水的吸附研究[D]. 杭州: 浙江工业大学, 2018.
    [19] 王仁雷, 龙潇, 王二忠, 等. 粉末树脂覆盖过滤器系统的设计与应用[J]. 电站系统工程, 2008(4): 55-56. doi: 10.3969/j.issn.1005-006X.2008.04.020
    [20] 王凯军, 何文妍, 房阔. 典型离子交换水处理技术在低浓度氨氮回收中的应用分析[J]. 环境工程学报, 2019, 13(10): 2285-2301.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401234Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.0 %DOWNLOAD: 2.0 %HTML全文: 96.7 %HTML全文: 96.7 %摘要: 1.3 %摘要: 1.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 98.7 %其他: 98.7 %北京: 0.4 %北京: 0.4 %武汉: 0.2 %武汉: 0.2 %漯河: 0.4 %漯河: 0.4 %长沙: 0.2 %长沙: 0.2 %其他北京武汉漯河长沙Highcharts.com
图( 8) 表( 6)
计量
  • 文章访问数:  3556
  • HTML全文浏览数:  3556
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-02
  • 录用日期:  2019-05-14
  • 刊出日期:  2020-01-01
彭飞, 张焕祯, 何文妍, 房阔, 王凯军. Na型粉末树脂回收废水中低浓度氨氮[J]. 环境工程学报, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009
引用本文: 彭飞, 张焕祯, 何文妍, 房阔, 王凯军. Na型粉末树脂回收废水中低浓度氨氮[J]. 环境工程学报, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009
PENG Fei, ZHANG Huanzhen, HE Wenyan, FANG Kuo, WANG Kaijun. Recovery of low concentration ammonia nitrogen in wastewater by Na-type powder resin[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009
Citation: PENG Fei, ZHANG Huanzhen, HE Wenyan, FANG Kuo, WANG Kaijun. Recovery of low concentration ammonia nitrogen in wastewater by Na-type powder resin[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 34-42. doi: 10.12030/j.cjee.201902009

Na型粉末树脂回收废水中低浓度氨氮

    通讯作者: 王凯军(1960—),男,博士,教授。研究方向:水污染控制与资源化。E-mail:wkj@tsinghua.edu.cn
    作者简介: 彭飞(1995—),女,硕士研究生。研究方向:水污染控制与资源化。E-mail:18802210788@163.com
  • 1. 中国地质大学(北京)水资源与环境学院,北京 100084
  • 2. 清华大学,环境学院环境模拟与污染控制国家重点联合实验室,北京 100084
基金项目:
国家水体污染控制与治理科技重大专项(2015ZX07509-001);中国博士后基金资助项目(2018M631489)

摘要: 为探究Na型粉末树脂回收废水中低浓度氨氮的可行性,分别采用静态摇瓶与动态树脂柱方法进行实验研究。结果表明:预处理仅使粉末树脂吸附氨氮的能力降低了5%;在中性与酸性条件下,Na型粉末树脂对低浓度氨氮去除率均可达到99%;每增加2 g·L−1树脂投加量,氨氮去除率会提高20%,但吸附容量下降2.85 mg·g−1;钙镁离子的存在会降低Na型粉末树脂对氨氮的吸附容量,最大降低量为3.5 mg·g−1;由于钾离子与氨氮为同价离子,其影响不显著。Na型粉末树脂对氨氮的吸附符合Langmuir吸附等温线,吸附过程符合准二级动力学。根据实验结果,Na型粉末树脂静态运行方式适用于低浓度氨氮的回收,但动态运行方式下粉末树脂达到吸附饱和时间更短,因此,需要对运行方式进一步研究。

English Abstract

  • 氨氮是藻类生长所需的营养物质之一,然而氨氮过量会导致藻类数量激增,破坏水体平衡,藻类生长也会造成水中溶解氧急剧下降,进而严重影响水生生物的生存。高浓度氨氮废水因排放量大、成分复杂、毒性强、对生态环境危害性大,而受到人们广泛关注,现在已有成熟的处理方法,但研究者往往易忽略低浓度氨氮废水的处理[1]。有研究[2]表明,低浓度氨氮对大多数鱼类依然具有毒性。因此,探究实用且有效的低浓度氨氮废水处理方法迫在眉睫。

    常用去除氨氮的方法可分为生物法和物理化学法2大类[3]。生物法主要包括厌氧氨氧化[4]、硝化反硝化[5]和藻类培养[6]等。但生物法启动慢,且易受生存环境影响,如温度、pH和进水水质等均可能影响生物法的处理效率[7]。物理化学法种类较多,主要包括吹脱法[8]、化学沉淀法[9]、电渗析法[10]和离子交换法[11-12]等。吹脱法与化学沉淀法都比较适合高浓度氨氮去除,不适用于低浓度氨氮的处理[8]。电渗析法同样仅适合在高浓度条件下进行,且能量效率较低。而离子交换法适用于低浓度条件下氨氮的去除,且离子交换剂吸附饱和后可进行再生,其再生液可进行氨氮的回收,具有能耗低、占地小、操作简单等优点。

    常用的离子交换剂有天然沸石、改性沸石、离子交换树脂等[13]。现有研究一般采用对氨氮具有高选择性的沸石为离子交换剂[14]。但沸石的吸附容量较离子交换树脂低,且再生过程会对其吸附性能造成损害[15-16]。刘宝敏等[17]研究了强酸型离子交换树脂对氨氮的吸附,吸附容量约可达13.30 mg·g−1,且再生后仍然具有良好的吸附性能。吴达兵[18]研究了自制离子交换树脂对氨氮的吸附,吸附容量约为30.34 mg·g−1。相较于离子交换树脂,粉末树脂常用于火电厂凝结水处理系统,技术比较成熟,其主要作用为过滤除铁及化学除盐[19]。粉末树脂具有离子交换作用,较小的粒径(100 μm)增加了其与污水接触面积,吸附容量更高,可减少再生次数[20]。然而目前极少有研究者利用粉末树脂去除生活污水中的氨氮,故研究Na型粉末树脂具有极其重要的意义。

    本研究通过静态批式实验分析预处理、pH及粉末树脂投加量对粉末树脂回收低浓度氨氮的影响。在此基础上,进一步研究了水中钙离子和镁离子对离子交换过程的影响,并采用吸附等温线以及吸附动力学对数据进行了拟合。在静态实验的基础上,进一步开展动态实验,以探究运行方式对Na型粉末树脂吸附低浓度氨氮可行性的影响。本研究进一步验证了粉末树脂用于低浓度氨氮废水回收的可能性。

  • 实验材料:H型粉末树脂、Na型粉末树脂、强酸型离子交换树脂。

    实验试剂:氯化铵、氯化钙、氯化钾、氯化镁与去离子水配制溶液作为模拟废水,所用试剂均为分析纯;膜浓缩实际废水。

    实验仪器:恒温振荡摇床、分析天平、紫外-可见光分光光度计和pH计。

  • 1) 粉末树脂的预处理。将H型粉末树脂用饱和NaCl溶液冲洗至中性,再用去离子水清洗,去除粉末树脂中的NaCl。将清洗好的粉末树脂(Na型粉末树脂)置于60 ℃的烘箱中烘干,备用。

    2) 静态吸附。将树脂投加到100 mL模拟氨氮废水(20、100、300 mg·L−1)溶液中,置于恒温振荡摇床中,反应温度稳定为25 ℃,150 r·min−1转速下振荡,分别在5、10、30、60 min进行取样,考察预处理、pH、粉末树脂投加量、共存阳离子、再生等因素对吸附效果的影响,其控制变量见表1

    3) 吸附等温线。将100 mL不同浓度(20、100、300 mg·L−1)的氨氮溶液置于150 mL锥形瓶中,分别加入0.1、0.2、0.4、0.6 g Na型粉末树脂,保持反应温度为25 ℃,150 r·min−1下振荡1 h,取上清液测定氨氮浓度。

    4) 粉末树脂与离子交换树脂动态实验对比分析。粉末树脂与离子交换树脂密度不同,离子交换柱(高25 cm,内径2.6 cm)体积为133 mL,故取填充度为50%(70 mL)和相同质量(20 g)的树脂分别进行实验。废水自交换柱下端流入,上端流出,设定流速为6.7 mL·min−1,利用实际膜浓缩出水进行实验。每1 h取1次出水,绘制吸附曲线。

  • 在本研究中,氨氮去除率、吸附速率、吸附容量及电子摩尔数依次按式(1)、式(2)、式(3)和式(4)计算。

    式中:R为氨氮去除率;C0为离子初始质量浓度,mg·L−1Ce为吸附平衡时溶液中离子质量浓度,mg·L−1Ctt时刻溶液中离子质量浓度,mg·L−1m为树脂投加量,g;t为反应时间,min;M为阳离子摩尔质量,g·mol−1n为离子带电子数。

  • 在不同氨氮浓度(20、100、300 mg·L−1)条件下,预处理对粉末树脂的氨氮去除率及吸附容量影响结果如图1所示。可以看出,进行预处理对粉末树脂的氨氮去除率和吸附容量均造成了一定程度的下降。这可能是由于在离子交换过程中,H型粉末树脂中H+NH+4交换后,pH降低使更多的氨氮以NH+4形式存在,更有利于离子交换,如式(5)所示。

    在预处理后,粉末树脂对氨氮的去除率和吸附容量仅降低了约5%。由此表明,预处理对粉末树脂吸附氨氮的能力影响较小。预处理后的Na型粉末树脂不仅具有较高的吸附氨氮能力,而且交换后的出水呈中性,故不影响后续处理。

  • 在不同氨氮浓度(20、100、300 mg·L−1)条件下,pH对Na型粉末树脂去除氨氮的去除率及吸附容量的影响如图2所示。由图2(a)可知,pH从4逐渐升高到10时,在不同氨氮浓度下,氨氮去除率与吸附容量均呈现不同程度的下降,与pH=4时相比,在pH=10时,氨氮去除率下降了17%~56%,吸附容量下降了0.8~22 mg·g−1。其原因可能为:pH≤8时,溶液中氨氮主要以离子态(NH+4)形式存在;pH>8时,平衡移向非离子态(NH3)形式,如式(5)所示。由于pH=7时的氨氮的去除率及吸附容量与pH=4时相近,且pH=7更接近于原废水pH,故选用pH=7进行后续的实验。

  • 不同氨氮浓度(20、100、300 mg·L−1)条件下,Na型粉末树脂投加量对氨氮的去除率及吸附容量的影响如图3所示。由图3可知,增加Na型粉末树脂投加量,会提升氨氮的去除率,但会降低其吸附容量。这可能是因为树脂投加量越大,树脂表面积就越大,树脂吸收位点增加,相应的氨氮的去除率越高;Na型粉末树脂与氨氮浓度差越小,相应的吸附容量越低。Na型粉末树脂投加量为4 g·L−1时,不同初始氨氮浓度下氨氮吸附容量(4.85、16.93、31.33 mg·g−1)与粉末树脂投加量为6 g·L−1时氨氮吸附容量(3.36、14.65、26.55 mg·g−1)相比,吸附容量减少,但氨氮去除率并未有显著上升,因此,从经济成本考虑,选用粉末树脂投加量为4 g·L−1进行阳离子共存影响实验。

    表2列出了不同初始氨氮浓度下不同粉末树脂投加量对应吸附速率随反应时间的变化情况。随反应时间的不断推进,吸附速率逐渐下降,在约30 min时,反应达到平衡。这是由于最初Na型粉末树脂与模拟废水中氨氮浓度相差大,反应驱动力大,但随着反应时间的增加,氨氮浓度下降,反应驱动力逐渐减小。

    初始氨氮浓度为300 mg·L−1,粉末树脂投加量为2 g·L−1,反应为5 min时,得到最大吸附速率6.73 mg·(g·min)−1。这是由于粉末树脂投加量越低,与溶液中氨氮浓度差越大,反应驱动力越大,吸附速率也越高。

  • 单位质量的Na型粉末树脂吸附各阳离子的电子分布情况如图4所示。表3为不同分组中各阳离子初始浓度。比较A组、B组、C组可知,K+NH+4的吸附产生的抑制作用较小,这可能是由于K+NH+4价位相同,且水合半径相近,所以抑制作用较小;当二价阳离子与氨氮浓度均为20 mg·L−1时,共存阳离子对NH+4的吸附无抑制作用,这可能是由于Na型粉末树脂中有足够的吸收位点,可以完全吸附低浓度(20 mg·L−1)的共存阳离子。

    比较D组、E组、F组可知,当二价阳离子浓度上升时,二价阳离子对NH+4的吸附具有抑制作用,这可能是由于Na型粉末树脂对离子的去除主要原理为离子交换,故离子价态越高,越容易被交换,从而会相应减少树脂上的吸收位点。由图4可知,Na型粉末树脂最大吸附电子数为3.6 mmol·L−1左右,且对NH+4不具有选择性。

    比较G组、H组可知,当一价和二价阳离子共存时,在初始阳离子浓度均为低浓度条件下,Na型粉末树脂将阳离子全部吸附还剩余69%的吸附电子容量;将K+、Mg2+、Ca2+浓度提高到100 mg·L−1时,Na型粉末树脂的吸附达到饱和,最大吸附电子数约为3.6 mmol·g−1。二价阳离子对一价离子的吸附产生抑制作用。

  • 图5为Na型粉末树脂多次再生后对氨氮的吸附容量和去除率的影响。由图5可知,在不同初始氨氮浓度下,与新鲜树脂相比,再生4次后的粉末树脂对氨氮吸附容量下降了0.1~0.3 mg·g−1,其对氨氮的吸附性能未发生显著变化。这表明在粉末树脂失效后,经再生后可以反复使用,且再生后的再生液可以进行氨氮富集利用。因此,粉末树脂用在市政污水去除氨氮是可行的。

  • 在25 ℃下,研究Na型粉末树脂吸附模拟废水中NH4+的过程。通过Langmuir与Freundlich模型拟合吸附等温线,得到吸附材料的最大吸附容量、吸附相关系数等,拟合结果如图6所示。Langmuir和Freundlich吸附等温线方程如式(6)和式(7)所示。

    式中:qe为吸附平衡时的吸附容量,mg·g−1qmax为理论饱和吸附容量,mg·g−1KL为Langmuir吸附常数;n为经验常数;KF为Freundlich吸附常数。

    实验结果表明,Langmuir吸附等温线拟合系数R2=0.981 4,而Freundlich吸附等温线拟合系数R2=0.894 0,故更符合Langmuir吸附等温线拟合系数。这表明Na型粉末树脂对NH4+离子的吸附以单分子层吸附为主。通过理论计算,得出最大吸附容量为44.39 mg·g−1,符合实验结果。其他拟合系数见表4

    表5列出了4 g·L−1 Na型粉末树脂对20 mg·L−1氨氮的极限吸附容量。由表5可知,吸附氨氮21次,总的吸附容量达42.2 mg·g−1,与上述实验的最大吸附容量相符。这表明,Na型粉末树脂对低浓度氨氮的最大吸附容量不受氨氮浓度的限制,因此,可用于回收低浓度氨氮废水中的氨氮。

  • 在Na型粉末树脂吸附氨氮时,粉末树脂内外的传质过程均符合线性推动力模型,故孔表面的反应步骤起决定作用。拟合采用的准二级反应动力学方程如式(8)所示。

    式中:qtt时刻Na型粉末树脂对氨氮的吸附容量,mg·g−1k2为准二级反应动力学常数。

    温度为25 ℃时,粉末树脂吸附氨氮拟合曲线如图7所示。由图7可知,H型和Na型粉末树脂对氨氮的吸附均符合准二级动力学模型。经过计算,H型粉末树脂k2为0.000 173,Na型粉末树脂k2为0.000 124。H型粉末树脂反应速率常数略大于Na型粉末树脂,说明H型粉末树脂能更快达到平衡。这是由于H+的水合半径大于Na+水合半径,当离子所带电荷量相同时,H+更易与NH4+进行离子交换,其反应速率与Na+反应速率相比较快,这与上述实验结果相符。

  • 本研究选用膜浓缩后的出水作为实际污水进行离子交换树脂和Na型粉末树脂的对比分析,其水质参数如下:COD 15~25 mg·L−1,TN 50 mg·L−1,NH3-N 30 mg·L−1,TP 0.2~0.4 mg·L−1,Ca2+ 102 mg·L−1,Mg2+ 34 mg·L−1,K+ 11 mg·L−1,Na+ 72 mg·L−1,pH=7.80。Na型粉末树脂和离子交换树脂的动态吸附结果如图8所示。2种树脂对于Ca2+、Mg2+的去除率始终为100%,故未放在本研究中进行对比。为考察粉末树脂工程化运行的可行性,采用目前常用的离子交换柱进行氨氮实验。但由于粉末树脂粒径过小,粉末树脂积压在底部,导致其有效接触面积减少。进水采用升流式并未减轻粉末树脂沉积产生的影响。

    利用实际污水对离子交换树脂和Na型粉末树脂进行静态实验,实验结果如表6所示。与离子交换树脂相比,Na型粉末树脂对二价阳离子具有更高的去除率(Mg2+为71.11%、Ca2+为87.03%)。升流式离子交换柱中Na型粉末树脂并未表现出对氨氮的高吸附效率,因此,该运行方式并不适合Na型粉末树脂,故需要进一步研究适用于Na型粉末树脂的其他运行方式。

  • 1)预处理使得粉末树脂吸附氨氮的能力降低了5%;在中性和酸性条件下,Na型粉末树脂对低浓度氨氮的去除率均可达到99%;每增加2 g·L−1树脂投加量,会提高氨氮去除率20%,但吸附容量下降了2.85 mg·g−1;二价离子对单价离子吸附具有抑制作用,但同价态的离子吸附相互抑制作用较小。Na型粉末树脂再生后依然具有良好的吸附性能。

    2) Na型粉末树脂对氨氮的吸附符合Langmuir吸附等温线,理论最大吸附容量为44 mg·g−1;Na型粉末树脂对氨氮的吸附符合准二级动力学方程,H型粉末树脂更快达到吸附平衡状态。

    3) Na型粉末树脂虽对氨氮不具有选择性,但其具有较大的吸附容量,且再生几次后依然具有良好的吸附能力。静态实验结果表明,Na型粉末树脂适用于对低浓度氨氮的回收,但动态运行方式下效果并不显著,故需要进一步研究适用于Na型粉末树脂的其他运行方式。

参考文献 (20)

返回顶部

目录

/

返回文章
返回