-
随着排放法规的加严,后处理系统的系统集成是满足国六排放标准的必然要求,柴油车后处理主流技术路线为DOC(氧化型催化转化器)+DPF(柴油颗粒捕集器)+SCR(选择性催化还原转化器)+ASC(氨逃逸催化器)。其中,SCR技术是控制柴油机尾气中NOx排放最有效的技术之一,现已商业化用于移动污染源排放控制[1],催化剂是SCR技术的核心。CHA型小孔分子筛(SSZ-13、和SAPO-34)催化剂具备良好的NH3-SCR催化活性和抗水热老化能力,是满足国六阶段柴油车排放标准的必然选择[2-5],缺点是成本偏高,制备工艺复杂。ZSM-5分子筛价格低廉、制备工艺成熟、NH3-SCR效率较高,具有对CHA型分子筛催化剂进行低成本取代的潜力,一直是国内外研究的热点[6-8]。在NH3-SCR反应中,Cu/ZSM-5分子筛催化剂具有良好的NOx转化率和N2选择性,但其在700 ℃以上的高温水热条件下极易劣化[9-11]。在国六阶段,DPF在运行过程中须周期性地反复再生,再生过程中排气温度可达到700 ℃以上,加之尿素水解引入的大量水蒸气,严重制约了铜基ZSM-5分子筛催化剂的实际应用。
许多研究者[12-14]对ZSM-5分子筛的水热老化性能进行了研究。SHI等[15]发现,Fe-H-ZSM-5在新鲜时和在750 ℃、5%H2O水热老化后的NH3-SCR活性高于Fe-Na-ZSM-5,是由于Fe-H-ZSM-5和Fe-Na-ZSM-5的Fe种类分布和酸度不同。宋守强等[16]研究了磷改性的ZSM-5分子筛在甲醇制丙烯(MTP)反应中的水热稳定性,发现高硅铝比会明显加剧磷氧化物的迁移、缩合及与骨架铝的配位成键作用,提高其水热稳定性。DING等[17]合成了多级孔ZSM-5分子筛,发现通过引入介孔和磷改性均可提高ZSM-5的稳定性。
解决Cu/ZSM-5催化剂水热老化问题的关键在于探明催化剂在水热老化条件下的NH3-SCR失活机理。目前,对其失活机理尚无明确的认识,普遍被接受的水热老化失活机理主要包括Cu/ZSM-5催化剂的Brønsted酸位减少和活性中心数目损失机理[18]。尽管已有对ZSM-5水热老化后Brønsted酸减少和活性中心损失机理的研究,但仍无法系统解释不同水热条件下Cu/ZSM-5催化剂的失活现象。本研究针对水热老化过程中不同温度、H2O(g)含量处理后的Cu/ZSM-5催化剂,通过对老化前后的催化剂物理化学结构表征,对催化剂失活的构效关系进行了研究。
-
通过浸渍法制备Cu/ZSM-5催化剂,CuO的质量分数为3%。利用硝酸铜(Cu(NO3)2)制备前驱体溶液,将商业ZSM-5分子筛(Si/Al为25)加入前驱体溶液中,在110 ℃下水浴搅拌至蒸干,然后将样品120 ℃干燥10 h,550 ℃焙烧5 h,得到粉末样催化剂。将催化剂粉末压片并用40~60目筛网过筛,得到催化剂样品,标记为CZ5。
快速水热老化是评估催化剂高温水热稳定性的手段之一,老化条件:H2O(g)浓度为5%~15%,以N2作为H2O(g)载气,空气作为平衡气,老化温度为600~800 ℃,老化时间为12 h,将老化后的催化剂样品标记为CZ5-X-Y,其中X代表温度,Y代表H2O(g)含量。
-
样品的NH3-SCR催化活性和N2选择性评价在立式固定床石英反应器中进行。模拟反应气体组成如下:φ(NO)=0.05%、φ(NH3)=0.05%、φ(O2)=5%、N2作为平衡气、总流量为1 000 mL·min−1、空速30 000 h−1。通过FT-IR光谱仪(Thermo IS10,美国)分析NO、NO2、N2O和NH3的浓度。催化剂NO转化率和N2选择性[19-20]按式(1)和式(2)计算。
式中:RNO为NO转化率;φ(M)in为M气体的进口浓度;φ(N)out为N气体的出口浓度;S为N2选择性。
-
采用比表面积分析仪(Autosorb AS-1,美国)测定老化前后催化剂的比表面积和孔结构;采用X射线衍射仪(D/MAX-RB,日本)测试催化剂的晶体结构;采用化学吸附仪(ChemiSorb 2720,美国)评价催化剂的氧化还原性;采用扫描电子显微镜(XL-30-ESEM,瑞士)测试新鲜和水热老化催化剂的粒度和形貌;采用X射线光电子能谱分析(ESCALab 220i-XL,美国)测试催化剂表面元素价态。
-
图1(a)为不同温度老化条件下,各Cu/ZSM-5催化剂的NO转化率和N2选择性,老化条件如表1所示。从图1(a)中可以看出,不同温度(5%H2O)水热处理后,CZ5催化剂的NO转化率均有所降低,低温条件下(T<250 ℃),催化剂NO转化率显著降低;在高于400 ℃时,催化剂的NO转化率也略有下降。在CZ5-600-5%催化剂上NO起燃温度(NO转化率为50%)为151 ℃,温度窗口(NO转化率大于80%)为175~429 ℃。当老化温度提高至800 ℃,CZ5-800-5%催化剂上NO起燃温度为187 ℃,温度窗口为226~375 ℃。随着水热处理温度的升高,Cu/ZSM-5的NO转化率明显降低。不同老化条件的催化剂的N2选择性如图1(b)所示,不同温度(5%H2O)水热处理后的各CZ5催化剂表现出相近的变化规律,但随着老化温度的提高,N2选择性未表现出良好的规律性,且选择性均在95%以上,变化幅度较小。
图2(a)为不同H2O(g)含量(750 ℃)条件下,各Cu/ZSM-5催化剂上NO转化率和N2选择性,老化条件如表1所示。从图2(a)中可以看出,经过750 ℃,不同浓度H2O(g)条件老化后的各催化剂上NO起燃温度均向高温方向移动。CZ5-750-5%、CZ5-750-10%和CZ5-750-15%催化剂上NO起燃温度分别为160、167和181 ℃,窗口温度分别为195~450、190~450和230~461 ℃,与新鲜催化剂相比,催化剂性能均出现不同程度的劣化。随着H2O(g)浓度的增加,各Cu/ZSM-5催化剂上NO转化率表现出不同规律,在H2O(g)含量分别为5%和10%时,催化剂性能差异不大,与CZ5-750-5%相比,CZ5-750-10%样品上NO起燃温度提高幅度仅为5 ℃,温度窗口几乎没有变化;当水含量为15%时,CZ5-750-15%催化剂性能出现明显劣化,NO起燃温度提高至181 ℃,温度窗口明显向高温方向移动。N2选择性如图2(b)所示,不同催化剂的N2选择性同样未表现出良好的规律性。
催化剂水热老化的主要变量是温度和H2O(g)含量。提高H2O(g)含量对催化剂SCR活性的影响小于提高老化温度对催化剂NH3-SCR活性的影响。
-
1)水热老化对Cu/ZSM-5催化剂孔结构的影响。不同温度和不同H2O(g)含量老化后各催化剂的BET结果如表1所示。从表1中可以看出,老化后样品的比表面积整体呈现下降趋势。CZ5-600-5%、CZ5-670-5%和CZ5-750-5%催化剂的比表面积(SBET)分别为298、286和285 m2·g−1,催化剂比表面积没有表现出明显变化。当水热老化温度达到800 ℃时,CZ5-800-5%催化剂的SBET大幅减小为256 m2·g−1,与600 ℃老化样品相比,下降幅度达14%。而H2O(g)含量的提高对比表面积的影响不大,比表面积呈略下降趋势。老化温度的提高和H2O(g)含量的增加都会导致催化剂的比表面积下降,但温度的升高(特别是800 ℃以上的高温)对催化剂比表面积的影响更大,这是由于高温会导致催化剂活性组分聚集或载体结构坍塌,导致比表面积急剧下降,温度可能是影响催化剂比表面积变化的主要原因。
CZ5催化剂的孔容为0.095 1 cm3·g−1,随着水热老化温度的提高孔容逐渐增加,当水热处理温度达到750 ℃和800 ℃时,孔容分别为0.211 4 cm3·g−1和0.476 5 cm3·g−1,水热老化温度越高,催化剂孔容增加越快。因此,随着水热老化温度的升高,Cu/ZSM-5催化剂的结构逐渐被破坏,孔容变大,孔径提高,特别是在老化温度高于750 ℃后,ZSM-5孔道坍塌,这和催化剂比表面积减少结果相一致。但水热处理过程中H2O(g)浓度的增加对催化剂孔容孔径的影响很小。
2)水热老化对Cu/ZSM-5晶体结构的影响。新鲜和水热老化后的Cu/ZSM-5催化剂的XRD图谱如图3所示,从图3(a)和图3(c)中可以看出,水热老化前后各Cu/ZSM-5催化剂样品均具有典型的MFI结构衍射峰,且衍射峰尖锐,具有良好的结晶度[15],这表明水热老化后各催化剂保持了完整的ZSM-5晶相结构。随着水热老化温度的升高,特征峰的强度降低,这表明ZSM-5的结晶度降低。同时,在所有XRD图谱中均未显示CuO的衍射峰,这表明活性组分CuO在催化剂表面得到了良好的分散。
将衍射峰放大后,如图3(b)所示,随着老化温度的升高,衍射峰均不同程度地向高衍射角移动。与新鲜催化剂相比,CZ5-750-5%、CZ5-750-10%和CZ5-750-15%催化剂的衍射峰由于晶粒高温聚集向高衍射角移动,而在图3(d)中H2O(g)含量的增加不会改变衍射峰位置。由布拉格方程(见式(3))可以看出,当n和λ不变时,晶面间距d会变小,θ增加。高温会导致催化剂晶体团聚,晶面间距d减小,衍射峰向高衍射角移动。综上所述,水热老化温度对ZSM-5结构的影响大于水蒸汽浓度变化的影响。
式中:d为晶面间距;θ为入射光线、反射线和反射晶面之间的角度;λ为波长,n为反射次数。
3)水热老化对Cu/ZSM-5催化剂氧化还原性的影响。H2消耗信号与催化剂表面的铜活性物种的氧化还原现象有关,新鲜和水热老化各Cu/ZSM-5催化剂上H2-TPR如图4(a)和图4(b)所示。结果表明,各Cu/ZSM-5催化剂样品均能检测到至少2个还原峰。低温峰(200~400 ℃)归因于Cu2+还原为Cu+[21-24],而高温峰(430~570 ℃)归因于氧化铜还原[25-27],而Cu+还原的峰一般出现在600 ℃以后。CZ5-670和CZ5-750在400~450 ℃的肩峰归因于氧化铜微晶的还原[28]。
CZ5催化剂在275 ℃和436 ℃分别出现2个还原峰。对比发现,随着老化温度的提高,上述2个还原峰均向高温方向移动,这说明催化剂的还原性降低,这也是水热老化后各Cu/ZSM-5催化剂活性降低的原因之一。CZ5-670-5%和CZ5-750-5%催化剂在温度400~450 ℃出现的肩峰归属于氧化铜微晶的还原峰[29]。对比各催化剂发现,CZ5-670-5%样品中421 ℃和505 ℃的2个还原峰随着老化温度的提高还原峰温度逐渐向高温方向移动,进而CZ5-800-5%样品中在471 ℃形成一个典型的还原峰。上述结果表明,随着老化温度的升高,ZSM-5分子筛笼中的活性铜离子逐渐转变成铜微晶并最终变成铜氧化物,这可能也是催化剂氧化还原性降低的原因,随之催化剂活性出现明显下降。
750 ℃不同H2O(g)含量条件下,水热老化各Cu/ZSM-5催化剂的H2-TPR结果如图4(b)所示。与CZ5-750-5%对比,随着H2O(g)含量的增加,低温峰(<350 ℃)位置基本不变,且强度很低,随着H2O(g)的增加,436 ℃位置的峰面积逐渐增大。结果表明,随着H2O(g)含量的增加,部分Cu2+和水结合,形成更多的氧化铜微晶。总之,水热老化增加水蒸汽含量对催化剂的还原性能影响要小于老化温度的影响。这和两者对催化剂活性的影响规律保持一致。
4)水热老化对Cu/ZSM-5催化剂表面形貌的影响。不同温度水热老化前后各Cu/ZSM-5催化剂形貌如图5所示。在800 ℃水热老化后,CZ5-800-5%催化剂可以观察到颗粒团聚,而随着H2O(g)的增加,未能观察到明显的团聚现象。新鲜催化剂具有尖锐的边缘,经600 ℃水热老化后,CZ5-600-5%催化剂颗粒略微破碎成小块,直径约为1~10 μm。随着老化温度的进一步升高,这种现象变得更为明显。在750 ℃和800 ℃水热老化后,CZ5-750-5%和CZ5-800-5%催化剂颗粒的小块重新团聚成大颗粒,这与BET结果中比表面积大幅降低相一致。水热老化过程中随着H2O(g)含量的增加未观察到明显的团聚现象发生。水热老化过程中温度的提高对催化剂表面形貌的影响较为显著。
5)水热老化对Cu/ZSM-5催化剂表面元素价态的影响。水热老化前后各Cu/ZSM-5催化剂XPS能谱如图6(a)和图6(b)所示。Cu2p3/2的峰位于930~934 eV,位于933.1 eV附近的峰归属于Cu2+[30-31],图6中并没有观察到Cu+的信号峰,这可能是由于催化剂表面Cu+含量较低或XPS灵敏度较低[32]。Cu2p3/2信号可以拟合为2个峰,峰I (930~931 eV)和峰II (932~934 eV)分别为不同的Cu2+化学态。其中,前者归属于CuO活性物种信号峰;后者归属于与分子筛的表面氧原子配位的Cu2+离子[33]信号峰。水热老化前后各Cu/ZSM-5催化剂均可观察到峰I和峰II,不同温度下,5%H2O水热老化催化剂对应的峰I强度基本保持不变,随着水热老化温度的升高,峰II的强度明显下降,这表明与分子筛的表面氧原子配位的Cu2+转化为CuO微晶或者CuO物质,这与H2-TPR结果一致。另一方面,750 ℃不同H2O(g)含量水热处理各催化剂XPS结果变化不大,峰II强度略有升高,这说明水热老化过程中,H2O(g)含量的变化不是影响Cu2+变化的主因,H2O(g)含量小于老化温度对催化剂中Cu2+变化的影响。
-
1)随着水热老化温度的升高,Cu/ZSM-5催化剂的NH3-SCR活性显著下降,比表面积减小,孔容增大,催化剂发生团聚现象,催化剂的表面氧原子配位的Cu2+转化为CuO微晶或者CuO物质,活性Cu2+离子减少,导致催化剂低温活性下降。水热老化温度是影响催化剂NH3-SCR性能变化的主因。
2)随着水热老化H2O(g)含量的升高,Cu/ZSM-5催化剂上NH3-SCR性能无明显劣化,当H2O(g)含量增加至15%时,催化剂低温活性显著下降,H2O(g)含量的增加对Cu/ZSM-5催化剂结构没有显著的影响;水热老化后SCR的低温性能(<300 ℃)的下降主要是由于老化温度提高所致。
3)对Cu/ZSM-5催化剂,优化催化剂的抗高温能力是提高其水热稳定性的最直接有效的方式。提高ZSM-5分子筛结构稳定性或减少催化剂活性Cu2+迁移可能是优化Cu/ZSM-5的抗水热能力的有效途径。
水热老化条件对Cu/ZSM-5催化剂NH3-SCR反应的影响
Effect of hydrothermal aging conditions on NH3-SCR reaction of Cu/ZSM-5 catalysts
-
摘要: 针对Cu/ZSM-5高温水热失活的问题,通过浸渍法合成了Cu/ZSM-5催化剂,并对该催化剂进行了不同温度和不同H2O(g)含量的水热老化。采用比表面积分析、SEM观察、X射线衍射分析、H2-程序升温还原、X射线光电子能谱分析对Cu/ZSM-5催化剂的理化性能进行了表征。分别研究了不同水热老化条件下Cu/ZSM-5催化剂的NH3-SCR性能和水热失活机理。结果表明,经水热处理后,各Cu/ZSM-5催化剂的NH3-SCR性能均有所降低。随着老化温度的提高,催化剂的分子筛载体出现结构坍塌,比表面积减小,孔容积增大,但仍保持MFI结构,老化温度的提高同样使催化剂活性Cu2+减少并一部分转化为CuO微晶,而H2O(g)含量的变化对催化剂的物理化学结构的影响较小。在高温水热老化过程中,温度对催化性能劣化的影响大于水蒸汽含量,是催化剂失活的主要原因。Abstract: Aiming at the hydrothermal deactivation of Cu/ZSM-5 catalysts under high temperature, they were synthesized by impregnation method and then the hydrothermal aging treatment of these catalysts were carried out under different temperatures and water vapor contents. The physicochemical properties of the catalysts were characterized by BET, SEM, XRD, H2-TPR and XPS. The NH3-SCR performance and hydrothermal deactivation mechanism of the Cu/ZSM-5 catalysts under different hydrothermal aging conditions were studied. The results showed that the NH3-SCR performance of each Cu/ZSM-5 catalyst was reduced after hydrothermal treatment. With the increase of temperature of hydrothermal aging, the zeolite supports of Cu/ZSM-5 collapsed, the specific surface area decreased and the pore volume increased while the MFI structure of Cu/ZSM-5 remained unchanged, even the isolated active Cu2+ in it decreased and partly transformed to CuO microcrystal. However, the change in water vapor content had slight effect on the physicochemical structure of the catalyst. High temperature hydrothermal deactivation study found that the effect of temperature on catalytic performance degradation was greater than that of water vapor contents. High temperature was the main reason for catalyst deactivation.
-
Key words:
- molecular sieve ofzeolites /
- NH3-SCR /
- ZSM-5 /
- hydrothermal stability
-
随着我国城镇化进程和新农村建设的不断推进,村镇生活污水排放量也在逐渐增长。考虑到农村地区对优美生态环境的客观需要,有针对性地对农村污水进行治理是社会发展的必然趋势。目前,我国农村污水处理方式主要包括两类:一是靠近城镇排水管道的,纳入排水管道处理,通过管网将农户污水收集并统一处理;二是采用小型污水处理设备,以及自然生态处理等形式将单户或几户的污水就近处理利用[1]。相对于城镇污水而言,农村污水具有以下特点:污水来源复杂,不同地区的排放强度及规律各有差异;农村污水水量波动较为明显;村镇规模相对较小,且分布极为分散,不利于将污水集中处理;污水排放量不稳定,夜间排放量可以忽略[2]。这些不利因素对农村污水的高效治理构成了巨大挑战。
2018年9月29日,住建部和生态环境部联合发布了《关于加快制定地方农村生活污水处理排放标准的通知》[3]。通知提到,农村生活污水500 m3·d−1以上规模(含500 m·d−1)的农村生活污水处理设施可参照执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)[4]执行;而处理规模在500 m3·d−1以下的农村生活污水处理设施,由各地可根据实际情况进一步确定具体处理规模标准。在此政策基础上,各省市纷纷制定了各自地方的排放标准。有些地方标准相对宽松,但有些却比较严格,对氮磷要求很高,例如北京市、天津市等。
根据《室外排水设计规范》[5],为了达到良好的脱氮效果,要求进水的BOD5/TKN宜大于4,而农村污水常常不满足这一要求。农村污水浓度往往较低,低浓度生活污水对生物脱氮影响的后果往往是出水总氮(TN)不达标[6]。其原因主要包括:雨污水合流的稀释作用、地下水渗入稀释作用、化粪池的不合理设置等[7-8]。为了满足日益严格的TN出水标准,尽管外加碳源一定程度上加重了污水厂的经济负担。但是,在缺氧区投加碳源是一条最为稳妥的方法,也是目前不同运营单位最常采用的一种方法。不同污水厂(站)在外加碳源时,采用的外加碳源不尽相同。选择合适的碳源,确定适合的碳源投加量是保证村镇低浓度污水处理达标排放的一条重要途径。
对于农村污水而言,虽然处理工艺具有一定的差异,但主要脱氮原理基本上仍为传统的硝化-反硝化过程。其中,COD与磷酸盐浓度可分别通过曝气以及投加沉淀剂的方式达到排放标准,而脱氮过程则难以通过投加药剂这种立竿见影的形式迅速达标。因此,在农村污水处理的过程中,面临的主要困境往往是出水TN无法达标,为此需要进行深入研究,探究适宜的碳源类型。反硝化菌对不同类型有机物的代谢方式具有差异,其代谢速率各不相同;且不同反硝化菌属最适利用的碳源种类同样具有差异,投加不同种类的碳源可富集不同的反硝化菌属。为摸清不同碳源作为补充碳源对反硝化过程脱氮效果的影响,本研究采用乙酸钠、乙醇、葡萄糖和蔗糖作为碳源,对不同的反硝化过程的脱氮效果进行了探究。本研究可为农村污水处理过程中选用外加碳源的种类提供参考依据。
1. 材料与方法
1.1 实验装置
实验装置采用4组SBR,用以驯化和培养反硝化污泥。其有效容积均为4.8 L,装置结构如图1所示。 SBR通过自控装置每天运行6个周期,每个周期包括:进水(10 min)→缺氧反应(160 min)→曝气(10 min)→沉淀(30 min)→排水/闲置(15 min)→搅拌(15 min)。缺氧段采用电动搅拌器搅拌,转速为96 r·min−1。曝气段采用曝气头曝气,控制DO在1.5~2 mg·L−1。设置曝气段的目的为,反硝化细菌体内某些酶只有在有氧条件下才能合成[9];同时,曝气可以吹脱缺氧阶段产生的氮气,提高反硝化污泥的沉降性能。在下一个周期之前15 min开始搅拌以恢复反硝化细菌活性,使反硝化细菌保持最佳状态。每个周期排出1.6 L处理过的废水,并用蠕动泵泵入1.6 L人工配水,水力停留时间(HRT)=12 h。每天定时在搅拌结束后曝气开始前排一次泥,保证SRT为10 d左右。反应装置由定时装置控制周期循环运行。
1.2 接种污泥
以乙酸钠、乙醇和葡萄糖为碳源的反硝化污泥接种北京某污水厂二沉池回流污泥;以蔗糖为碳源的反硝化污泥接种于已经驯化成功的以乙酸钠为碳源的反硝化污泥。将种泥按比例稀释,使得MLSS为1500 mg·L−1左右。
1.3 实验水质
SBR采用人工配水,分别以乙酸钠、乙醇、蔗糖和葡萄糖作为碳源,分别维持乙酸钠、乙醇、葡萄糖、蔗糖4种碳源的碳氮比为4.5、5、6.5、6.5,以获得活性污泥的最佳驯化效果。硝酸钠为氮源。磷酸二氢钠为磷源。由于自来水里含有微生物生长所需的微量元素,故不再另外投加。进水水质主要指标如表1所示。
表 1 不同水质条件下的COD与NO−3 -N浓度Table 1. COD andNO−3 -N concentration under different water quality碳源类型 COD/(mg·L−1) -N /(mg·L−1)
COD∶N 乙酸钠 450 100 4.5 乙醇 500 100 5 葡萄糖 650 100 6.5 蔗糖 650 100 6.5 1.4 批次实验
批次实验的反硝化污泥混合液分别取于稳定运行的SBR曝气之后,取出的污泥经沉淀、离心去除上清液,加入清水后再次进行沉淀、离心、去除上清液,重复上述步骤至少3次,以确保污泥中不再残留化学物质。将去除上清液后的污泥置于500 mL广口瓶中,加入不含
NO−3 -N和COD的配水液,摇晃均匀以配成悬浮液。用HCl或NaOH稀溶液调节pH为6.5,并向瓶中持续通入5 min氮气以去除混合液中氧气,之后将插有两根橡胶管的瓶塞将瓶口密封。2根橡胶管只有在取气样、水样时打开,其他时候均用夹子夹住。将
NO−3 -N和COD按SBR配水浓度分别配成50 mL浓缩液,在反应开始时,立即注射入广口瓶中,并将广口瓶置于磁力搅拌器上进行搅拌,转速为150 r·min−1。按原SBR的典型周期进行批次实验,温度为22 ℃,反硝化污泥在缺氧条件下运行,时间为160 min。 其中,反硝化速率按照式(1)计算。V=C0−C1CMLVSS·t (1) 式中:V为反硝化速率,g·(g·h)−1;C0为起始
NO−3 -N或NO−2 -N浓度,g·L−1;C1为终点NO−3 -N或NO−2 -N浓度,g·L−1;CMLVSS为混合液体挥发性悬浮固体浓度,g·L−1;t为反应时间,h。1.5 分析方法
活性污泥驯化阶段,每天定时在曝气前取1次水样,检测其
NO−3 -N、COD、pH;并在曝气前和曝气中分别检测DO,以确保反硝化系统正常运行。MLSS,MLVSS采用重量法;
NH+4 -N采用纳氏试剂分光光度法;NO−3 -N采用紫外分光光度法;NO−2 -N采用N-(1萘基)-乙二胺光度法;COD采用重铬酸钾法[10]。温度采用水银温度计测定;pH采用pHTestr 30型pH计测定;溶解氧采用Multi 3620 WTW型溶解氧仪测定。2. 结果与讨论
2.1 驯化时间
以乙酸钠、乙醇、葡萄糖和蔗糖为有机碳源时,认定单周期过程结束后,若反应器出水中不包含
NO−3 -N以及NO−2 -N时,则反硝化菌驯化完全。反应器的反硝化脱氮效果达到稳定的时间如表2所示。由表2可知,乙酸钠的驯化时间最短,蔗糖的驯化时间最长,驯化时间大约为乙酸钠的2倍。有研究[11]表明,相对于乙醇、葡萄糖和蔗糖而言,反硝化细菌对乙酸的降解要更为容易,故反硝化细菌对于乙酸钠的适应性更强,所需的驯化时间则相对较短。表 2 反硝化细菌的驯化时间Table 2. Period for domestication of denitrifying bacteria碳源类型 驯化时间/d MLSS/(g·L−1) MLVSS/(g·L−1) MLVSS∶MLSS 乙酸钠 17 2.65 1.98 0.746 乙醇 24 3.28 2.56 0.78 葡萄糖 26 2.75 2.23 0.812 蔗糖 30 4.4 3.5 0.795 2.2 不同碳源的反硝化过程
以乙酸钠为碳源时,
NH+4 -N、NO−3 -N、NO−2 -N和N2O的变化情况如图2所示。以乙酸钠为碳源时,NO−3 -N迅速得到降解,在60 min内全部被反硝化完毕。这说明,硝酸盐的还原呈现零级反应[12]。平均比反硝化速率为0.050 g·(g·h)−1。NO−2 -N浓度先增加后减少。在反应开始50 min内,NO−2 -N浓度逐渐增加;待反应器内NO−3 -N几乎被耗尽后,积累值达到最大23.2 mg·L−1;此后,NO−2 -N浓度逐渐下降为0。这表明,在反硝化时,硝酸盐还原速率大于亚硝酸盐的还原速率,导致亚硝酸盐的积累,最高亚硝酸盐积累率23.2%,因为碳源充足,反应器出水中NO−2 -N累积将会消失。反应周期内,气态的N2O总量为0.002 8 mg·L−1,溶解态N2O积累量出现2个峰值,分别出现在10 min和50 min,其值为1.23 mg·L−1和1.60 mg·L−1,N2O的产生源于亚硝酸盐的还原。后期N2O没有继续升高,亚硝酸盐还原速率与N2O还原速率基本稳定,而少量的N2O是因为溶液中没有溢出所致。
反应中,
NH+4 -N浓度几乎保持稳定,说明NH+4 -N浓度变化可以忽略。以乙醇为碳源时,各个指标的变化情况如图3所示。以乙醇为碳源时,与乙酸钠为碳源时相似,
NO−3 -N在70 min内迅速被反硝化完毕,平均比反硝化速率为0.031 g·(g·h)−1。NO−2 -N浓度在70 min内达到最大值19.5 mg·L−1,即最高亚硝酸盐积累率19.5%;此后,NO−2 -N浓度逐渐下降为0。NH+4 -N浓度几乎保持稳定。气态的N2O总量为0.001 mg·L−1。溶解态N2O积累量在20 min内迅速升高到0.63 mg·L−1;之后缓慢升高到极大值1.25 mg·L−1;此后开始缓慢下降,至反应结束,浓度为0.67 mg·L−1。以葡萄糖为碳源时,各个指标的变化情况如图4所示。以葡萄糖为碳源时,
NO−3 -N迅速得到降解,在80 min内全部被反硝化完毕,平均比反硝化速率为0.034 g·(g·h)−1。在0~140 min内,NO−2 -N浓度先增加后减少。在70 min内,NO−2 -N积累值达到42.5 mg·L−1,最高亚硝酸盐积累率42.5%;此后,NO−2 -N浓度逐渐下降为0。NH+4 -N浓度在反应期间维持稳定。反应周期内气态N2O总量为0.023 mg·L−1。溶解态N2O首先缓慢增加后开始下降。0~110 min内,N2O浓度逐渐积累至5.43 mg·L−1,之后开始下降。以蔗糖为碳源时,各个指标变化情况如图5所示。以蔗糖为碳源时,
NO−3 -N在70 min内全部被反硝化完毕,平均比反硝化速率为0.026 g·(g·h)−1。NO−2 -N的最大积累值为7 mg·L−1,最高亚硝酸盐积累率7.0%,最终NO−2 -N也逐渐变为0。NH+4 -N浓度在反应期间浓度保持稳定。气态N2O总量为0.002 5 μg·L−1。与乙醇为碳源时相似,溶解态N2O积累量在10 min内迅速升高到0.44 mg·L−1,之后缓慢升高到极大值0.66 mg·L−1,此后保持稳定。2.3 不同碳源的反硝化效果分析
在传统的城市污水处理过程中,往往采用硝化-反硝化工艺,其中氮磷的有效去除依赖于进水有机物的充分供给。农村污水的进水有机物浓度普遍较低,在处理低浓度污水的农村污水处理设施当中,进水COD浓度往往低于250 mg·L−1,BOD5则通常低于100 mg·L−1;此时,污水厂的同步脱氮除磷效果会由于反硝化菌与聚磷菌对于有机物的竞争过程而恶化,尤其不利于出水TN去除,甚至
NH+4 -N也无法满足排放标准[13]。因此,农村污水的脱氮过程更依赖于外加碳源的投加,选择合适的外加碳源有利于反硝化过程顺利进行,保证农村污水处理设施出水氮素的达标排放。硝酸盐还原包括同化反硝化和异化反硝化两大类。其中,同化反硝化最终形成有机氮化合物;异化反硝化中,包括常规反硝化和异化反硝化为氨两种路径(dissimilatory nitrate reduction to ammonium,DNRA)[14]。常规反硝化过程中,硝酸盐按照式(1)的路径[15-16]还原为氮气,依次由硝酸盐还原酶、亚硝酸盐还原酶、一氧化氮还原酶、氧化亚氮还原酶完成。
NO−3→NO−2→NO→N2O→N2 (1) 本实验中,在不同碳源条件下,
NH+4 -N浓度变化情况基本相似,即反应期间保持稳定。有研究[17]表明,在反硝化过程中,NH+4 -N和NO−2 -N浓度都会发生显著变化。这是因为,在某些特定环境(氧化还原电位小于-200 mV、低DO、氮源受限而碳源丰富等)下,反硝化过程除了由NO−3 -N向氮气转化的异化性硝酸盐还原路径之外,还会发生由DNRA作用[15],同时某些特定反硝化菌群只具备DNRA能力[18]。YANG等[19]从反硝化污泥中分离出Pseudomonas stutzeri D6菌株,通过控制C/N比、DO、碳源种类(乙酸、葡萄糖、柠檬酸钠)等条件探究了其DNRA作用。而在本实验中,NH+4 -N浓度并未发生明显变化。由此可知,本实验中反硝化过程只涉及常规反硝化过程(式(1))。以乙酸钠、乙醇、葡萄糖和蔗糖为碳源的各典型周期运行过程中,
NO−3 -N的比降解速率分别为0.05、0.03、0.03和0.02 g·(g·h)−1。其中,乙酸钠为碳源时,反硝化速率最快,乙醇和葡萄糖次之,蔗糖最慢。这是因为,乙酸能够与辅酶A结合形成乙酰辅酶A,直接进入三羧酸循环被微生物降解,而乙醇在为微生物利用的过程中需要先转化为乙酸才能进而被降解。葡萄糖作为较复杂的有机物,同样需要经过两个氧化过程才能得以降解:第1步,反硝化细菌将其氧化得到丙酮酸和ATP;第2步,丙酮酸进入三羧酸循环时被丙酮酸脱氢酶复合物转化为乙酰辅酶A[20]。因此,有机物结构越复杂,意味着代谢过程越复杂,反硝化速率也就越慢。由此可知,由1个葡萄糖分子和1个果糖分子组成的蔗糖,有机物结构最复杂,导致其反硝化速率最慢。由图2~图5可以看出,各碳源的典型周期内,反应器中均出现
NO−2 -N积累。以NO−3 -N为氮源的反硝化过程中,NO−2 -N来源于常规反硝化。在反应周期内,NO−2 -N均出现短暂积累情况,浓度均先升高后降低,并逐渐趋于0。葡萄糖为碳源时,最大NO−2 -N积累率最大,为42.5%,乙酸钠和乙醇次之,分别为23.2%和19.5%,蔗糖最小,仅为7.0%。值得注意的是,从图2~图5中还可以发现,在4种碳源条件下,对应的
NO−2 -N浓度均是在NO−3 -N即将耗尽时达到最大值的。计算各最大积累值时刻点对应的NO−3 -N浓度之前和之后的实测降解速率,分别以NO−3 -N左和NO−3 -N右表示,然后用NO−3 -N左减去NO−2 -N实测积累速率,即得到NO−2 -N的真实降解速率(即Nir酶的降解速率),如图6所示。在SBR乙酸钠中,当NO−2 -N最大积累时,NO−3 -N的降解速率由0.041 g·(g·h)−1骤降为0.016 g·(g·h)−1,由NO−3 -N降解速率减去NO−2 -N积累速率得到的NO−2 -N降解速率为0.036 g·(g·h)−1;若要使得NO−2 -N继进行积累,NO−3 -N的降解速率至少应为0.036 g·(g·h)−1,而此时NO−3 -N的降解速率显然并不能满足,故而NO−2 -N浓度开始下降。这表明,NO−2 -N的降解是滞后于NO−3 -N的。从电子传递角度而言,
NO−2 -N作为电子受体所需的电子需要从细胞质膜的周质获得,这使得其获得电子滞后于NO−3 -N [21]。此外,如果细胞内氧化代谢产生的还原黄素达到饱和,NO−3 -N和NO−2 -N在底物电子的获取上将形成竞争,而Nar酶对电子的亲和力强于Nir酶[22]。同时,有些反硝化细菌种群细胞内只含有Nar酶,而没有Nir酶,也就是其不具备将NO−3 -N向NO−2 -N转化的能力,如Comamonadaceae属[21]。这些都将使得NO−2 -N的降解落后于NO−3 -N,从而导致以NO−3 -N为氮源的反硝化脱氮过程中出现NO−2 -N短暂积累的现象。GE等[20]在研究以乙酸、甲醇、葡萄糖等为碳源的反硝化过程中也发现了相同的现象。由碳源种类导致的
NO−2 -N最大积累值存在差异的情况同样也出现在很多研究[20, 23]中,乙酸、丙酸、乙醇等为碳源时出现较多NO−2 -N积累;但丁酸、戊酸、己酸等却仅出现少量甚至并未出现积累。在本实验中,葡萄糖为碳源时,反硝化过程中NO−2 -N的最大积累值是4种碳源之首,乙醇和乙酸钠次之,蔗糖最少。有研究[24]指出,有机物本身作为电子供体,对Nar酶和Nir酶的亲和力不同使得NO−3 -N和NO−2 -N降解速率的差值不同,将导致NO−2 -N积累值不同。而碳源种类作为营养物质,若长期对反硝化细菌进行培养,将改变菌群结构,使得微生物群落中所含的Nar酶和Nir酶的数量发生改变,从而导致NO−2 -N积累值发生显著变化。LU等[25]发现,在以乙酸和乙醇为碳源的反硝化细菌中,Thauera属占主导,而Thauera中Nar酶的数量要比Nir酶多;而GLASS等[26]发现,以葡萄糖为碳源的反硝化细菌中Comamonadaceae属则占主导,而Comamonadaceae属中的一些菌株,如Acidovorax facilis株,并不具备Nir酶系统,这将导致以葡萄糖为碳源时,NO−2 -N积累现象更显著。但是,在阎宁等[27]的实验中,葡萄糖为碳源时并未出现或只出现少量NO−2 -N积累的现象。这表示,NO−2 -N积累除了与微生物结构和碳源种类有关,还与其他环境控制条件有关,如温度、pH、碳源适应时间等。3. 结论
1)农村污水处理过程中普遍存在碳源不足的问题,通过外加碳源的投加是保证污水处理过程中稳定的TN去除率的有效措施。
2)采用乙酸钠,乙醇,葡萄糖,蔗糖时作为外加碳源时,反硝化脱氮实现稳定的时间分别为17、24、26、30 d,其平均反硝化速率分别为0.050、0.031、0.034和0.026 g·(g·h)−1,即硝酸盐还原速率依次降低。
3)在反硝化过程中,外加碳源均出现了显著的亚硝酸盐积累,在硝酸盐耗尽时,出现亚硝酸盐的最大值。
4)以葡萄糖为碳源时,最大亚硝酸盐积累率为42.5%;而以乙酸钠和乙醇为碳源时,最大亚硝酸盐积累率次之,分别为23.2%和19.5%;以蔗糖为碳源时,最大亚硝酸盐积累率最小,仅为7.0%。
-
表 1 不同催化剂的质构参数
Table 1. Structure parameters of different catalysts
催化剂 BET比表面积/(m2·g−1) 单点总孔容/(10−2cm3·g−1) 吸附平均孔径/nm CZ5 316 9.51 28.94 CZ5-600-5% 298 14.82 29.17 CZ5-670-5% 286 15.59 30.99 CZ5-750-5% 285 21.14 31.18 CZ5-800-5% 256 47.65 44.64 CZ5-750-10% 276 26.53 34.55 CZ5-750-15% 270 26.59 34.63 -
[1] FAHAMI A R, NOVA I, TRONCONI E. A kinetic modeling study of NO oxidation over a commercial Cu-CHA SCR catalyst for diesel exhaust aftertreatment[J]. Catalysis Today, 2017, 297(15): 10-16. [2] KARAMITROS D, KOLTSAKIS G. Model-based optimization of catalyst zoning on SCR-coated particulate filters[J]. Chemical Engineering Science, 2017, 173(14): 514-524. [3] FICKEL D W, D′ADDIO E, LAUTERBACH J A, et al. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Applied Catalysis B: Environmental, 2011, 102(3/4): 441-448. [4] KWAK J H, TONKYN R G, KIM D H, et al. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. Journal of Catalysis, 2010, 275(2): 187-190. doi: 10.1016/j.jcat.2010.07.031 [5] FICKEL D W, FEDEYKO J M, LOBO R F. Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD[J]. Journal of Physical Chemistry C, 2010, 114(3): 1633-1640. doi: 10.1021/jp9105025 [6] WILKEN N, KAMASAMUDRAM K, CURRIER N W. Heat of adsorption for NH3, NO2 and NO on Cu-Beta zeolite using microcalorimeter for NH3 SCR applications[J]. Catalysis Today, 2010, 151(3/4): 237-243. [7] 张惠, 王喜芹, 栾志强, 等. 铜-胺改性ZSM-5吸附剂的制备及其对NOx的净化机理[J]. 环境工程学报, 2013, 7(12): 4887-4890. [8] 李富霞, 任晓光, 李鹏, 等. 焙烧条件对CuO/ZSM-5催化剂脱硫脱硝性能的影响[J]. 环境工程学报, 2013, 7(8): 3117-3122. [9] 石晓燕, 刘福东, 单文坡, 等. 水热老化对不同方法制备的Fe-ZSM-5用于NH3选择性催化还原NOx的影响[J]. 催化学报, 2012, 33(3): 454-464. [10] GOMEZ S A, CAMPERO A, MARTINEZ-HERNANDEZ A. Changes in Cu2+ environment upon wet deactivation of Cu-ZSM-5 deNOx catalysts[J]. Applied Catalysis A: General, 2000, 197(1): 157-164. doi: 10.1016/S0926-860X(99)00546-3 [11] PARK J H, PARK H J, BAIK J H. Hydrothermal stability of Cu-ZSM-5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. Journal of Catalysis, 2006, 240(1): 47-57. doi: 10.1016/j.jcat.2006.03.001 [12] 任爱玲, 刘卉, 张硕, 等. Ce-Mn/ZSM-5催化剂的制备及其低温脱硝性能分析[J]. 现代化工, 2018, 38(6): 73-77. [13] 杨晓初, 肖海平, 万震天, 等. 煅烧温度影响MNOx/ZSM-5催化NO氧化性能研究[J]. 热能动力工程, 2018, 33(4): 56-62. [14] 杜蒙蒙, 温正城, 康普滋, 等. ZSM-5负载Ce-Co催化氧化NO的机理研究[J]. 热能动力工程, 2018, 33(3): 93-99. [15] SHI X Y, HE H, XIE L J. The effect of Fe species distribution and acidity of Fe-ZSM-5 on the hydrothermal stability and SO2 and hydrocarbons durability in NH3-SCR reaction[J]. Chinese Journal of Catalysis, 2015, 36(4): 649-656. doi: 10.1016/S1872-2067(14)60268-0 [16] 宋守强, 李明罡, 李黎声, 等. 磷改性ZSM-5分子筛的水热稳定性[J]. 石油学报(石油加工), 2014, 30(2): 194-203. doi: 10.3969/j.issn.1001-8719.2014.02.002 [17] DING J, XUE T, WU H H, et al. One-step post-synthesis treatment for preparing hydrothermally stable hierarchically porous ZSM-5[J]. Chinese Journal of Catalysis, 2017, 38(1): 48-57. doi: 10.1016/S1872-2067(16)62549-4 [18] IWASAKI M, YAMAZAKI K, BANNO K, et al. Characterization of Fe/ZSM-5 DeNOx catalysts prepared by different methods: Relationships between active Fe sites and NH3-SCR performance[J]. Journal of Catalysis, 2008, 260(2): 205-216. doi: 10.1016/j.jcat.2008.10.009 [19] 李振国, 马杰, 刘双喜, 等. 黏结剂对柴油车用V2O5-WO3/TiO2催化剂选择性催化还原性能的影响[J]. 工业催化, 2011, 19(11): 60-63. doi: 10.3969/j.issn.1008-1143.2011.11.011 [20] 李振国, 马杰, 王务林, 等. 制备条件对柴油车用V2O5-WO3/TiO2催化剂催化性能的影响[J]. 工业催化, 2011, 19(5): 30-33. doi: 10.3969/j.issn.1008-1143.2011.05.006 [21] BEUTEL T, SARKANY J, LEI G D, et al. Redox chemistry of Cu/ZSM-5[J]. Journal of Physical Chemistry, 1996, 100(2): 845-851. doi: 10.1021/jp952455u [22] PRALIAUD H, MIKHAILENKO S, CHAJAR Z, et al. Surface and bulk properties of Cu-ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons[J]. Applied Catalysis B: Environmental, 1998, 16(4): 359-374. doi: 10.1016/S0926-3373(97)00093-3 [23] RICHTER M, FAIT M J G, ECKELT R, et al. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Applied Catalysis B: Environmental, 2006, 73(3/4): 269-281. [24] SULTANA A, NANBA T, HANEDA M, et al. Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 61-67. [25] NANBA T, MASUKAWA S, OGATA A, et al. Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile[J]. Applied Catalysis B: Environmental, 2005, 61(3/4): 288-296. [26] RICHTER M, FAIT M J G, ECKELT R, et al. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. Journal of Catalysis, 2007, 245(1): 11-24. doi: 10.1016/j.jcat.2006.09.009 [27] KEFIROV R, PENKOVA A, HADJIIVANOV K, et al. Stabilization of Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO and TPR[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 180-187. [28] RUTKOWSKA M, PACIA I, BASĄG S, et al. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes[J]. Microporous and Mesoporous Materials, 2017, 246: 193-206. doi: 10.1016/j.micromeso.2017.03.017 [29] 吕刚, 范啸天, 宋崇林, 等. Cu/ZSM-5催化剂制备及SCR催化性能研究[J]. 工程热物理学报, 2015, 36(10): 2276-2281. [30] LI Z G, CHEN X Y, LI J H, et al. Synthesis and evaluation of mesopore structured ZSM-5 and a CuZSM-5 catalyst for NH3-SCR reaction: Studies of simulated exhaust and engine bench testing[J]. RSC Advances, 2016, 6: 102570-102581. doi: 10.1039/C6RA20237C [31] SARMA D D, RAO C N R. XPES studies of oxides of second- and third-row transition metals including rare earths[J]. Journal of Electron Spectroscopy and Related Phenomena, 1980, 20(1): 25-45. doi: 10.1016/0368-2048(80)85003-1 [32] WANG L, GAUDET J R, LI W, et al. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. Journal of Catalysis, 2013, 306: 68-77. doi: 10.1016/j.jcat.2013.06.010 [33] 郑昌坤, 韩帅, 叶青. 铜源对Cu/ZSM-5催化剂氨选择性催化还原NO的影响[J]. 化学工程, 2018, 46(9): 23-27. doi: 10.3969/j.issn.1005-9954.2018.09.005 -