淡水系统中甲烷厌氧氧化古菌的研究进展

翟俊, 李媛媛, 何孟狄, 马宏璞, 戴元贵. 淡水系统中甲烷厌氧氧化古菌的研究进展[J]. 环境工程学报, 2019, 13(5): 1009-1020. doi: 10.12030/j.cjee.201812098
引用本文: 翟俊, 李媛媛, 何孟狄, 马宏璞, 戴元贵. 淡水系统中甲烷厌氧氧化古菌的研究进展[J]. 环境工程学报, 2019, 13(5): 1009-1020. doi: 10.12030/j.cjee.201812098
ZHAI Jun, LI Yuanyuan, HE Mengdi, MA Hongpu, DAI Yuangui. Review on the research progress of archaeal anaerobic methanotrophs in freshwater system[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1009-1020. doi: 10.12030/j.cjee.201812098
Citation: ZHAI Jun, LI Yuanyuan, HE Mengdi, MA Hongpu, DAI Yuangui. Review on the research progress of archaeal anaerobic methanotrophs in freshwater system[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1009-1020. doi: 10.12030/j.cjee.201812098

淡水系统中甲烷厌氧氧化古菌的研究进展

  • 基金项目:

    国家自然科学基金资助项目51478062, 51878093国家自然科学基金资助项目(51478062, 51878093)

Review on the research progress of archaeal anaerobic methanotrophs in freshwater system

  • Fund Project:
  • 摘要: 甲烷厌氧氧化古菌(ANMEs)是甲烷厌氧氧化过程中的重要微生物种群,对自然生境甲烷削减的意义重大,目前研究多集中在海洋系统,而关于ANMEs古菌在淡水系统的研究较少,其相关作用机理和工程应用的研究也尚处于初步阶段。在综合文献及前期研究基础上,介绍了ANMEs为主线的淡水系统甲烷厌氧氧化机制,分析了ANMEs的微生物学特性及地理分布,系统梳理了ANME-2d古菌针对不同电子受体(NO3-、Fe3+、Cr6+等)的电子转移体系研究进展;指出了ANME-2d及其他ANMEs可能根据环境改变而选择不同的电子受体,其相对应的电子转移机制也不同。通过对不同电子受体下的ANME-2d及其他ANMEs在淡水系统中的作用机制进行讨论分析,可为淡水系统甲烷厌氧氧化机制和碳循环过程提供理论依据,并为在工程中应用ANMEs实现同步污染物处理和甲烷削减提供新的思路。
  • 加载中
  • [1] CAI Y F, ZHENG Y, BODELIER P L, et al. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7: 1-10.
    [2] SU J, HU C, YAN X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015, 523(7562): 602-606.
    [3] RHEE T S, KETTLE A J, ANDREAE M O. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic[J]. Journal of Geophysical Research Atmospheres, 2009, 114: 1-20.
    [4] TAMAI N, TAKENAKA C, ISHIZUKA S. Water-soluble Al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil[J]. Soil Biology & Biochemistry, 2007, 39(7): 1730-1736.
    [5] BAROR I, ELVERT M, ECKERT W, et al. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly-reactive minerals[J]. Environmental Science & Technology, 2017, 51(21): 12293-12301.
    [6] KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: Progress with an unknown process[J]. Annual Review of Microbiology, 2008, 63: 311-334.
    [7] SEGARRA K E, SCHUBOTZ F, SAMARKIN V, et al. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions[J]. Nature Communications, 2015, 6: 1-8.
    [8] RAGHOEBARSING A A, OL A, PASSCHOONEN K T V D, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921.
    [9] ISLAS-LIMA S, THALASSO F, GóMEZ-HERNANDEZ J. Evidence of anoxic methane oxidation coupled to denitrification[J]. Water Research, 2004, 38(1): 13-16.
    [10] HU S, ZENG R J, BUROW L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms[J]. Environmental Microbiology Reports, 2010, 1(5): 377-384.
    [11] SHEN L D, WU H S, LIU X, et al. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 2017, 123: 162-172.
    [12] PADILLA C C, RISTOW L A, SARODE N. NC10 bacteria in marine oxygen minimum zones[J]. ISME Journal, 2016, 10(8): 2067-2071.
    [13] WANG Y, HUANG P, YE F, et al. Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir[J]. Applied Microbiology & Biotechnology, 2016, 100(4): 1977-1986.
    [14] CHEN J, ZHOU Z, GU J D. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology & Biotechnology, 2015, 99(3): 1463-1473.
    [15] 柴风光, 卢培利, 李微薇, 等. 利用硝酸盐和亚硝酸盐同步富集厌氧甲烷氧化微生物的比较实验[J]. 微生物学通报, 2018, 45(4): 762-770.
    [16] HU B L, HE Z F, GENG S, et al. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: Impact of reactor configuration[J]. Applied Microbiology & Biotechnology, 2014, 98(18): 7983-7991.
    [17] HATAMOTO M, KIMURA M, SATO T, et al. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures[J]. Plos One, 2014, 9(12): 1-12.
    [18] ZHU B, VAN D G, FRITZ C, et al. Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria[J]. Applied & Environmental Microbiology, 2012, 78(24): 8657-8665.
    [19] LUESKEN F A, ALEN T A V, BIEZEN E V D, et al. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge[J]. Applied & Environmental Microbiology, 2011, 92(4): 845-854.
    [20] HE Z F, CAI C, SHEN L D, et al. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria[J]. Applied Microbiology & Biotechnology, 2015, 99(2): 939-946.
    [21] HE Z F, GENG S, PAN Y W, et al. Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference[J]. Water Research, 2015, 85: 235-243.
    [22] YAN P G, LI M C, WEI G S, et al. Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane-oxidizing bacteria in sediments from the Yellow River estuary, China[J]. Plos One, 2015, 10(9): 1-14.
    [23] HU S, ZENG R J, KELLER J, et al. Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process[J]. Environmental Microbiology Reports, 2011, 3(3): 315-319.
    [24] MING L W, ETTWIG K F, JETTEN M S M, et al. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus Methylomirabilis oxyfera[J]. Biochemical Society Transactions, 2011, 39(1): 243-248.
    [25] HE Z F, CAI C Y, WANG J Q, et al. A novel denitrifying methanotroph of the NC10 phylum and its microcolony[J]. Scientific Reports, 2016, 6: 1-10.
    [26] HE Z F, WANG J Q, HU J J, et al. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria[J]. Applied Microbiology & Biotechnology, 2016, 100(11): 5099-5108.
    [27] HE Z F, CAI C, GENG S, et al. Mdodeling a nitrite-dependent anaerobic methane oxidation process: Parameters identification and model evaluation[J]. Bioresource Technology, 2013, 147(8): 315-320.
    [28] ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548.
    [29] HU S, ZENG R J, BUROW L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms[J]. Environmental Microbiology Reports, 2010, 1(5): 377-384.
    [30] ETTWIG K F, ALEN T V, PASSCHOONEN K T V D, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied Microbiology & Biotechnology, 2009, 75(11): 3656-3662.
    [31] TIMMERS P H A, WIDJAJA-GREEFKES H C A, PLUGGE C M, et al. Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation[J]. Applied Microbiology & Biotechnology, 2017, 14: 1-13.
    [32] HINRICHS K U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6730): 802-805.
    [33] HAROON M F, SHIHU H, YING S, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 2013, 500(7464): 567-570.
    [34] TIMMERS P H A, WELTE C U, KOEHORST J J, et al. Reverse methanogenesis and respiration in methanotrophic archaea[J]. Archaea, 2017, 17: 1-22.
    [35] 周京勇, 刘冬秀, 何池全, 等. 土壤中甲烷厌氧氧化菌多样性的分子检测[J]. 生态学报, 2015, 35(11): 3491-3503.
    [36] SCHELLER S, YU H, CHADWICK G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction[J]. Science, 2016, 351(6274): 703-707.
    [37] 陈颖. 厌氧甲烷氧化微生物代谢分子机制及其潜在参与矿物形成机理的研究[D]. 上海: 上海交通大学, 2014.
    [38] FU L, DING Z W, DING J, et al. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes[J]. Applied Microbiology & Biotechnology, 2015, 99(19): 7925-7936.
    [39] ETTWIG K F, ZHU B, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences ,2016, 113(45): 12792-12796.
    [40] DING L J, SU J Q, XU H J, et al. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-(13)C-acetate probing coupled with pyrosequencing[J]. ISME Journal, 2015, 9(3): 721-734.
    [41] VAKSMAA A, LüKE C, ALEN T V, et al. Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil[J]. FEMS Microbiology Ecology, 2016, 92(12): 1-11.
    [42] SEIFERT R, NAUHAUS K, BLUMENBERG M, et al. Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro[J]. Organic Geochemistry, 2006, 37(10): 1411-1419.
    [43] DING Z W, DING J, FU L, et al. Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria[J]. Applied Microbiology & Biotechnology, 2014, 98(24): 10211-10221.
    [44] HE Z F, GENG S, SHEN L D, et al. The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction[J]. Water Research, 2015, 68(47): 554-562.
    [45] HAROON M F, HU S, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 2013, 500(7464): 567-570.
    [46] WEBER H S, HABICHT K S, THAMDRUP B. Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment[J]. Frontiers in Microbiology, 2017, 8: 1-13.
    [47] VAKSMAA A, JETTEN M S M, ETTWIG K F, et al. McrA primers for the detection and quantification of the anaerobic archaeal methanotroph Candidatus Methanoperedens nitroreducens[J]. Applied Microbiology & Biotechnology, 2017, 101(4): 1631-1641.
    [48] DING J, LU Y Z, FU L, et al. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell[J]. Water Research, 2016, 110: 112-119.
    [49] VAKSMAA A, GUERRERO-CRUZ S, ALEN T A V, et al. Enrichment of anaerobic nitrate-dependent methanotrophic Candidatus Methanoperedens nitroreducens archaea from an Italian paddy field soil[J]. Applied Microbiology & Biotechnology, 2017, 101(18): 7075-7084.
    [50] AI M, MOCHIMARU H, KAZAMA H, et al. Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs)[J]. FEMS Microbiology Letters, 2010, 297(1): 31-37.
    [51] STROUS M, JETTEN M S M. Anaerobic oxidation of methane and ammonium[J]. Annual Review of Microbiology, 2004, 58(1): 99-117.
    [52] TIMMERS P H, SUAREZZULUAGA D A, ROSSEM M V, et al. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source[J]. ISME Journal, 2016, 10(6): 1400-1412.
    [53] MILUCKA J, FERDELMAN T G, POLERECKY L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature, 2012, 491(7425): 541-546.
    [54] WICKLAND K, HAMDAN L, ROOZE J, et al. Iron‐dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact[J]. Limnology & Oceanography, 2016, 61: S267-S282.
    [55] EGGER M, RASIGRAF O, SAPART C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1): 277-283.
    [56] HANSEL C M, LENTINI C J, TANG Y, et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments[J]. ISME Journal, 2015, 9(11): 2400-2412.
    [57] RIEDINGER N, FORMOLO M J, LYONS T W, et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments[J]. Geobiology, 2014, 12(2): 172-181.
    [58] TORRES N T, OCH L M, HAUSER P C, et al. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia[J]. Environmental Science Processes & Impacts, 2014, 16(4): 879-889.
    [59] K á NORDI, BO T, SCHUBERT C J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment[J]. Limnology & Oceanography, 2013, 58(2): 546-554.
    [60] AMOS R T, BEKINS B A, COZZARELLI I M, et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer[J]. Geobiology, 2012, 10(6): 506-517.
    [61] HOLMKVIST L, FERDELMAN T G, BO B J. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) [J]. Geochimica Et Cosmochimica Acta, 2011, 75(12): 3581-3599.
    [62] SIVAN O, ADLER M, PEARSON A, et al. Geochemical evidence for iron‐mediated anaerobic oxidation of methane[J]. Limnology & Oceanography, 2011, 56(4): 1536-1544.
    [63] BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184-187.
    [64] HE Z F, ZHANG Q Y, FENG Y D, et al. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane[J]. Science of the Total Environment, 2017, 610-611: 759-768.
    [65] Arslan A, Speth D R, De G R M, et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea[J]. Frontiers in Microbiology, 2015, 6: 1-14.
    [66] FU L, LI S W, DING Z W, et al. Iron reduction in the DAMO/Shewanellaoneidensis MR-1 coculture system and the fate of Fe(II)[J]. Water Research, 2016, 88: 808-815.
    [67] ETTWIG K F, SHIMA S, VAN P S, et al. Denitrifying bacteria anaerobically oxidize methane in the absence of archaea[J]. Environmental Microbiology, 2010, 10(11): 3164-3173.
    [68] LU Y Z, FU L, DING J, et al. Cr (VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor[J]. Water Research, 2016, 102: 445-452.
    [69] 蔡朝阳. 潮间带古菌介导的甲烷厌氧氧化过程研究[D]. 杭州: 浙江大学, 2017.
    [70] SCHUBERT C J, FRANCISCO V, TINA L S B, et al. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno) [J]. FEMS Microbiology Ecology, 2015, 76(1): 26-38.
    [71] ONI O E, FRIEDRICH M W. Metal oxide reduction linked to anaerobic methane oxidation[J]. Trends in Microbiology, 2017, 25(2): 88-90.
    [72] WANG F, ZHANG Y, CHEN Y, et al. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways[J]. ISME Journal, 2014, 8(5): 1069-1078.
    [73] SHI L, SQUIER T C, ZACHARA J M, et al. Respiration of metal (hydr)oxides by shewanella and geobacter: A key role for multihaem c-type cytochromes[J]. Molecular Microbiology, 2010, 65(1): 12-20.
    [74] SHI L, DONG H L, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662.
    [75] WANKEL S D, ADAMS M, JOHNSTON D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: Influence on carbon flux and decoupling from sulfate reduction[J]. Environmental Microbiology, 2012, 14(10): 2726-2740.
  • 加载中
计量
  • 文章访问数:  7660
  • HTML全文浏览数:  7554
  • PDF下载数:  263
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

淡水系统中甲烷厌氧氧化古菌的研究进展

  • 1. 重庆大学,三峡库区生态环境教育部重点实验室,重庆 400045
  • 2. 中国市政工程西南设计研究总院有限公司,成都 610081
基金项目:

国家自然科学基金资助项目51478062, 51878093国家自然科学基金资助项目(51478062, 51878093)

摘要: 甲烷厌氧氧化古菌(ANMEs)是甲烷厌氧氧化过程中的重要微生物种群,对自然生境甲烷削减的意义重大,目前研究多集中在海洋系统,而关于ANMEs古菌在淡水系统的研究较少,其相关作用机理和工程应用的研究也尚处于初步阶段。在综合文献及前期研究基础上,介绍了ANMEs为主线的淡水系统甲烷厌氧氧化机制,分析了ANMEs的微生物学特性及地理分布,系统梳理了ANME-2d古菌针对不同电子受体(NO3-、Fe3+、Cr6+等)的电子转移体系研究进展;指出了ANME-2d及其他ANMEs可能根据环境改变而选择不同的电子受体,其相对应的电子转移机制也不同。通过对不同电子受体下的ANME-2d及其他ANMEs在淡水系统中的作用机制进行讨论分析,可为淡水系统甲烷厌氧氧化机制和碳循环过程提供理论依据,并为在工程中应用ANMEs实现同步污染物处理和甲烷削减提供新的思路。

English Abstract

参考文献 (75)

目录

/

返回文章
返回