-
污泥是污水处理中的副产品,近年来我国污泥产量持续增长[1]。污泥脱水处理是实现剩余污泥稳定化、减量化和无害化的重要措施[2-3],但脱水后产生的滤液水质成分复杂,逐渐成为污水处理厂(wastewater treatment plant, WWTP)的二次污染源[4],国内外对此类废水还未有深入研究。关于污泥脱水滤液的处理,通常采用将其直接回流到生物处理单元重新参与处理[5]。脱水滤液中富集着大量的有机污染物和无机污染物,其中,也存在大量的氮磷等元素[6]。已有研究主要关注污泥脱水滤液中的有机污染物、无机氮磷以及重金属等[7],关于滤液中有机磷(organic phosphorus, OP)的污染问题却鲜有相关研究。
污水中磷的深度去除成为近年来污水处理领域的研究重点,但现有技术对特殊含磷废水的去除效果有限。因此,通过磷组分分析强化除磷已成为有效方法,而磷组分及存在形式的研究是表征其污染特征的关键。相关研究结果表明,污水中的磷以无机磷(inorganic phosphorus, IP)和OP的形态存在,而IP分为poly-P和
${\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}{\rm{ {\text{-}} P}}$ ,poly-P主要包括焦磷酸盐、偏磷酸盐等[8]。在市政污水处理厂中,poly-P含量一般较低,${\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}{\rm{ {\text{-}} P}} $ 可以在生物除磷和化学除磷的协同作用下实现极限去除[9],但针对OP污染及强化去除问题的研究相对较少。LIU等[10]利用藻类生物测定法提出了OP生物利用度,其代表污水中易于微生物利用的OP比例。LI等[11]利用藻类生长曲线法研究亲疏水性OP的生物利用度,发现疏水性OP更易被藻类等微生物利用,进而促进出水中磷的去除。微生物首先通过碱性磷酸酶将污水中有机磷水解为${\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}{\rm{ {\text{-}} P}} $ ,而后以poly-P的形式储存于胞内[12]。在先前的研究中,常使用藻类生物测定法确定微生物对有机磷等底物的生物利用度[13],但这种方法存在实验周期长、可操作性差的弊端。因此,本研究使用活性污泥作为实验对象,研究OP在生物处理过程的水相和泥相中的迁移和转化规律,从而从活性污泥的角度来阐述OP的生物利用度。针对OP的强化去除,高级氧化技术是较为可行的处理方式。O3氧化是污水处理厂常规消毒措施,宋淑静等[14]研究表明,臭氧氧化法对污水中有机磷具有较好的降解作用,OP的去除率为78.46%。因此,研究在适当的O3和O3/H2O2氧化条件下,对污泥脱水滤液中有机磷的强化去除对于污水处理厂实现总磷超低排放具有现实意义。本研究从WX-A污泥脱水滤液OP的污染特征及强化去除2个方面出发,阐述了OP的分布特性、亲水和疏水特性、生物利用度和组分构成等污染特征,分析水质特性以评价传统回流处理对污水处理厂运行的影响,并针对性地开展基于O3和O3/H2O2氧化技术的有机磷深度去除技术研究,为污水处理厂实现总磷超低排放提供参考。
污泥脱水滤液有机磷污染特征及强化去除
Pollution characteristics and enhanced removal of organic phosphorus in sludge dewatering filtrate
-
摘要: 针对污水处理厂污泥脱水滤液有机磷污染现状,采用树脂分级、傅里叶红外光谱和气相色谱质谱等方法解析其污染特征和组分结构,进而开展强化去除研究,并初步探究OP的降解转化过程。结果表明:WX-A污泥脱水滤液OP和出水OP平均含量分别为10.1 mg·L−1和0.16 mg·L−1,脱水滤液的回流可能影响出水稳定;亲水性OP和疏水性OP平均含量分别为8.58 mg·L−1和1.59 mg·L−1,OP的生物利用度仅为23.8%,表明以难生物降解形态为主,进一步的组分解析结果验证了该推测;强化去除研究表明,最佳条件是O3投加量为30 mg·L−1、pH为12.0和H2O2投加量为1.5 mL,去除率高达82.9%。O3/H2O2氧化技术可实现脱水滤液难降解OP的高效去除,从而保证出水达标排放。Abstract: Aiming to organic phosphorus (OP) pollution of sludge dewatering filtrate in wastewater treatment plant (WWTP), resin classification, Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometer (GC-MS) were used to analyze the pollution characteristics and composition, then the enhanced removal approaches were investigated. The degradation and transformation process of OP was further explored. The experimental results showed that average contents of OP in sludge dewatering filtrate and effluent of WX-A were 10.1 mg·L−1 and 0.16 mg·L−1, respectively. Thus, the dewatering filtrate reflux may affect the stability of the effluent. And the average contents of hydrophilic and hydrophobic OP were 8.58 mg·L−1and 1.59 mg·L−1, respectively. The OP bioavailability was only 23.8%, which implied that OP was mainly constituted of refractory forms, and they were confirmed by the component analysis results. Moreover, the optimal conditions for enhanced removal by O3/H2O2 oxidation were determined as following: O3 dosage of 30 mg·L−1, pH of 12.0 and H2O2 dosage of 1.5 mL, and the removal rate was as high as 82.9%. The O3/H2O2 oxidation technology can effectively remove the refractory organic phosphorus from dewatering filtrate, and ensure the discharge to reach the relevant standard.
-
表 1 脱水滤液水质指标
Table 1. Quality of the dehydrated filtrate
污水处理厂编号 TP/(mg·L−1) IP/(mg·L−1) OP/(mg·L−1) TN/(mg·L−1) COD/(mg·L−1) DOC/(mg·L−1) pH WX-A 10.80±3.25 0.97±0.36 9.89±3.34 46.43±0.72 394±18 452±13 11.85±0.52 WX-B 0.27±0.05 0.08±0.02 0.16±0.07 37.70±2.80 268±34 412±11 11.30±1.00 WX-C 2.46±0.11 2.33±0.10 0.13±0.02 45.70±4.80 274±128 400±20 12.10±0.70 -
[1] 陈恒宝, 许立群, 张有仓, 等. 市政污泥与餐厨废弃物协同厌氧消化工程实例[J]. 中国给水排水, 2018, 34(6): 79-84. [2] 黄绍松, 梁嘉林, 张斯玮, 等. Fenton氧化联合氧化钙调理对污泥脱水的机理研究[J]. 环境科学学报, 2018, 38(5): 1906-1919. [3] 蒋秀娅. 贵阳市循环经济型生态城市污泥减量化、稳定化、无害化、资源化技术对策研究[D]. 贵阳: 贵州大学, 2009. [4] 张杰, 王印忠, 曹相生, 等. 污泥脱水滤液水质对以鸟粪石形式回收磷的影响[J]. 北京工业大学学报, 2008, 34(10): 1084-1088. doi: 10.11936/bjutxb2008101084 [5] 朱学红, 蔡奎芳, 张国锋. 污水处理厂污泥脱水滤液循环利用的研究[J]. 环境科学与管理, 2006, 31(7): 106-108. doi: 10.3969/j.issn.1673-1212.2006.07.033 [6] 王敦球. 城市污水污泥重金属去除与污泥农用资源化试验研究[D]. 重庆: 重庆大学, 2004. [7] 崔涵. 浓缩、脱水滤液中污染物对城市污水处理效果的影响[D]. 天津: 天津大学, 2010. [8] TARAYRE C, HUU THANH N, BROGNAUX A, et al. Characterisation of phosphate accumulating organisms and techniques for polyphosphate detection: A review[J]. Sensors, 2016, 16(6): 797-810. doi: 10.3390/s16060797 [9] 周峰. 生物脱氮除磷工艺中的化学辅助除磷试验研究[D]. 济南: 山东建筑大学, 2010. [10] LIU H, JEONG J, GRAY H, et al. Algal uptake of hydrophobic and hydrophilic dissolved organic nitrogen in effluent from biological nutrient removal municipal wastewater treatment systems[J]. Environmental Science & Technology, 2012, 46(2): 713-721. [11] LI B, BRETT M T. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability[J]. Environmental Pollution, 2013, 182: 37-44. doi: 10.1016/j.envpol.2013.06.024 [12] HONG H S. The availability of dissolved organic phosphorus compounds to marine phytoplankton[J]. Chinese Journal of Oceanology & Limnology, 1995, 13(2): 169-176. [13] RAND M C, GREENBERG A E, TARAS M J, et al. Standard methods for the examination of water and wastewater[J]. American Journal of Public Health, 1976, 56(3): 387-388. [14] 宋淑静, 刘雪娟. 污水中残留有机磷的深度氧化及分析测定[Z]. 郑州, 2006. [15] 杨柳, 唐振, 郝原芳. 化学连续提取法对太湖沉积物中磷的各种形态测定[J]. 世界地质, 2013, 32(3): 634-639. doi: 10.3969/j.issn.1004-5589.2013.03.024 [16] 尹晶. 城市污泥热处理过程中磷的迁移转化特性研究[D]. 沈阳: 沈阳航空航天大学, 2014. [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [18] TARAYRE C, DE CLERCQ L, CHARLIER R, et al. New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste[J]. Bioresource Technology, 2016, 206: 264-274. doi: 10.1016/j.biortech.2016.01.091 [19] QIN C, LIU H, LIU L, et al. Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents[J]. Science of the Total Environment, 2015, 511: 47-53. doi: 10.1016/j.scitotenv.2014.11.005 [20] 王晶, 杨昌柱, 濮文虹, 等. 市政污泥深度脱水滤液水质特性研究[J]. 环境工程, 2014, 32(S1): 107-110. [21] JANUS H M, VANDERROEST H F. Don’t reject the idea of treating reject water[J]. Water Science and Technology, 1997, 35(10): 27-34. doi: 10.2166/wst.1997.0351 [22] 翟显之. 污泥水热厌氧消化脱水滤液处理研究[D]. 北京: 清华大学, 2014. [23] 高洋, 程洁红. 太湖流域污水处理厂氮磷去除现状及效能的研究[J]. 江苏理工学院学报, 2016, 22(2): 55-60. doi: 10.3969/j.issn.1674-8522.2016.02.013 [24] MONBETT P, MCKELVIE I D, SAEFUMILLAH A, et al. A protocol to assess the enzymatic release of dissolved organic phosphorus species in waters under environmentally relevant conditions[J]. Environmental Science & Technology, 2007, 41(21): 7479-7485. [25] 王超, 冯士龙, 王沛芳, 等. 污泥中磷的形态与生物可利用磷的分布及相互关系[J]. 环境科学, 2008, 29(6): 1593-1597. doi: 10.3321/j.issn:0250-3301.2008.06.024 [26] 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014. [27] 张志伟. 臭氧氧化深度处理煤化工废水的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [28] 竹湘锋. 有机废水的催化臭氧氧化研究[D]. 杭州: 浙江大学, 2005. [29] RODRIGUEZ A, ROSAL R, PERDIGON-MELON J A, et al. Ozone-based technologies in water and wastewater treatment[J]. Handbook of Environmental Chemistry, 2008, 5: 127-175. [30] 郑志洋. 城镇污水厂二级生化出水臭氧深度处理技术研究[D]. 石家庄: 河北科技大学, 2017. [31] 刘金泉, 李天增, 王发珍, 等. O3、H2O2/O3及UV/O3在焦化废水深度处理中的应用[J]. 环境工程学报, 2009, 3(3): 501-505. [32] ZHOU C, GAO N, DENG Y, et al. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water[J]. Journal of Hazardous Materials, 2012, 231: 43-48. [33] YANG L, HAN D H, LEE B, et al. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification[J]. Chemosphere, 2015, 127: 222-228. doi: 10.1016/j.chemosphere.2015.02.028 [34] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展[J]. 化学进展, 2010, 22(10): 1983-1992. [35] 柏文琴, 何凤琴, 邱星辉. 有机磷农药生物降解研究进展[J]. 应用与环境生物学报, 2004, 10(5): 675-680. doi: 10.3321/j.issn:1006-687X.2004.05.031