-
随着燃煤电厂节能减排改造工程的升级,超低排放技术得到快速地推广与应用[1]。然而在超低排放条件下如何准确测量颗粒物浓度,对超低排放改造工程进行有效评价是目前亟待解决的问题。颗粒物浓度的测试方法包括在线监测和手工测试,在线监测设备的校准可通过光学原件校准,但其偏差较大[2-3]。相关标准及方法规定采用手工测试方法对在线监测设备进行校准和验收[4-5],因此,颗粒物手工测试方法已成为设备是否达到超低排放的主要评判手段[6]。但测试结果往往易受复杂的烟气条件、测试方法、仪器、滤膜、操作人员等因素影响而存在差异,这直接影响设备的最终评价结果。
目前,国内外针对可吸入颗粒物采样器已经建立计量标准和方法[7-9]。其基本原理是由标准粒子发生器产生一定粒径单分散的标准粒子,并使之在测试区域均匀分布后,在一定环境条件及时间内,用滤膜捕集进入粒子分离器前后的标准粒子,用天平称重后,确定滤膜上粒子的质量及浓度[10]。还有的颗粒物检定装置以米氏散射为理论基础,将光度法和粒子计数法相结合,通过激光功率的切换实现对颗粒物粒径和浓度的监测[11]。这些方法建立在实验室环境条件下,未模拟实际烟气的温度、湿度和酸性气体,并不适用于低浓度颗粒物手工法测试。近年来,环境保护部结合国外测试标准[12-14],制定了适合我国的低浓度颗粒物测试标准[15],规范了低浓度颗粒物手工测试方法,但对低浓度颗粒物测试方法尚未建立相关的计量标准和装置。本研究根据国家相关测试标准,研制了一台量值可溯源的低浓度颗粒物测试校准装置[16](以下简称校准装置),并对该校准装置的给料发生装置、SO3发生装置、空气加热器、蒸气发生器和在线监测等主要单元进行了详细阐述、性能评价和实际应用,以期为低浓度颗粒物的手工测试及在线监测的准确性提供技术参考。
燃煤烟气低浓度颗粒物测试校准装置的研制与应用
Development and application of test calibration device for low concentration particulate matter in coal-fired flue gas
-
摘要: 在超低排放条件下,如何准确测量颗粒物浓度是非常关键的技术问题。根据HJ 836-2017等相关测试标准,研制了量值可溯源的低浓度颗粒物测试校准装置,详细说明了校准装置的主要单元和性能评价,并在实际中进行验证。结果表明,校准装置的颗粒物浓度随给料频率的升高而增大,且样品平行性较优;给料频率与干烟气和湿烟气颗粒物浓度存在很好的线性关系,可信度高,可作为校准装置标准曲线对颗粒物浓度进行校准;在线监测低浓度颗粒物标定时,推荐采用多项式回归进行计算设置;在干烟气和湿烟气条件下,颗粒物在线监测校准因子不一样,出厂标定的准确度较差。该装置可提供高湿度、低温度和酸性烟气条件下的稳定均匀和可信度高的低浓度颗粒物输出,可用于模拟现场复杂烟气条件,为验证低浓度颗粒物的手工测试及在线监测的准确性提供参考。Abstract: Under ultra-low emission conditions, how to accurately measure low-concentration particulate matter has become a key technical issue. According to the test standards of HJ 836-2017, a low-concentration particle test calibration device with traceable value was developed. The main units and performance evaluation of the calibration device were elaborated, which was also applied in practice. The application results show that the particle concentration of the calibration device increased with the increase of the feed frequency, and the result parallelism of the samples was better. The feeding frequency had a good linear relationship with the particle concentration in dry flue gas and wet flue gas, which showed high credibility and could be used as a calibration device standard curve to calibrate the particle concentration. The polynomial was recommended for the calculation and installation when on-line monitoring was used to calibrate low concentration particulate matter. Under dry and wet flue gas conditions, the calibration factors for on-line monitoring particulate matter were different, and the accuracy of factory calibration was poor. The device could provide stable, uniform and reliable output of low concentration particulate matter under high humidity, low temperature and acid flue gas conditions, which could be used to simulate the complicated flue gas condition in the field, and provide technical reference for the accuracy in verifying the manual testing and on-line monitoring particulate matter with low concentration.
-
表 1 给料发生装置的给料量和给料稳定均匀性
Table 1. Feed quantity, stability and uniformity of the feeding device
给料频率/Hz 给料量/(g·h−1) 给料稳定均匀性/% 12 1.9 6.9 20 3.3 5.5 30 4.8 7.9 40 6.9 6.9 表 2 干烟气下颗粒物浓度
Table 2. Particle concentration under dry flue gas condition
给料
频率/Hz烟气
温度/℃烟气
湿度/%SO3浓度/
(mg·m−3)烟气流量/
(m3·h−1)实测颗粒物
浓度/(mg·m−3)样品平
行性/%全程序空白
样/(mg·m−3)在线监测颗粒物
浓度1)/(mg·m−3)13 90 5.37 4.86 563 5.30 4.73 0.31 4.23 28 90 5.40 4.92 556 11.75 6.75 0.46 10.43 40 90 5.37 4.43 567 15.88 4.23 0.09 15.03 50 90 5.30 4.91 557 19.18 4.49 0.40 15.80 注:1)颗粒物在线监测校准因子按y=3.5x−0.5设置。 表 3 湿烟气下颗粒物浓度
Table 3. Particle concentration under wet flue gas condition
给料
频率/Hz烟气
温度/℃烟气
湿度/%SO3浓度/
(mg·m−3)烟气流量/
(m3·h−1)实测颗粒物
浓度/(mg·m−3)样品平
行性/%全程序空白
样/(mg·m−3)在线监测颗粒物
浓度1)/(mg·m−3)13 50 13.80 6.15 445 4.72 0.03 0.04 5.72 28 50 13.70 6.82 441 5.63 1.67 0.17 8.89 40 50 13.80 6.09 449 8.45 3.84 0.06 12.61 50 50 13.50 6.59 445 10.41 2.03 0.06 15.97 注:1)颗粒物在线监测校准因子按y=3.5x−0.5设置。 -
[1] 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015. [2] 崔云寿. 烟气浊度在线监测的校准[J]. 电力科技与环保, 2001, 17(4): 43-45. doi: 10.3969/j.issn.1674-8069.2001.04.013 [3] 纵宁生, 张晏, 陈书建. 烟气浊度在线监测仪校准中应注意的几个问题[J]. 电力科技与环保, 2003, 19(3): 57-59. doi: 10.3969/j.issn.1674-8069.2003.03.019 [4] 环境保护部. 固定污染源废气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法: HJ 76-2017[S]. 北京: 中国环境科学出版社, 2017. [5] BUTTERFIELD D, QUINCEY P. Measurement science issues relating to PM10 and PM2.5 airborne particles[EB/OL]. [2018-10-10]. http://publications.npl.co.uk/npl_web/pdf/as15.pdf, 2007. [6] 梁云平. 固定源低浓度颗粒物监测技术现状与思考[J]. 中国环境监测, 2013, 29(5): 161-164. doi: 10.3969/j.issn.1002-6002.2013.05.034 [7] 刘运席, 陈旭, 杨复沫, 等. 新型多级冲击采样器切割粒径的标准粒子实验分析[J]. 环境工程学报, 2006, 7(5): 138-141. doi: 10.3969/j.issn.1673-9108.2006.05.032 [8] WANG X, CHANCELLOR G, EVENSTAD J, et al. A novel optical instrument for estimating size segregated aerosol mass concentration in real time[J]. Aerosol Science and Technology, 2009, 43(9): 939-950. doi: 10.1080/02786820903045141 [9] HELLERZEISLER S F, ONDOV J M, ZEISLER R. Collection and characterization of a bulk PM2.5 air particulate matter material for use in reference materials[J]. Biological Trace Element Research, 1999, 71-72: 195-202. doi: 10.1007/BF02784205 [10] 刘俊杰, 张文阁. 可吸入颗粒物采样器准确性计量检测方法的设计及研究[J]. 中国粉体技术, 2006, 12(5): 5-8. doi: 10.3969/j.issn.1008-5548.2006.05.002 [11] 吴芳. 颗粒物发生装置与检定系统研究[D]. 杭州: 浙江大学, 2015. [12] ISO. Stationary source emissions-determination of mass concentration of particulate matter(dust) at low concentrations-manual gravimetric method: ISO12141-2002[S]. BSI Standards Publication, 2002. [13] ASTM. Standard test method for determination of mass concentration of particulate matter from stationary sources at low concentrations(manual grvimetric method): ASTM D 6331-2014[S]. American Society for Testing and Materials, 2014. [14] BS EN. Stationary source emissions. Determination of low range mass concentration dust. Manual gravimetric method: BS EN 13284-1-2017[S]. BSI Standards Publication, 2017. [15] 环境保护部. 固定污染源废气低浓度颗粒物的测定重量法: HJ 836-2017[S]. 北京: 中国环境科学出版社, 2017. [16] 郭俊, 杨丁, 叶兴联, 等. 用于标定低浓度颗粒物测试方法准确性的测试校准装置: ZL201721869892.4[P]. 2017-12-27. [17] 李兴华, 段雷, 郝吉明, 等. 固定燃烧源颗粒物稀释采样系统的研制与应用[J]. 环境工程学报, 2008, 28(3): 458-463. [18] AHLVIK P, NTZIACHRISTOS L, KESKINEN J, et al. Real time measurements of diesel particle size distribution with an electrical low presser impactor: NO 980410[R]. Washington DC: SAE International, 1998: 10-20. [19] 国家环境保护局. 固定污染源排气中颗粒物测定与气态污染物采样方法: GB/T 16157-1996[S]. 北京: 中国环境科学出版社, 1996. [20] 杨丁, 陈威祥, 郑芳, 等. 一种三氧化硫采样测试系统的校验方法和装置: ZL201410401789.1[P]. 2014-08-14. [21] 中华人民共和国国家质量监督检验检疫总局. 燃煤烟气脱硫设备性能测试方法: GB/T 21508-2008[S]. 北京: 中国环境科学出版社, 2008. [22] EPA. Determination of sulfuric acid mist and sulfur dioxide emissions from stationary sources. EPA Method 8-1990[S]. U. S. Environmental Protection Agency, 1990. [23] 国家环境保护总局. 水质硫酸盐的测定 铬酸钡分光光度法(试行): HJ/T 342-2007[S]. 北京: 中国环境科学出版社, 2007. [24] WILLIAM E F, PETER M W, JOHN P G, et al. Identification of (and responses to) potential effects of SCR and wet scrubbers on submicron particulate emissions and plume characteristics[R]. Alabama: Environmental Protection Agency, 2004: 1-81. [25] CHENG H H. Field comparison of real-time PM2.5 readings from a beta gauge monitor and a light scattering method[J]. Aerosol and Air Quality Research, 2007, 7(2): 239-250. doi: 10.4209/aaqr.2007.01.0002 [26] JUERGEN K, INGO S, KLAUS S. Scattered light range of view measurement apparatus: 7414703 B2[P]. 2008-08-19. [27] MAYNARD A D, KENNY L C, BALDWLN P E J. Development of a system to rapidly measure sampler penetration up to 20μm aerodynamic diameter in calm air, using the aerodynamic particle sizer[J]. Journal Aerosol Science, 2016, 30(9): 1215-1226.