-
土壤是人类生存和发展不可替代的物质基础。随着我国经济快速发展,土壤环境日渐遭到破坏,农田土壤环境质量亟待拯救,而重金属污染是农田土壤污染的主要类型[1-3]。镉(Cd)在环境中难以被降解,存留时间长,经过食物链等各种途径可以进入人体,并对人类健康产生威胁。土壤中Cd主要来源于自然因素和人为活动(各种废气的排放、农业施肥和含Cd废水的排放)[4-6]。
植物修复技术是近20年来刚刚发展起来的一种新型污染治理技术[7],是利用某些可以忍耐和超富集有毒元素的植物去除污染物的一门技术,因其稳定、对环境扰动少、无二次污染而被广泛研究,对富集植物的选择是其中最重要的研究内容[8-10]。目前,国内外已经发现和筛选的能超富集Cd的植物有天蓝遏蓝菜[10]、东南景天[11]、圆叶遏蓝菜[12]、龙葵[13]、商陆[14]、巴丽芥菜[15]、三叶鬼针草[16]等。
工程应用中要求所用植物具有富集能力强、生长速度快、生物量大、易于栽培和生命力旺盛等特点,较为成熟的Cd污染农田土壤植物修复案例鲜有报道。籽粒苋(Amaranthus hypochondriacus L.) [17]是一种耐干旱、耐贫瘠、耐盐碱、产量高的植物,其对土壤Cd有一定的富集能力。本研究选择阳朔[6]Cd污染农田作为田间实验区,选择籽粒苋作为修复植物,探讨了其修复农田镉污染土壤的修复效率。
应用籽粒苋修复镉污染农田土壤的潜力
Potential for cadmium contaminated farmland remediation with Amaranthus hypochondriacus L.
-
摘要: 针对农田土壤镉污染问题,采用超富集植物籽粒苋并配施不同组合的外源活化剂进行盆栽实验和田间实验,并测定籽粒苋及根系土壤中镉含量并计算富集系数。结果表明,在盆栽实验的不同处理组中,施加磷酸二氢钾(0.74 mmol·kg-1)、EDTA(2 mmol·kg-1)和柠檬酸(4 mmol·kg-1)最有助于提高籽粒苋对Cd的提取修复效率。田间实验中添加活化剂(EDTA和柠檬酸)后籽粒苋的根、茎和叶组织对Cd的富集能力分别是不添加活化剂处理组的2.10、1.84和2.76倍;与对照组相比,籽粒苋的根、茎和叶部分的Cd含量都显著提高(P < 0.05),这说明外源活化剂促进了籽粒苋对土壤中Cd的吸收,提高了修复效率。每年种植两茬籽粒苋并添加活化剂,Cd的去除率可达4%~10%。种植超富集植物并配施活化剂既可以提高修复效率,又可以节约修复成本。Abstract: In view of the problem of cadmium pollution in farmland soil, phytoremediation technology has become a research hotspot. Pot experiments and field trials were conducted using a kind of hyperaccumulator Amaranthus hypochondriacus L. and different combinations of exogenous activators. The cadmium contents in Amaranthus hypochondriacus L. and root soil were tested and the corresponding enrichment factors were determined. The results showed that in different treatment groups of the pot experiment, the most helpful effect for the improvement of Cd extraction and restoration efficiency occurred at potassium dihydrogen phosphate (0.1 g·kg-1), EDTA (ethylenediaminetetraacetic acid) (2 mmol·kg-1) and citric acid (4 mmol·kg-1). The addition of activators (EDTA and citric acid) in the field trials showed that Cd enrichment abilities of roots, stems and leaves of Amaranthus hypochondriacus L. were 2.10, 1.84 and 2.76 times as high as those without activator, respectively. In comparison with the control group, the contents of Cd in the roots, stems and leaves of the Amaranthus hypochondriacus L. increased significantly (P < 0.05), indicating that the exogenous activator promoted the absorption of Cd in the soil by the Amaranthus hypochondriacus L. and improved the repair efficiency. Amaranthus hypochondriacus L. is planted twice every year and activator is added. The Cd removal rate is 4%~10%. Planting Amaranthus hypochondriacus L. in combination with an activator can both improve the repair efficiency and save the repair cost.
-
Key words:
- Amaranthus hypochondriacus L. /
- cadmium /
- farmland soil /
- activator /
- phytoremediation
-
表 1 供试土壤基本性质
Table 1. Basic properties of the tested soil
pH 全Cd/(mg·kg-1) 有效态Cd/(mg·kg-1) 有机质/(g·kg-1) 碱解氮/(mg·kg-1) 有效磷/(mg·kg-1) 速效钾/(mg·kg-1) 6.5 0.71 0.12 23.5 100.3 0.36 1 213 表 2 田间实验添加活化剂前后籽粒苋根、茎和叶Cd含量(鲜重)
Table 2. Cadmium content in roots, stems and leaves of plant before and after the addition of activating agents in the field trial (fresh weight
mg·kg-1 植株序号 根 茎 叶 修复前 修复后 修复前 修复后 修复前 修复后 1 0.141 0.174 0.173 0.344 0.232 0.348 2 0.147 0.429 0.269 0.417 0.321 0.775 3 0.147 0.452 0.269 0.348 0.321 0.740 4 0.139 0.305 0.093 0.318 0.217 0.220 5 0.081 0.327 0.058 0.332 0.217 0.325 6 0.104 0.617 0.081 0.116 0.211 0.232 7 0.617 0.637 0.176 0.394 0.233 0.996 8 0.237 0.406 0.222 0.313 0.272 1.424 9 0.237 0.278 0.174 0.205 0.226 0.568 10 0.133 0.347 0.093 0.112 0.221 0.289 11 0.112 0.116 0.081 0.143 0.210 0.278 12 0.104 0.146 0.142 0.221 0.229 0.266 13 0.104 0.230 0.081 0.227 0.307 0.406 14 0.194 0.208 0.155 0.174 0.265 0.476 15 0.081 0.225 0.186 0.209 0.284 0.567 16 0.115 0.174 0.150 0.263 0.347 0.523 17 0.185 0.232 0.162 0.211 0.240 0.429 18 0.151 0.317 0.139 0.323 0.405 0.425 19 0.218 0.532 0.252 0.428 0.299 1.133 20 0.179 0.440 0.417 0.479 0.350 1.287 21 0.116 0.339 0.104 0.304 0.357 0.532 22 0.257 0.289 0.274 0.324 0.409 0.926 23 0.231 0.824 0.247 0.777 0.198 3.251 24 0.231 0.859 0.247 0.729 0.198 2.246 25 0.127 0.281 0.093 0.249 0.356 0.474 平均含量 0.176 0.367 0.173 0.318 0.277 0.766 表 3 田间实验中活化组与对照组籽粒苋各指标的对比(含量以鲜重计)
Table 3. Comparison of various indicators of plant in the activation group and the control group in the field trials(content is based on fresh weight)
统计值 株高/cm 根/(mg·kg-1) 茎/(mg·kg-1) 叶/(mg·kg-1) 活化组 对照组 活化组 对照组 活化组 对照组 活化组 对照组 样本数 25 22 25 22 25 22 25 22 极小值 122 105 0.081 0.035 0.058 0.035 0.220 0.104 极大值 195 235 0.859 0.289 0.777 0.372 3.251 1.251 均值 153 157 0.294 0.153 0.251 0.162 0.765 0.495 几何均值 152 155 0.226 0.121 0.192 0.123 0.584 0.362 表 4 田间实验中添加活化剂与对照组农田土壤各指标的对比
Table 4. Comparison of the farmland soil indicators between the addition of activating agents and the control group in the field trials
统计值 pH 全Cd/(mg·kg-1) 有效态Cd/(mg·kg-1) 活化组 对照组 活化组 对照组 活化组 对照组 样本数 25 22 25 22 25 22 极小值 5.90 0.40 0.317 0.469 0.150 0.460 极大值 8.20 8.40 1.348 1.194 4.675 0.705 均值 7.49 6.80 0.773 0.895 0.601 0.550 几何均值 7.47 5.69 0.736 0.878 0.556 0.546 -
[1] 鲍桐, 廉梅花, 孙丽娜, 等.重金属污染土壤植物修复研究进展[J].生态环境学报, 2008, 17(2): 858-865. doi: 10.3969/j.issn.1674-5906.2008.02.078 [2] 宋波, 张云霞, 庞瑞, 等.广西西江流域农田土壤重金属含量特征及来源解析[J].环境科学, 2018, 39(9): 4317-4326. [3] 田美玲, 钟雪梅, 张云霞, 等.矿业活动影响区稻田土壤和稻米中重金属含量及健康风险[J].环境科学, 2018, 39(6):2919-2926. [4] ZHENG N, WANG Q, ZHENG D. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables[J]. Science of the Total Environment, 2007, 383(1): 81-89. [5] 林炳营.广西某铅锌矿区土壤-作物镉污染研究[J].土壤通报, 1997(5): 235-237. [6] 张云霞, 杨子杰, 王佛鹏, 等.广西某铅锌矿影响区农田土壤重金属污染特征及修复策略[J].农业环境科学学报, 2018, 37(2): 239-249. [7] CHANDRA S K, KAMALA C T, CHARY N S, et al. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils[J]. Chemosphere, 2005, 58(4): 507-514. doi: 10.1016/j.chemosphere.2004.09.022 [8] 曾清如, 廖柏寒, 杨仁斌, 等. EDTA溶液萃取污染土壤中的重金属及其回收技术[J].中国环境科学, 2003, 23(6):597-601. doi: 10.3321/j.issn:1000-6923.2003.06.009 [9] ABBAS S T, SARFRAZ M, MEHDI S M, et al. Trace elements accumulation in soil and rice plants irrigated with the contaminated water[J]. Soil & Tillage Research, 2007, 94(2): 503-509. [10] BROWN S L R L C, ANGLE J S, BAKER A J M. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1993, 23: 1151-1157. [11] 熊愈辉, 杨肖娥, 叶正钱, 等.东南景天对镉、铅的生长反应与积累特性比较[J].西北农林科技大学学报(自然科学版), 2004, 32(6): 101-106. doi: 10.3321/j.issn:1671-9387.2004.06.023 [12] WENZEL W W, JOCKWER F. Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps[J]. Environmental Pollution, 1999, 104(1): 145-155. doi: 10.1016/S0269-7491(98)00139-0 [13] 魏树和, 周启星, 王新, 等.一种新发现的镉超积累植物龙葵(Solanum nigrum L.)[J].科学通报, 2004, 49(24): 2568-2573. doi: 10.3321/j.issn:0023-074X.2004.24.013 [14] 聂发辉.镉超富集植物商陆及其富集效应[J].生态环境学报, 2006, 15(2): 303-306. doi: 10.3969/j.issn.1674-5906.2006.02.021 [15] DAHMANI M H, OORT F V, GELIE B, et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter[J]. Environmental Pollution, 2000, 109(2): 231-238. doi: 10.1016/S0269-7491(99)00262-6 [16] SUN Y B, ZHOU Q X, LIU W T, et al. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: A potential Cd-hyperaccumulator and As-excluder Bidenspilosa L[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1023-1028. [17] 李凝玉, 卢焕萍, 李志安, 等.籽粒苋对土壤中镉的耐性和积累特征[J].应用与环境生物学报, 2010, 16(1): 28-32. [18] 罗艳, 张世熔, 徐小逊, 等.可降解螯合剂对镉胁迫下籽粒苋根系形态及生理生化特征的影响[J].生态学报, 2014, 34(20): 5774-5781.