-
生物柴油是一类长链脂肪酸单烷基酯,通过酯交换法或游离脂肪酸酯化法制备,是典型的“绿色能源”,具有燃料性能好、原料来源广泛、可再生等优势。通常,使用均相或非均相催化剂制备生物柴油。传统的均相催化剂包括均相酸催化剂和均相碱催化剂[1],均相酸催化剂(如硫酸等)腐蚀设备,后处理中产生大量废水,对环境造成污染[2],且均相碱催化剂极易发生皂化反应,很大程度上限制了其应用[3]。因此,非均相的固体酸催化剂日益受到研究者重视,目前研究较多的有贵金属氧化物负载催化剂[4]、分子筛催化剂[5]等,但这类催化剂成本高,不易推广,故制备新型廉价的固体酸催化剂有重要的现实意义。近年来,以糖类化合物(纤维素、淀粉和葡萄糖等)为原料制备得到了系列碳基固体酸非均相催化剂。乌日娜等[6]利用生物质木粉为原料,韩东平等[7]以竹屑为原料,制备了碳基固体酸催化剂,在酯化反应中均具有较高的催化活性。此外,一些核壳结构(Fe3O4核)的材料通过磺化后得到一种磁性的固体酸催化剂,在反应混合物中更容易分离,但其制备工艺中引入的昂贵或毒性试剂阻碍了这类催化剂的大规模生产。因此,以生物质为材料,合成一种低成本、绿色高效的碳基磁性固体酸催化剂仍具有挑战性。本研究以废弃的柚子果皮为原料制备磁性固体酸催化剂,对其进行了FT-IR、XRD和热重表征分析,并以油酸和乙醇的酯化反应为模型,分别研究了制备固体酸的催化活性、耐水性、可再生性以及酯化反应的动力学特性,期望以生物质为材料,找到一种能够温和地合成磁性碳基固体酸催化剂的路径。
生物质碳基固体酸催化剂的制备及其对酯化反应的催化性能
Preparation of magnetic carbonaceous solid acid catalyst from biomass and its catalytic activity in esterification
-
摘要: 为了寻找一种以生物质为原料,能够温和地合成磁性碳基固体酸催化剂的路径,以生物质柚子果皮为原料合成磁性固体酸催化剂,并将其用于催化油酸和乙醇的酯化反应中。结果表明:MPC-0.4-SO3H和MPC-0.8-SO3H在反应温度为80 ℃、催化剂用量为油酸质量的7%、油醇比为1∶20、反应时间为8 h时,酯化率可达到68.0%和68.8%,高于商用催化剂Amberlyst-15的酯化率;2种催化剂耐水性好,稳定性高,重复使用3次和4次时,酯化率仍高于或接近Amberlyst-15。通过分析可知,2种固体酸活化能较低,与Amberlyst-15相比,其催化反应的速率常数更大,在生物柴油的合成中具有较好的应用前景。
-
关键词:
- 生物质碳基固体酸催化剂 /
- 酯化反应 /
- 催化活性
Abstract: In order to find a way for mildly synthesizing magnetic carbonaceous solid acid catalyst from biomass, pomelo peel was used to prepare a new magnetic carbonaceous solid acid catalyst for catalytic esterification reaction of oleic acid and ethanol, which was selected as model for producing biodiesel. The structure characteristics for the prepared catalysts were identified by FT-IR, XRD and TGA. The results showed that when the reaction temperature was 80 ℃, the catalyst mass was 7% of oleic acid, the ratio of oil to alcohol was 1∶20 and reaction duration was 8 h, the esterification rates of MPC-0.4-SO3H and MPC-0.8-SO3H reached 68.0% and 68.8%, respectively, which was significantly higher than that of the commercial amberlyst-15. Both catalysts had good water resistance and high stability, the esterification rates of three or four times-reused catalysts were still higher than or close to the value of amberlyst-15. The activation energies of both solid acids were low. From the analysis, it is known that the two catalysts have good water resistance and high stability, compared with amberlyst-15, the rate constants of MPC-0.4-SO3H and MPC-0.8-SO3H were higher in catalytic reactions, and which presents good application prospects in biodiesel synthesis. -
表 1 3种固体酸酯化油酸与乙醇的催化活性
Table 1. Catalytic activity of three solid acid catalysts for esterification of oleic acid with ethanol
催化剂 酸位点密度1)/
(mmol·g−1)起始速率2)/
(10−2 mmol·(g·min)−1)转化率/
%RTOF/
(10−3 min−1)MPC-0.4-SO3H 1.602 0.121 68.0 45.30 MPC-0.8-SO3H 1.584 0.123 68.8 45.83 注:1) 酸碱滴定计算所得;2)反应条件:80 ℃,0.125 1 g催化剂酯化2 mL油酸与11 mL乙醇,反应8 h。 表 2 油酸与乙醇酯化反应的动力学参数
Table 2. Kinetic parameters for esterification ofoleic acid with ethanol
催化剂 Ea/(kJ·mol−1) R2 k/(10−3 min−1) 323 K 333 K 343 K 353 K MPC-0.4-SO3H 31.65 0.971 0.87 1.04 1.63 2.28 MPC-0.8-SO3H 21.17 0.702 1.19 1.31 1.33 2.52 Amberlyst-15 11.65 0.976 0.36 0.39 0.45 0.52 -
[1] SU F, GUO Y H. Advancements in solid acid catalysts for biodiesel production[J]. Green Chemistry, 2014, 16(6): 2934-2957. doi: 10.1039/C3GC42333F [2] SAKA S, KUSDIANA D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol[J]. Fuel, 2001, 80(2): 225-231. doi: 10.1016/S0016-2361(00)00083-1 [3] 高荫榆, 陈文伟, 阮榕生, 等. 生物柴油研究进展[J]. 可再生能源, 2004, 37(3): 6-10. doi: 10.3969/j.issn.1671-5292.2004.03.003 [4] FURUTA S, MATSUHASHI H, ARATA K. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure[J]. Catalysis Communications, 2004, 5(12): 721-723. doi: 10.1016/j.catcom.2004.09.001 [5] MACHADO M D S, PEREZ-PARIENTE J, SASTRE E, et al. Selective synthesis of glycerol monolaurate with zeolitic molecular sieves[J]. Applied Catalysis A: General, 2000, 203(2): 321-328. doi: 10.1016/S0926-860X(00)00493-2 [6] 乌日娜, 王同华, 修志龙, 等. 生物质炭基固体酸催化剂的制备[J]. 催化学报, 2009, 30(12): 1203-1208. doi: 10.3321/j.issn:0253-9837.2009.12.004 [7] 韩东平. 生物质基固体磺酸的制备及催化高酸值油制备生物柴油的研究[D]. 南昌: 南昌大学, 2010. [8] 刘瑞林. 生物质基多孔碳材料的制备及在吸附、分离与催化中的应用研究[D]. 西安: 陕西师范大学, 2015. [9] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中酸价的测定: GB 5009.229-2016[S]. 北京, 2016. [10] 汪小红. 炭基固体酸催化剂对生物柴油合成的催化基础研究[D]. 杨凌: 西北农林科技大学, 2010. [11] WANG H W, COVARRUBIAS J, PROCK H, et al. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis[J]. Journal of Physical Chemistry C, 2015, 119(46): 26020-26028. doi: 10.1021/acs.jpcc.5b08743 [12] MA L L, HAN Y, SUN K A, et al. Kinetic and thermodynamic studies of the esterification of acidified oil catalyzed by sulfonated cation exchange resin[J]. Journal of Energy Chemistry, 2015, 24(4): 456-462. doi: 10.1016/j.jechem.2015.07.001 [13] 张文娟. 炭基固体酸催化剂的制备及其对酯化反应的应用研究[D]. 杨凌: 西北农林科技大学, 2012. [14] 李鹏. 玉米芯制备炭基固体酸催化剂及其应用研究[D]. 长春: 吉林大学, 2014. [15] 刘晓燕. 重氮盐还原法制备高比表面积炭基固体酸催化剂及其催化性能研究[D]. 杨凌: 西北农林科技大学, 2011. [16] MADDIKERI G L, PANDIT A B, GOGATE P R. Intensification approaches for biodiesel synthesis from waste cooking oil: A review[J]. Industrial & Engineering Chemistry Research, 2012, 51(45): 14610-14628. [17] POONJARERNSILP C, SANO N, TAMON H. Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid[J]. Applied Catalysis B: Environmental, 2014, 147(8): 726-732. [18] 刘群, 丁斌, 郝凤岭, 等. 棕榈酸甲酯的合成及其动力学研究[J]. 粮食与油脂, 2015, 28(7): 26-29. doi: 10.3969/j.issn.1008-9578.2015.07.007 [19] 葛文锋. 硫酸氢钠催化合成乙酸乙酯动力学研究[D]. 杭州: 浙江大学, 2009. [20] KARMAKAR A, KARMAKAR S, MUKHERJEE S. Properties of various plants and animals feedstocks for biodiesel production[J]. Bioresource Technology, 2010, 101(19): 7201-7210. doi: 10.1016/j.biortech.2010.04.079